Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; : 168779, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39241983

RESUMEN

RNA polymerase (Pol) II is highly regulated to ensure appropriate gene expression. Early transcription elongation is associated with transient pausing of RNA Pol II in the promoter-proximal region. In multicellular organisms, this pausing is stabilized by the association of transcription elongation factors DRB-sensitivity inducing factor (DSIF) and Negative Elongation Factor (NELF). DSIF is a broadly conserved transcription elongation factor whereas NELF is mostly restricted to the metazoan lineage. Mounting evidence suggests that NELF association with RNA Pol II serves as checkpoint for either release into rapid and productive transcription elongation or premature termination at promoter-proximal pause sites. Here we summarize NELF's roles in promoter-proximal pausing, transcription termination, DNA repair, and signaling based on decades of cell biological, biochemical, and structural work and describe areas for future research.

2.
Mol Cell ; 84(17): 3209-3222.e5, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39191261

RESUMEN

RNA polymerases must initiate and pause within a complex chromatin environment, surrounded by nucleosomes and other transcriptional machinery. This environment creates a spatial arrangement along individual chromatin fibers ripe for both competition and coordination, yet these relationships remain largely unknown owing to the inherent limitations of traditional structural and sequencing methodologies. To address this, we employed long-read chromatin fiber sequencing (Fiber-seq) in Drosophila to visualize RNA polymerase (Pol) within its native chromatin context with single-molecule precision along up to 30 kb fibers. We demonstrate that Fiber-seq enables the identification of individual Pol II, nucleosome, and transcription factor footprints, revealing Pol II pausing-driven destabilization of downstream nucleosomes. Furthermore, we demonstrate pervasive direct distance-dependent transcriptional coupling between nearby Pol II genes, Pol III genes, and transcribed enhancers, modulated by local chromatin architecture. Overall, transcription initiation reshapes surrounding nucleosome architecture and couples nearby transcriptional machinery along individual chromatin fibers.


Asunto(s)
Cromatina , Drosophila melanogaster , Nucleosomas , Transcripción Genética , Animales , Nucleosomas/metabolismo , Nucleosomas/genética , Cromatina/metabolismo , Cromatina/genética , Drosophila melanogaster/genética , Drosophila melanogaster/enzimología , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ensamble y Desensamble de Cromatina , ARN Polimerasa III/metabolismo , ARN Polimerasa III/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética
3.
Mol Cell ; 84(13): 2525-2541.e12, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38906142

RESUMEN

The Integrator complex attenuates gene expression via the premature termination of RNA polymerase II (RNAP2) at promoter-proximal pausing sites. It is required for stimulus response, cell differentiation, and neurodevelopment, but how gene-specific and adaptive regulation by Integrator is achieved remains unclear. Here, we identify two sites on human Integrator subunits 13/14 that serve as binding hubs for sequence-specific transcription factors (TFs) and other transcription effector complexes. When Integrator is attached to paused RNAP2, these hubs are positioned upstream of the transcription bubble, consistent with simultaneous TF-promoter tethering. The TFs co-localize with Integrator genome-wide, increase Integrator abundance on target genes, and co-regulate responsive transcriptional programs. For instance, sensory cilia formation induced by glucose starvation depends on Integrator-TF contacts. Our data suggest TF-mediated promoter recruitment of Integrator as a widespread mechanism for targeted transcription regulation.


Asunto(s)
Regulación de la Expresión Génica , Regiones Promotoras Genéticas , ARN Polimerasa II , Factores de Transcripción , Transcripción Genética , Humanos , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sitios de Unión , Unión Proteica , Células HEK293 , Cilios/metabolismo , Cilios/genética
4.
Cell Rep ; 43(6): 114242, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38768033

RESUMEN

Terminal differentiation requires massive restructuring of the transcriptome. During intestinal differentiation, the expression patterns of nearly 4,000 genes are altered as cells transition from progenitor cells in crypts to differentiated cells in villi. We identify dynamic occupancy of RNA polymerase II (Pol II) to gene promoters as the primary driver of transcriptomic shifts during intestinal differentiation in vivo. Changes in enhancer-promoter looping interactions accompany dynamic Pol II occupancy and are dependent upon HNF4, a pro-differentiation transcription factor. Using genetic loss-of-function, chromatin immunoprecipitation sequencing (ChIP-seq), and immunoprecipitation (IP) mass spectrometry, we demonstrate that HNF4 collaborates with chromatin remodelers and loop-stabilizing proteins and facilitates Pol II occupancy at hundreds of genes pivotal to differentiation. We also explore alternate mechanisms that drive differentiation gene expression and find that pause-release of Pol II and post-transcriptional mRNA stability regulate smaller subsets of differentially expressed genes. These studies provide insights into the mechanisms of differentiation in renewing adult tissue.


Asunto(s)
Diferenciación Celular , Factor Nuclear 4 del Hepatocito , ARN Polimerasa II , Animales , Ratones , Elementos de Facilitación Genéticos , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Intestinos , Regiones Promotoras Genéticas , ARN Polimerasa II/metabolismo
5.
Mol Cell ; 84(11): 2053-2069.e9, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38810649

RESUMEN

Facilitates chromatin transcription (FACT) is a histone chaperone that supports transcription through chromatin in vitro, but its functional roles in vivo remain unclear. Here, we analyze the in vivo functions of FACT with the use of multi-omics analysis after rapid FACT depletion from human cells. We show that FACT depletion destabilizes chromatin and leads to transcriptional defects, including defective promoter-proximal pausing and elongation, and increased premature termination of RNA polymerase II. Unexpectedly, our analysis revealed that promoter-proximal pausing depends not only on the negative elongation factor (NELF) but also on the +1 nucleosome, which is maintained by FACT.


Asunto(s)
Cromatina , Proteínas del Grupo de Alta Movilidad , Nucleosomas , Regiones Promotoras Genéticas , ARN Polimerasa II , Transcripción Genética , Factores de Elongación Transcripcional , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Humanos , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Cromatina/metabolismo , Cromatina/genética , Nucleosomas/metabolismo , Nucleosomas/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células HeLa , Ensamble y Desensamble de Cromatina , Células HEK293 , Elongación de la Transcripción Genética , Terminación de la Transcripción Genética
6.
Mol Cell ; 84(7): 1243-1256.e5, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38401543

RESUMEN

Metazoan gene expression regulation involves pausing of RNA polymerase (Pol II) in the promoter-proximal region of genes and is stabilized by DSIF and NELF. Upon depletion of elongation factors, NELF appears to accompany elongating Pol II past pause sites; however, prior work indicates that NELF prevents Pol II elongation. Here, we report cryoelectron microscopy structures of Pol II-DSIF-NELF complexes with NELF in two distinct conformations corresponding to paused and poised states. The paused NELF state supports Pol II stalling, whereas the poised NELF state enables transcription elongation as it does not support a tilted RNA-DNA hybrid. Further, the poised NELF state can accommodate TFIIS binding to Pol II, allowing for Pol II reactivation at paused or backtracking sites. Finally, we observe that the NELF-A tentacle interacts with the RPB2 protrusion and is necessary for pausing. Our results define how NELF can support pausing, reactivation, and elongation by Pol II.


Asunto(s)
Proteínas Nucleares , ARN Polimerasa II , Animales , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Microscopía por Crioelectrón , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
7.
bioRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37986803

RESUMEN

Terminal differentiation requires a massive restructuring of the transcriptome. During intestinal differentiation, the expression patterns of nearly 4000 genes are altered as cells transition from progenitor cells in crypts to differentiated cells in villi. We identified dynamic recruitment of RNA Polymerase II (Pol II) to gene promoters as the primary driver of transcriptomic shifts during intestinal differentiation in vivo. Changes in enhancer-promoter looping interactions accompany dynamic Pol II recruitment and are dependent upon HNF4, a pro-differentiation transcription factor. Using genetic loss-of- function, ChIP-seq and IP mass spectrometry, we demonstrate that HNF4 collaborates with chromatin remodelers and loop-stabilizing proteins and facilitates Pol II recruitment at hundreds of genes pivotal to differentiation. We also explore alternate mechanisms which drive differentiation gene expression and find pause-release of Pol II and post- transcriptional mRNA stability regulate smaller subsets of differentially expressed genes. These studies provide insights into the mechanisms of differentiation in a renewing adult tissue.

8.
bioRxiv ; 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37873297

RESUMEN

During heart development, a well-characterized network of transcription factors initiates cardiac gene expression and defines the precise timing and location of cardiac progenitor specification. However, our understanding of the post-initiation transcriptional events that regulate cardiac gene expression is still incomplete. The PAF1C component Rtf1 is a transcription regulatory protein that modulates pausing and elongation of RNA Pol II, as well as cotranscriptional histone modifications. Here we report that Rtf1 is essential for cardiogenesis in fish and mammals, and that in the absence of Rtf1 activity, cardiac progenitors arrest in an immature state. We found that Rtf1's Plus3 domain, which confers interaction with the transcriptional pausing and elongation regulator Spt5, was necessary for cardiac progenitor formation. ChIP-seq analysis further revealed changes in the occupancy of RNA Pol II around the transcription start site (TSS) of cardiac genes in rtf1 morphants reflecting a reduction in transcriptional pausing. Intriguingly, inhibition of pause release in rtf1 morphants and mutants restored the formation of cardiac cells and improved Pol II occupancy at the TSS of key cardiac genes. Our findings highlight the crucial role that transcriptional pausing plays in promoting normal gene expression levels in a cardiac developmental context.

9.
J Biol Chem ; 299(9): 105106, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37517697

RESUMEN

Promoter proximal pausing of RNA polymerase II (Pol II) is a critical transcriptional regulatory mechanism in metazoans that requires the transcription factor DRB sensitivity-inducing factor (DSIF) and the inhibitory negative elongation factor (NELF). DSIF, composed of Spt4 and Spt5, establishes the pause by recruiting NELF to the elongation complex. However, the role of DSIF in pausing beyond NELF recruitment remains unclear. We used a highly purified in vitro system and Drosophila nuclear extract to investigate the role of DSIF in promoter proximal pausing. We identified two domains of Spt5, the KOW4 and NGN domains, that facilitate Pol II pausing. The KOW4 domain promotes pausing through its interaction with the nascent RNA while the NGN domain does so through a short helical motif that is in close proximity to the non-transcribed DNA template strand. Removal of this sequence in Drosophila has a male-specific dominant negative effect. The alpha-helical motif is also needed to support fly viability. We also show that the interaction between the Spt5 KOW1 domain and the upstream DNA helix is required for DSIF association with the Pol II elongation complex. Disruption of the KOW1-DNA interaction is dominant lethal in vivo. Finally, we show that the KOW2-3 domain of Spt5 mediates the recruitment of NELF to the elongation complex. In summary, our results reveal additional roles for DSIF in transcription regulation and identify specific domains important for facilitating Pol II pausing.

10.
Gene ; 878: 147571, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37331491

RESUMEN

The pausing of RNA polymerase II (Pol II) at the promoter-proximal sites is a key rate-limiting step in gene expression. Cells have dedicated a specific set of proteins that sequentially establish pause and then release the Pol II from promoter-proximal sites. A well-controlled pausing and subsequent release of Pol II is crucial for the fine tuning of expression of genes including signal-responsive and developmentally-regulated ones. The release of paused Pol II broadly involves its transition from initiation to elongation. In this review article, we will discuss the phenomenon of Pol II pausing, the underlying mechanism, and also the role of different known factors, with an emphasis on general transcription factors, involved in this overall regulation. We will further discuss some recent findings suggesting a possible role (underexplored) of initiation factors in assisting the transition of transcriptionally-engaged paused Pol II into productive elongation.


Asunto(s)
Factores Generales de Transcripción , Factores Generales de Transcripción/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética
11.
bioRxiv ; 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37333392

RESUMEN

Methylphosphate Capping Enzyme (MEPCE) monomethylates the gamma phosphate at the 5' end of the 7SK noncoding RNA, a modification thought to protect 7SK from degradation. 7SK serves as a scaffold for assembly of a snRNP complex that inhibits transcription by sequestering the positive elongation factor P-TEFb. While much is known about the biochemical activity of MEPCE in vitro, little is known about its functions in vivo, or what roles- if any-there are for regions outside the conserved methyltransferase domain. Here, we investigated the role of Bin3, the Drosophila ortholog of MEPCE, and its conserved functional domains in Drosophila development. We found that bin3 mutant females had strongly reduced rates of egg-laying, which was rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 promotes fecundity by repressing P-TEFb. bin3 mutants also exhibited neuromuscular defects, analogous to a patient with MEPCE haploinsufficiency. These defects were also rescued by genetic reduction of P-TEFb activity, suggesting that Bin3 and MEPCE have conserved roles in promoting neuromuscular function by repressing P-TEFb. Unexpectedly, we found that a Bin3 catalytic mutant (Bin3Y795A) could still bind and stabilize 7SK and rescue all bin3 mutant phenotypes, indicating that Bin3 catalytic activity is dispensable for 7SK stability and snRNP function in vivo. Finally, we identified a metazoan-specific motif (MSM) outside of the methyltransferase domain and generated mutant flies lacking this motif (Bin3ΔMSM). Bin3ΔMSM mutant flies exhibited some-but not all-bin3 mutant phenotypes, suggesting that the MSM is required for a 7SK-independent, tissue-specific function of Bin3.

12.
Front Cell Dev Biol ; 11: 1145611, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875763

RESUMEN

Transcription elongation is a fundamental molecular process which is accurately regulated to ensure proper gene expression in cellular activities whereas its malfunction is associated with impaired cellular functions. Embryonic stem cells (ESCs) have significant value in regenerative medicine due to their self-renewal ability and their potential to differentiate to almost all types of cells. Therefore, dissection of the exact regulatory mechanism of transcription elongation in ESCs is crucial for both basic research and their clinical applications. In this review, we discuss the current understanding on the regulatory mechanisms of transcription elongation mediated by transcription factors and epigenetic modifications in ESCs.

13.
bioRxiv ; 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36778434

RESUMEN

RNA Polymerase II (Pol II) is a multi-subunit complex that undergoes covalent modifications as transcription proceeds through genes and enhancers. Rate-limiting steps of transcription control Pol II recruitment, site and degree of initiation, pausing duration, productive elongation, nascent transcript processing, transcription termination, and Pol II recycling. Here, we developed Precision Run-On coupled to Immuno-Precipitation sequencing (PRO-IP-seq) and tracked phosphorylation of Pol II C-terminal domain (CTD) at nucleotide-resolution. We uncovered precise positional control of Pol II CTD phosphorylation as transcription proceeds from the initiating nucleotide, through early and late promoter-proximal pause, and into productive elongation. Pol II CTD was predominantly unphosphorylated in the early pause-region, whereas serine-2- and serine-5-phosphorylations occurred preferentially in the later pause-region. Serine-7-phosphorylation dominated after the pause-release in a region where Pol II accelerates to its full elongational speed. Interestingly, tracking transcription upon heat-induced reprogramming demonstrated that Pol II with phosphorylated CTD remains paused on heat-repressed genes.

14.
Mol Cell ; 83(2): 186-202.e11, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36669479

RESUMEN

PGC-1α is well established as a metazoan transcriptional coactivator of cellular adaptation in response to stress. However, the mechanisms by which PGC-1α activates gene transcription are incompletely understood. Here, we report that PGC-1α serves as a scaffold protein that physically and functionally connects the DNA-binding protein estrogen-related receptor α (ERRα), cap-binding protein 80 (CBP80), and Mediator to overcome promoter-proximal pausing of RNAPII and transcriptionally activate stress-response genes. We show that PGC-1α promotes pausing release in a two-arm mechanism (1) by recruiting the positive transcription elongation factor b (P-TEFb) and (2) by outcompeting the premature transcription termination complex Integrator. Using mice homozygous for five amino acid changes in the CBP80-binding motif (CBM) of PGC-1α that destroy CBM function, we show that efficient differentiation of primary myoblasts to myofibers and timely skeletal muscle regeneration after injury require PGC-1α binding to CBP80. Our findings reveal how PGC-1α activates stress-response gene transcription in a previously unanticipated pre-mRNA quality-control pathway.


Asunto(s)
Precursores del ARN , Factores de Transcripción , Animales , Ratones , Proteínas de Unión al ADN/genética , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Regiones Promotoras Genéticas , Proteínas de Unión a Caperuzas de ARN/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
15.
Transcription ; 13(1-3): 70-81, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36047906

RESUMEN

Transcription elongation by RNA polymerase II (Pol II) has emerged as a regulatory hub in gene expression. A key control point occurs during early transcription elongation when Pol II pauses in the promoter-proximal region at the majority of genes in mammalian cells and at a large set of genes in Drosophila. An increasing number of trans-acting factors have been linked to promoter-proximal pausing. Some factors help to establish the pause, whereas others are required for the release of Pol II into productive elongation. A dysfunction of this elongation control point leads to aberrant gene expression and can contribute to disease development. The BET bromodomain protein BRD4 has been implicated in elongation control. However, only recently direct BRD4-specific functions in Pol II transcription elongation have been uncovered. This mainly became possible with technological advances that allow selective and rapid ablation of BRD4 in cells along with the availability of approaches that capture the immediate consequences on nascent transcription. This review sheds light on the experimental breakthroughs that led to the emerging view of BRD4 as a general regulator of transcription elongation.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Animales , Drosophila/genética , Mamíferos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
16.
Mol Syst Biol ; 18(9): e11002, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36082605

RESUMEN

Regulation of gene expression is linked to the organization of the genome. With age, chromatin alterations occur on all levels of genome organization, accompanied by changes in the gene expression profile. However, little is known about the changes in the level of transcriptional regulation. Here, we used a multi-omics approach and integrated ATAC-, RNA- and NET-seq to identify age-related changes in the chromatin landscape of murine liver and to investigate how these are linked to transcriptional regulation. We provide the first systematic inventory of the connection between aging, chromatin accessibility, and transcriptional regulation in a whole tissue. Aging in murine liver is characterized by an increase in chromatin accessibility at promoter regions, but not in an increase in transcriptional output. Instead, aging is accompanied by a decrease in promoter-proximal pausing of RNA polymerase II (Pol II), while initiation of transcription is not decreased as assessed by RNA polymerase mapping using CUT&RUN. Based on the data reported, we propose that these age-related changes in transcriptional regulation are due to a reduced stability of the pausing complex.


Asunto(s)
Envejecimiento , Cromatina , ARN Polimerasa II , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Cromatina/genética , Cromatina/metabolismo , Hígado/metabolismo , Ratones , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética
17.
Mol Cell ; 82(18): 3412-3423.e5, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35973425

RESUMEN

It is unclear how various factors functioning in the transcriptional elongation by RNA polymerase II (RNA Pol II) cooperatively regulate pause/release and productive elongation in living cells. Using an acute protein-depletion approach, we report that SPT6 depletion results in the release of paused RNA Pol II into gene bodies through an impaired recruitment of PAF1C. Short genes demonstrate a release with increased mature transcripts, whereas long genes are released but fail to yield mature transcripts, due to a reduced processivity resulting from both SPT6 and PAF1C loss. Unexpectedly, SPT6 depletion causes an association of NELF with the elongating RNA Pol II on gene bodies, without any observed functional significance on transcriptional elongation pattern, arguing against a role for NELF in keeping RNA Pol II in the paused state. Furthermore, SPT6 depletion impairs heat-shock-induced pausing, pointing to a role for SPT6 in regulating RNA Pol II pause/release through PAF1C recruitment.


Asunto(s)
ARN Polimerasa II , Factores de Transcripción , Respuesta al Choque Térmico , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/genética , Transcripción Genética
18.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35409193

RESUMEN

Gene expression is tightly regulated during hematopoiesis. Recent studies have suggested that RNA polymerase II (Pol II) promoter proximal pausing, a temporary stalling downstream of the promoter region after initiation, plays a critical role in regulating the expression of various genes in metazoans. However, the function of proximal pausing in hematopoietic gene regulation remains largely unknown. The negative elongation factor (NELF) complex is a key factor important for this proximal pausing. Previous studies have suggested that NELF regulates granulocytic differentiation in vitro, but its in vivo function during hematopoiesis remains uncharacterized. Here, we generated the zebrafish mutant for one NELF complex subunit Nelfb using the CRISPR-Cas9 technology. We found that the loss of nelfb selectively induced excessive granulocytic development during primitive and definitive hematopoiesis. The loss of nelfb reduced hematopoietic progenitor cell formation and did not affect erythroid development. Moreover, the accelerated granulocytic differentiation and reduced progenitor cell development could be reversed by inhibiting Pol II elongation. Further experiments demonstrated that the other NELF complex subunits (Nelfa and Nelfe) played similar roles in controlling granulocytic development. Together, our studies suggested that NELF is critical in controlling the proper granulocytic development in vivo, and that promoter proximal pausing might help maintain the undifferentiated state of hematopoietic progenitor cells.


Asunto(s)
Factores de Transcripción , Pez Cebra , Animales , Regulación de la Expresión Génica , ARN Polimerasa II/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra
19.
Genetics ; 219(1)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34849911

RESUMEN

Drosophila Heterochromatin Protein 1a (HP1a) is essential for heterochromatin formation and is involved in transcriptional silencing. However, certain loci require HP1a to be transcribed. One model posits that HP1a acts as a transcriptional silencer within euchromatin while acting as an activator within heterochromatin. However, HP1a has been observed as an activator of a set of euchromatic genes. Therefore, it is not clear whether, or how, chromatin context informs the function of HP1 proteins. To understand the role of HP1 proteins in transcription, we examined the genome-wide binding profile of HP1a as well as two other Drosophila HP1 family members, HP1B and HP1C, to determine whether coordinated binding of these proteins is associated with specific transcriptional outcomes. We found that HP1 proteins share many of their endogenous binding targets. These genes are marked by active histone modifications and are expressed at higher levels than nontarget genes in both heterochromatin and euchromatin. In addition, HP1 binding targets displayed increased RNA polymerase pausing compared with nontarget genes. Specifically, colocalization of HP1B and HP1C was associated with the highest levels of polymerase pausing and gene expression. Analysis of HP1 null mutants suggests these proteins coordinate activity at transcription start sites to regulate transcription. Depletion of HP1B or HP1C alters expression of protein-coding genes bound by HP1 family members. Our data broaden understanding of the mechanism of transcriptional activation by HP1a and highlight the need to consider particular protein-protein interactions, rather than broader chromatin context, to predict impacts of HP1 at transcription start sites.


Asunto(s)
Drosophila , Animales
20.
Cell Rep Methods ; 1(6): None, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34723238

RESUMEN

Transcription of many genes in metazoans is subject to polymerase pausing, which is the transient stop of transcriptionally engaged polymerases. This is known to mainly occur in promoter-proximal regions but it is not well understood. In particular, a genome-wide measurement of pausing times at high resolution has been lacking. We present here the time-variant precision nuclear run-on and sequencing (TV-PRO-seq) assay, an extension of the standard PRO-seq that allows us to estimate genome-wide pausing times at single-base resolution. Its application to human cells demonstrates that, proximal to promoters, polymerases pause more frequently but for shorter times than in other genomic regions. Comparison with single-cell gene expression data reveals that the polymerase pausing times are longer in highly expressed genes, while transcriptionally noisier genes have higher pausing frequencies and slightly longer pausing times. Analyses of histone modifications suggest that the marker H3K36me3 is related to the polymerase pausing.


Asunto(s)
ARN Polimerasa II , Transcripción Genética , Humanos , ARN Polimerasa II/genética , ARN Polimerasas Dirigidas por ADN/genética , Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA