Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosci Biotechnol Biochem ; 88(2): 131-137, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-37994668

RESUMEN

The quality of alcoholic beverages strongly depends on the metabolic characteristics of the yeast cells being used. To control the aroma and the taste of alcoholic beverages, as well as the production of ethanol in them, it is thus crucial to select yeast cells with the proper characteristics. Grape must contain a high concentration of proline, an amino acid that can potentially be a useful nitrogen source. However, Saccharomyces cerevisiae cannot utilize proline during the wine-making process, resulting in the elevated levels of proline in wine and consequent negative effects on wine quality. In this article, I review and discuss recent discoveries about the inhibitory mechanisms and roles of proline utilization in yeast. The information can help in developing novel yeast strains that can improve fermentation and enhance the quality and production efficiency of wine.


Asunto(s)
Vitis , Vino , Saccharomyces cerevisiae/metabolismo , Prolina/metabolismo , Vino/análisis , Bebidas Alcohólicas , Fermentación
2.
J Fungi (Basel) ; 9(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38132738

RESUMEN

Although proline is the most or second most abundant amino acid in wort and grape must, it is not fully consumed by the yeast Saccharomyces cerevisiae during alcoholic fermentation, unlike other amino acids. Our previous studies showed that arginine, the third most abundant amino acid in wort, inhibits the utilization of proline in most strains of S. cerevisiae. Furthermore, we found that some non-Saccharomyces yeasts utilized proline in a specific artificial medium with arginine and proline as the only nitrogen source, but these yeasts were not suitable for beer fermentation due to their low alcohol productivity. For yeasts to be useful for brewing, they need to utilize proline and produce alcohol during fermentation. In this study, 11 S. cerevisiae strains and 10 non-Saccharomyces yeast strains in the Phaff Yeast Culture Collection were identified that utilize proline effectively. Notably, two of these S. cerevisiae strains, UCDFST 40-144 and 68-44, utilize proline and produce sufficient alcohol in the beer fermentation model used. These strains have the potential to create distinctive beer products that are specifically alcoholic but with a reduction in proline in the finished beer.

3.
J Biosci Bioeng ; 136(6): 438-442, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37940488

RESUMEN

Proline, which is a predominant amino acid in grape musts, is involved in the taste and flavor of foods and beverages. The yeast Saccharomyces cerevisiae poorly utilizes proline in wine-making processes, leading to a nitrogen deficiency during fermentation and proline accumulation in wine. Previous studies have shown that the protein kinase A (PKA) pathway is involved in inhibitory mechanisms of proline utilization. In this study, we screened the PKA pathway-related genes that regulate proline utilization. Using a yeast culture collection of disrupted strains associated with the downstream of the PKA cascade, we revealed that the stress-responsive transcription factor genes MSN2/4 regulate proline utilization. Moreover, we found that Msn2/4 up-regulate the SHY1 gene during the cell growth of the wine fermentation model, which may cause the inhibition of proline utilization. The SHY1-deleted strain of the commercial wine yeast clearly showed proline consumption and average ethanol production under the wine fermentation model. The present data indicate that the PKA-Msn2/4-Shy1 cascade controls the inhibition of proline utilization under wine-making processes. Our study could hold promise for the development of wine yeast strains that can efficiently reduce proline during wine fermentation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Vino , Fermentación , Saccharomyces cerevisiae/metabolismo , Vino/análisis , Prolina/metabolismo , Aminoácidos/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Biosci Biotechnol Biochem ; 87(3): 358-362, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36496150

RESUMEN

Proline contributes to the taste and flavor of foods. The yeast Saccharomyces cerevisiae poorly assimilates proline during fermentation processes, resulting in the accumulation of proline in fermentative products. We performed here a screening of in total 1138 yeasts to obtain strains that better utilize proline. Our results suggest that proline utilization occurs in the genera of Zygoascus, Galactomyces, and Magnusiomyces.


Asunto(s)
Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/metabolismo , Prolina/metabolismo , Saccharomycetales/metabolismo , Fermentación , Alimentos
5.
Yeast ; 40(8): 333-348, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36573467

RESUMEN

Proline is the most abundant amino acid in wine and beer, because the yeast Saccharomyces cerevisiae hardly assimilates proline during fermentation processes. Our previous studies showed that arginine induces endocytosis of the proline transporter Put4, resulting in inhibition of proline utilization. We here report a possible role of arginine sensing in the inhibition of proline utilization. We first found that two basic amino acids, ornithine, and lysine, inhibit proline utilization by inducing Put4 endocytosis in a manner similar to arginine, but citrulline does not. Our genetic screening revealed that the arginine transporter Can1 is involved in the inhibition of proline utilization by arginine. Intriguingly, the arginine uptake activity of Can1 was not required for the arginine-dependent inhibition of proline utilization, suggesting that Can1 has a function beyond its commonly known function of transporting arginine. More importantly, our biochemical analyses revealed that Can1 activates signaling cascades of protein kinase A in response to extracellular arginine. Hence, we proposed that Can1 regulates proline utilization by functioning as a transceptor possessing the activity of both a transporter and receptor of arginine.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Arginina/metabolismo , Transporte Biológico , Prolina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Biosci Biotechnol Biochem ; 86(9): 1318-1326, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35749464

RESUMEN

Proline is a predominant amino acid in grape must, but it is poorly utilized by the yeast Saccharomyces cerevisiae in wine-making processes. This sometimes leads to a nitrogen deficiency during fermentation and proline accumulation in wine. In this study, we clarified that a glucose response is involved in an inhibitory mechanism of proline utilization in yeast. Our genetic screen showed that strains with a loss-of-function mutation on the CDC25 gene can utilize proline even under fermentation conditions. Cdc25 is a regulator of the glucose response consisting of the Ras/cAMP-dependent protein kinase A (PKA) pathway. Moreover, we found that activation of the Ras/PKA pathway is necessary for the inhibitory mechanism of proline utilization. The present data revealed that crosstalk exists between the carbon and proline metabolisms. Our study could hold promise for the development of wine yeast strains that can efficiently assimilate proline during the fermentation processes.


Asunto(s)
Prolina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vino , ras-GRF1 , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fermentación , Glucosa/metabolismo , Mutación con Pérdida de Función , Prolina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Vino/microbiología , ras-GRF1/genética
7.
Arch Biochem Biophys ; 712: 109025, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34506758

RESUMEN

In many bacteria, the reactions of proline catabolism are catalyzed by the bifunctional enzyme known as proline utilization A (PutA). PutA catalyzes the two-step oxidation of l-proline to l-glutamate using distinct proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH) active sites, which are separated by over 40 Å and connected by a complex tunnel system. The tunnel system consists of a main tunnel that connects the two active sites and functions in substrate channeling, plus six ancillary tunnels whose functions are unknown. Here we used tunnel-blocking mutagenesis to probe the role of a dynamic ancillary tunnel (tunnel 2a) whose shape is modulated by ligand binding to the PRODH active site. The 1.90 Å resolution crystal structure of Geobacter sulfurreducens PutA variant A206W verified that the side chain of Trp206 cleanly blocks tunnel 2a without perturbing the surrounding structure. Steady-state kinetic measurements indicate the mutation impaired PRODH activity without affecting the GSALDH activity. Single-turnover experiments corroborated a severe impairment of PRODH activity with flavin reduction decreased by nearly 600-fold in A206W relative to wild-type. Substrate channeling is also significantly impacted as A206W exhibited a 3000-fold lower catalytic efficiency in coupled PRODH-GSALDH activity assays, which measure NADH formation as a function of proline. The structure suggests that Trp206 inhibits binding of the substrate l-proline by preventing the formation of a conserved glutamate-arginine ion pair and closure of the PRODH active site. Our data are consistent with tunnel 2a serving as an open space through which the glutamate of the ion pair travels during the opening and closing of the active site in response to binding l-proline. These results confirm the essentiality of the conserved ion pair in binding l-proline and support the hypothesis that the ion pair functions as a gate that controls access to the PRODH active site.


Asunto(s)
Proteínas Bacterianas/química , Glutamato-5-Semialdehído Deshidrogenasa/química , Proteínas de la Membrana/química , Complejos Multienzimáticos/química , Prolina Oxidasa/química , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Geobacter/enzimología , Glutamato-5-Semialdehído Deshidrogenasa/genética , Proteínas de la Membrana/genética , Complejos Multienzimáticos/genética , Mutagénesis Sitio-Dirigida , Mutación , Prolina Oxidasa/genética , Conformación Proteica
8.
Biochem Biophys Res Commun ; 531(3): 416-421, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32800549

RESUMEN

Proline is one of the abundant amino acids in grape must, but in winemaking processes it is poorly assimilated by the yeast Saccharomyces cerevisiae. This often causes a nitrogen deficiency during fermentation and proline accumulation in wine. Our previous study showed that arginine inhibits proline utilization by specifically inducing the endocytosis of the high-affinity proline transporter Put4. However, the detailed mechanisms underlying this induction are still unclear. Here, we propose a possible mechanism mediated by the ubiquitin ligase Rsp5 and its adaptor protein, Art3. First, we found that the ubiquitination activity of Rsp5 was essential for the arginine-induced endocytosis of Put4. Because Put4 contains no Rsp5-binding motif, we next screened an adaptor protein that plays a role in the arginine-induced endocytosis of Put4. Our genetic and biochemical analyses clearly revealed that the ART3 gene-disrupted cells were defective in Put4 endocytosis, indicating that Art3 is a key regulator for Put4 endocytosis. More importantly, we discovered that deletion of ART3 remarkably canceled the inhibitory effects of arginine on proline utilization. The present results could hold promise for the development of wine yeast strains that can efficiently assimilate the abundant proline in grape must during the fermentation processes.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Arginina/farmacología , Arrestinas/metabolismo , Endocitosis , Prolina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Cicloheximida/farmacología , Endocitosis/efectos de los fármacos , Eliminación de Gen , Estabilidad Proteica/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos
9.
Yeast ; 37(9-10): 531-540, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32557770

RESUMEN

Proline is a predominant amino acid in grape must, but it is poorly utilized by the yeast Saccharomyces cerevisiae in wine-making processes. This sometimes leads to a nitrogen deficiency during fermentation and proline accumulation in wine. Although the presence of other nitrogen sources under fermentation conditions is likely to interfere with proline utilization, the inhibitory mechanisms of proline utilization remain unclear. In this study, we examined the effect of arginine on proline utilization in S. cerevisiae. We first constructed a proline auxotrophic yeast strain and identified an inhibitory factor by observing the growth of cells when proline was present as a sole nitrogen source. Intriguingly, we found that arginine, and not ammonium ion, clearly inhibited the growth of proline auxotrophic cells. In addition, arginine prevented the proline consumption of wild-type and proline auxotrophic cells, indicating that arginine is an inhibitory factor of proline utilization in yeast. Next, quantitative polymerase chain reaction (PCR) analysis showed that arginine partially repressed the expression of genes involved in proline degradation and uptake. We then observed that arginine induced the endocytosis of the proline transporters Put4 and Gap1, whereas ammonium induced the endocytosis of only Gap1. Hence, our results may involve an important mechanism for arginine-mediated inhibition of proline utilization in yeast. The breeding of yeast that utilizes proline efficiently could be promising for the improvement of wine quality.


Asunto(s)
Arginina/farmacología , Prolina/antagonistas & inhibidores , Prolina/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Compuestos de Amonio/metabolismo , Compuestos de Amonio/farmacología , Arginina/metabolismo , Fermentación , Nitrógeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vino/normas
10.
Antioxid Redox Signal ; 30(4): 650-673, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28990412

RESUMEN

SIGNIFICANCE: Proline catabolism refers to the 4-electron oxidation of proline to glutamate catalyzed by the enzymes proline dehydrogenase (PRODH) and l-glutamate γ-semialdehyde dehydrogenase (GSALDH, or ALDH4A1). These enzymes and the intermediate metabolites of the pathway have been implicated in tumor growth and suppression, metastasis, hyperprolinemia metabolic disorders, schizophrenia susceptibility, life span extension, and pathogen virulence and survival. In some bacteria, PRODH and GSALDH are combined into a bifunctional enzyme known as proline utilization A (PutA). PutAs are not only virulence factors in some pathogenic bacteria but also fascinating systems for studying the coordination of metabolic enzymes via substrate channeling. Recent Advances: The past decade has seen an explosion of structural data for proline catabolic enzymes. This review surveys these structures, emphasizing protein folds, substrate recognition, oligomerization, kinetic mechanisms, and substrate channeling in PutA. CRITICAL ISSUES: Major unsolved structural targets include eukaryotic PRODH, the complex between monofunctional PRODH and monofunctional GSALDH, and the largest of all PutAs, trifunctional PutA. The structural basis of PutA-membrane association is poorly understood. Fundamental aspects of substrate channeling in PutA remain unknown, such as the identity of the channeled intermediate, how the tunnel system is activated, and the roles of ancillary tunnels. FUTURE DIRECTIONS: New approaches are needed to study the molecular and in vivo mechanisms of substrate channeling. With the discovery of the proline cycle driving tumor growth and metastasis, the development of inhibitors of proline metabolic enzymes has emerged as an exciting new direction. Structural biology will be important in these endeavors.


Asunto(s)
Prolina Oxidasa/metabolismo , Prolina/biosíntesis , Animales , Biocatálisis , Humanos , Modelos Moleculares , Estructura Molecular , Prolina/química , Prolina Oxidasa/química
11.
J Biol Chem ; 291(46): 24065-24075, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27679491

RESUMEN

Aldehyde dehydrogenases (ALDHs) catalyze the NAD(P)+-dependent oxidation of aldehydes to carboxylic acids and are important for metabolism and detoxification. Although the ALDH superfamily fold is well established, some ALDHs contain an uncharacterized domain of unknown function (DUF) near the C terminus of the polypeptide chain. Herein, we report the first structure of a protein containing the ALDH superfamily DUF. Proline utilization A from Sinorhizobium meliloti (SmPutA) is a 1233-residue bifunctional enzyme that contains the DUF in addition to proline dehydrogenase and l-glutamate-γ-semialdehyde dehydrogenase catalytic modules. Structures of SmPutA with a proline analog bound to the proline dehydrogenase site and NAD+ bound to the ALDH site were determined in two space groups at 1.7-1.9 Å resolution. The DUF consists of a Rossmann dinucleotide-binding fold fused to a three-stranded ß-flap. The Rossmann domain resembles the classic ALDH superfamily NAD+-binding domain, whereas the flap is strikingly similar to the ALDH superfamily dimerization domain. Paradoxically, neither structural element performs its implied function. Electron density maps show that NAD+ does not bind to the DUF Rossmann fold, and small-angle X-ray scattering reveals a novel dimer that has never been seen in the ALDH superfamily. The structure suggests that the DUF is an adapter domain that stabilizes the aldehyde substrate binding loop and seals the substrate-channeling tunnel via tertiary structural interactions that mimic the quaternary structural interactions found in non-DUF PutAs. Kinetic data for SmPutA indicate a substrate-channeling mechanism, in agreement with previous studies of other PutAs.


Asunto(s)
Aldehído Deshidrogenasa/química , Proteínas Bacterianas/química , Pliegue de Proteína , Sinorhizobium meliloti/enzimología , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cinética , NAD , Dominios Proteicos , Estructura Secundaria de Proteína , Sinorhizobium meliloti/genética , Difracción de Rayos X
12.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 968-80, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699642

RESUMEN

The proline-utilization pathway in Mycobacterium tuberculosis (Mtb) has recently been identified as an important factor in Mtb persistence in vivo, suggesting that this pathway could be a valuable therapeutic target against tuberculosis (TB). In Mtb, two distinct enzymes perform the conversion of proline into glutamate: the first step is the oxidation of proline into Δ(1)-pyrroline-5-carboxylic acid (P5C) by the flavoenzyme proline dehydrogenase (PruB), and the second reaction involves converting the tautomeric form of P5C (glutamate-γ-semialdehyde) into glutamate using the NAD(+)-dependent Δ(1)-pyrroline-5-carboxylic dehydrogenase (PruA). Here, the three-dimensional structures of Mtb-PruA, determined by X-ray crystallography, in the apo state and in complex with NAD(+) are described at 2.5 and 2.1 Šresolution, respectively. The structure reveals a conserved NAD(+)-binding mode, common to other related enzymes. Species-specific conformational differences in the active site, however, linked to changes in the dimer interface, suggest possibilities for selective inhibition of Mtb-PruA despite its reasonably high sequence identity to other PruA enzymes. Using recombinant PruA and PruB, the proline-utilization pathway in Mtb has also been reconstituted in vitro. Functional validation using a novel NMR approach has demonstrated that the PruA and PruB enzymes are together sufficient to convert proline to glutamate, the first such demonstration for monofunctional proline-utilization enzymes.


Asunto(s)
1-Pirrolina-5-Carboxilato Deshidrogenasa/química , Mycobacterium tuberculosis/enzimología , 1-Pirrolina-5-Carboxilato Deshidrogenasa/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , NAD/química , NAD/metabolismo , Resonancia Magnética Nuclear Biomolecular , Prolina/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína
13.
J Mol Biol ; 425(17): 3106-20, 2013 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-23747974

RESUMEN

The aldehyde dehydrogenase (ALDH) superfamily member Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyzes the NAD(+)-dependent oxidation of glutamate semialdehyde to glutamate, which is the final step of proline catabolism. Defects in P5CDH activity lead to the metabolic disorder type II hyperprolinemia, P5CDH is essential for virulence of the fungal pathogen Cryptococcus neoformans, and bacterial P5CDHs have been targeted for vaccine development. Although the enzyme oligomeric state is known to be important for ALDH function, the oligomerization of P5CDH has remained relatively unstudied. Here we determine the oligomeric states and quaternary structures of four bacterial P5CDHs using a combination of small-angle X-ray scattering, X-ray crystallography, and dynamic light scattering. The P5CDHs from Thermus thermophilus and Deinococcus radiodurans form trimer-of-dimers hexamers in solution, which is the first observation of a hexameric ALDH in solution. In contrast, two Bacillus P5CDHs form dimers in solution but do not assemble into a higher-order oligomer. Site-directed mutagenesis was used to identify a hexamerization hot spot that is centered on an arginine residue in the NAD(+)-binding domain. Mutation of this critical Arg residue to Ala in either of the hexameric enzymes prevents hexamer formation in solution. Paradoxically, the dimeric Arg-to-Ala T. thermophilus mutant enzyme packs as a hexamer in the crystal state, which illustrates the challenges associated with predicting the biological assembly in solution from crystal structures. The observation of different oligomeric states among P5CDHs suggests potential differences in cooperativity and protein-protein interactions.


Asunto(s)
1-Pirrolina-5-Carboxilato Deshidrogenasa/química , 1-Pirrolina-5-Carboxilato Deshidrogenasa/genética , 1-Pirrolina-5-Carboxilato Deshidrogenasa/metabolismo , Cristalografía por Rayos X , Cinética , Mutagénesis Sitio-Dirigida/métodos , Polimerizacion , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA