Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Intervalo de año de publicación
1.
Microbiome ; 12(1): 120, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956705

RESUMEN

BACKGROUND: Functional redundancy (FR) is widely present, but there is no consensus on its formation process and influencing factors. Taxonomically distinct microorganisms possessing genes for the same function in a community lead to within-community FR, and distinct assemblies of microorganisms in different communities playing the same functional roles are termed between-community FR. We proposed two formulas to respectively quantify the degree of functional redundancy within and between communities and analyzed the FR degrees of carbohydrate degradation functions in global environment samples using the genetic information of glycoside hydrolases (GHs) encoded by prokaryotes. RESULTS: Our results revealed that GHs are each encoded by multiple taxonomically distinct prokaryotes within a community, and the enzyme-encoding prokaryotes are further distinct between almost any community pairs. The within- and between-FR degrees are primarily affected by the alpha and beta community diversities, respectively, and are also affected by environmental factors (e.g., pH, temperature, and salinity). The FR degree of the prokaryotic community is determined by deterministic factors. CONCLUSIONS: We conclude that the functional redundancy of GHs is a stabilized community characteristic. This study helps to determine the FR formation process and influencing factors and provides new insights into the relationships between prokaryotic community biodiversity and ecosystem functions. Video Abstract.


Asunto(s)
Bacterias , Biodiversidad , Glicósido Hidrolasas , Polisacáridos , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Polisacáridos/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Ecosistema , Microbiota , Células Procariotas/metabolismo , Células Procariotas/clasificación , Filogenia , Concentración de Iones de Hidrógeno
2.
Sci Rep ; 14(1): 16840, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039186

RESUMEN

Pesticides and pharmaceuticals enter aquatic ecosystems as complex mixtures. Various processes govern their dissipation and effect on the sediment and surface waters. These micropollutants often show persistence and can adversely affect microorganisms even at low concentrations. We investigated the dissipation and effects on procaryotic communities of metformin (antidiabetic drug), metolachlor (agricultural herbicide), and terbutryn (herbicide in building materials). These contaminants were introduced individually or as a mixture (17.6 µM per micropollutant) into laboratory microcosms mimicking the sediment-water interface. Metformin and metolachlor completely dissipated within 70 days, whereas terbutryn persisted. Dissipation did not differ whether the micropollutants were introduced individually or as part of a mixture. Sequence analysis of 16S rRNA gene amplicons evidenced distinct responses of prokaryotic communities in both sediment and water. Prokaryotic community variations were mainly driven by matrix composition and incubation time. Micropollutant exposure played a secondary but influential role, with pronounced effects of recalcitrant metolachlor and terbutryn within the micropollutant mixture. Antagonistic and synergistic non-additive effects were identified for specific taxa across taxonomic levels in response to the micropollutant mixture. This study underscores the importance of considering the diversity of interactions between micropollutants, prokaryotic communities, and their respective environments when examining sediment-water interfaces affected by multiple contaminants.


Asunto(s)
Sedimentos Geológicos , ARN Ribosómico 16S , Contaminantes Químicos del Agua , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , ARN Ribosómico 16S/genética , Herbicidas , Bacterias/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Acetamidas , Metformina/farmacología , Biodegradación Ambiental
3.
Front Microbiol ; 15: 1341641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38404594

RESUMEN

Introduction: Antarctic Porifera have gained increasing interest as hosts of diversified associated microbial communities that could provide interesting insights on the holobiome system and its relation with environmental parameters. Methods: The Antarctic demosponge species Haliclona dancoi and Haliclona scotti were targeted for the determination of persistent organic pollutant (i. e., polychlorobiphenyls, PCBs, and polycyclic aromatic hydrocarbons, PAHs) and trace metal concentrations, along with the characterization of the associated prokaryotic communities by the 16S rRNA next generation sequencing, to evaluate possible relationships between pollutant accumulation (e.g., as a stress factor) and prokaryotic community composition in Antarctic sponges. To the best of our knowledge, this approach has been never applied before. Results: Notably, both chemical and microbiological data on H. scotti (a quite rare species in the Ross Sea) are here reported for the first time, as well as the determination of PAHs in Antarctic Porifera. Both sponge species generally contained higher amounts of pollutants than the surrounding sediment and seawater, thus demonstrating their accumulation capability. The structure of the associated prokaryotic communities, even if differing at order and genus levels between the two sponge species, was dominated by Proteobacteria and Bacteroidota (with Archaea abundances that were negligible) and appeared in sharp contrast to communities inhabiting the bulk environment. Discussions: Results suggested that some bacterial groups associated with H. dancoi and H. scotti were significantly (positively or negatively) correlated to the occurrence of certain contaminants.

4.
Water Res ; 241: 120136, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37295228

RESUMEN

Single-bleaching powder disinfection is a highly prevalent practice to disinfect source water for marine aquaculture to prevent diseases. However, due to the decay of active chlorine and the presence of disinfectant resistance bacteria (DRB), the effects of bleaching powder on prokaryotic community compositions (PCCs) and function in marine water remain unknown. In the present study, the source water in a canvas pond was treated with the normal dose of bleaching powder, and the impact on PCCs and functional profiles was investigated using 16S rRNA gene amplicon sequencing. The bleaching powder strongly altered the PCCs within 0.5 h, but they began to recover at 16 h, eventually achieving 76% similarity with the initial time at 72 h. This extremely rapid recovery was primarily driven by the decay of Bacillus and the regrowth of Pseudoalteromonas, both of which are DRB. Abundant community not only help PCCs recover but also provide larger functional redundancy than rare community. During the recovery of PCCs, stochastic processes drove the community assembly. After 72 h, five out of seven identified disinfectant resistance genes related to efflux pump systems were highly enriched, primarily in Staphylococcus and Bacillus. However, 15 out of the 16 identified antibiotic resistance genes (ARGs) remained unchanged compared to the initial time, indicating that bleaching powder does not contribute to ARGs removal. Overall, the findings demonstrate that single-bleaching powder disinfection cannot successfully meet the objective of disease prevention in marine aquaculture water due to the extremely rapid recovery of PCCs. Hence, secondary disinfection or novel disinfection strategies should be explored for source water disinfection.


Asunto(s)
Desinfectantes , Microbiota , Purificación del Agua , Agua , Polvos/farmacología , ARN Ribosómico 16S/genética , Desinfectantes/farmacología , Desinfección , Bacterias/genética
5.
Microbiol Res ; 274: 127435, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37331053

RESUMEN

Soybean-maize are cultivated in different management systems, such as no-tillage and pastures, which presents potential to add organic residues, and it can potentially impacts the soil microbial community present in these systems. Thus, this study aimed to examine the effects of different soybean-maize management practices on the diversity and composition of soil microbial communities. Specifically, 16 S rRNA amplicon sequencing was used to investigate whether the use of pasture species in a fallowing system influences microbial communities in a soybean-maize rotation system, as compared to conventional tillage and no-tillage systems. The results indicate that the inclusion of the pasture species Urochloa brizantha in soybean-maize management systems leads to distinct responses within the soil microbial community. It was found that different soybean-maize management systems, particularly those with U. brizantha, affected the microbial community, likely due to the management applied to this pasture species. The system with 3 years of fallowing before soybean-maize showed the lowest microbial richness (∼2000 operational taxonomic units) and diversity index (∼6.0). Proteobacteria (∼30%), Acidobacteria (∼15%), and Verrucomicrobia (∼10%) were found to be the most abundant phyla in the soil under tropical native vegetation, while soils under cropland had an increased abundance of Firmicutes (∼30% to ∼50%) and Actinobacteria (∼30% to ∼35%). To summarize, this study identified the impacts of various soybean-maize management practices on the soil microbial community and emphasized the advantages of adding U. brizantha as a fallow species.


Asunto(s)
Microbiota , Suelo , Suelo/química , Zea mays/microbiología , Glycine max , Microbiología del Suelo
6.
World J Microbiol Biotechnol ; 39(6): 150, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024538

RESUMEN

Grapevine (Vitis spp.) is one of the most cultivated fruit plants in the world. Vineyard growers apply copper-based products in these crops to prevent fungal diseases, generating worries about Cu contamination in soils and food. In this context, this study identifies prokaryotic communities associated with grapevine plants grown under different levels of Cu-contaminated soils. Moreover, the study isolates new bacteria to improve Cu resistance in plants. Soil Cu content correlated inversely with operational taxonomic units (OTUs) belonging to the groups Acidobacteria (SubGroup 2), Latescibacteria, Pedosphaeraceae, and Candidatus Udaeobacter. A total of 14 new bacterial isolates were obtained from copper-contaminated soils. These isolates produced Indolic Compounds (IC) in a range of 25 to 96 µg mL- 1, highlighting bacterial strains S20 and S26 as the highest producers. These new bacteria also produced siderophores, highlighting strains S19 and S26, which removed 58 and 59% of Fe ions from the CAS complex, respectively. From the in vitro antagonistic activity against Colletotrichum spp. strains, the authors identified some bacterial strains that inhibited phytopathogen growth. Bacterial strain Bacillus sp. S26 was chosen for inoculation experiments in grapevine plants. This bacterial isolate improved the growth of grapevine plants in Cu-contaminated soils. However, growth promotion did not occur in unstressed plants. More studies are necessary for developing a new bioinoculant containing S26 cells aiming to reduce biotic and abiotic stresses in grapevine.


Asunto(s)
Bacillus , Contaminantes del Suelo , Cobre/farmacología , Bacterias , Suelo , Plantas , Estrés Fisiológico , Contaminantes del Suelo/análisis
7.
Front Microbiol ; 14: 1078469, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910225

RESUMEN

Antarctic polynyas are highly productive open water areas surrounded by ice where extensive phytoplankton blooms occur, but little is known about how these surface blooms influence carbon fluxes and prokaryotic communities from deeper waters. By sequencing the 16S rRNA gene, we explored the vertical connectivity of the prokaryotic assemblages associated with particles of three different sizes in two polynyas with different surface productivity, and we linked it to the magnitude of the particle export fluxes measured using thorium-234 (234Th) as particle tracer. Between the sunlit and the mesopelagic layers (700 m depth), we observed compositional changes in the prokaryotic communities associated with the three size-fractions, which were mostly dominated by Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria. Interestingly, the vertical differences between bacterial communities attached to the largest particles decreased with increasing 234Th export fluxes, indicating a more intense downward transport of surface prokaryotes in the most productive polynya. This was accompanied by a higher proportion of surface prokaryotic taxa detected in deep particle-attached microbial communities in the station with the highest 234Th export flux. Our results support recent studies evidencing links between surface productivity and deep prokaryotic communities and provide the first evidence of sinking particles acting as vectors of microbial diversity to depth in Antarctic polynyas, highlighting the direct influence of particle export in shaping the prokaryotic communities of mesopelagic waters.

8.
Environ Microbiome ; 18(1): 17, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36915176

RESUMEN

BACKGROUND: Soil services are central to life on the planet, with microorganisms as their main drivers. Thus, the evaluation of soil quality requires an understanding of the principles and factors governing microbial dynamics within it. High salt content is a constraint for life affecting more than 900 million hectares of land, a number predicted to rise at an alarming rate due to changing climate. Nevertheless, little is known about how microbial life unfolds in these habitats. In this study, DNA stable-isotope probing (DNA-SIP) with 18O-water was used to determine for the first time the taxa able to grow in hypersaline soil samples (ECe = 97.02 dS/m). We further evaluated the role of light on prokaryotes growth in this habitat. RESULTS: We detected growth of both archaea and bacteria, with taxon-specific growth patterns providing insights into the drivers of success in saline soils. Phylotypes related to extreme halophiles, including haloarchaea and Salinibacter, which share an energetically efficient mechanism for salt adaptation (salt-in strategy), dominated the active community. Bacteria related to moderately halophilic and halotolerant taxa, such as Staphylococcus, Aliifodinibius, Bradymonadales or Chitinophagales also grew during the incubations, but they incorporated less heavy isotope. Light did not stimulate prokaryotic photosynthesis but instead restricted the growth of most bacteria and reduced the diversity of archaea that grew. CONCLUSIONS: The results of this study suggest that life in saline soils is energetically expensive and that soil heterogeneity and traits such as exopolysaccharide production or predation may support growth in hypersaline soils. The contribution of phototrophy to supporting the heterotrophic community in saline soils remains unclear. This study paves the way toward a more comprehensive understanding of the functioning of these environments, which is fundamental to their management. Furthermore, it illustrates the potential of further research in saline soils to deepen our understanding of the effect of salinity on microbial communities.

9.
Front Microbiol ; 13: 1007237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532439

RESUMEN

Microbial communities and functions play an important role in soil carbon and nitrogen transformations, and, in recent decades, the abandonment of terraces is prevalant in the hilly areas of China. However, it is unclear how soil carbon and nitrogen contents and prokaryotic communities changed as a result of the abandonment of ancient rice terraces. Soil profiles ranging from 0 to 120 cm were excavated on drylands, forestlands (both converted due to the abandonment of ancient rice terraces), and ancient rice terraces. The FAPROTAX database was used to predict soil prokaryotic functional groups. The results showed that soil organic carbon (SOC) and total nitrogen (TN) contents of abandoned ancient rice terraces in drylands (51.09 and 33.20%) and forestlands (31.76 and 16.59%) were significantly reduced. Soil prokaryotic diversity and community composition changed dramatically after the abandonment of terraces and were mainly affected by soil pH and ammoniacal nitrogen ( NH 4 + -N). Community composition was more similar in drylands and forestlands. Moreover, the abundance of transformation functional genes of carbon (57.01 and 50.80%) and nitrogen (15.25 and 22.36%) in bacterial communities was significantly reduced, and of carbon in the archaeal communities decreased sharply (28.10 and 46.50%), in drylands and forestlands. These findings indicate that short-term abandonment of ancient rice terraces reduces soil carbon and nitrogen contents, which may be closely related to the decline of prokaryotic functional groups. The prevalence of short-term abandonment of rice terraces in the hilly areas of China may pose adverse ecological risks.

10.
Front Microbiol ; 13: 988743, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160253

RESUMEN

Although the effects of certain species of seaweed on the microbial community structure have long been a research focus in marine ecology, the response of the microbial community to seasons and different seaweed species is poorly understood. In the present study, a total of 39 seawater samples were collected during 3 months from three zones: Neoporphyra haitanensis cultivation zones (P), Gracilaria lemaneiformis-Saccharina japonica mixed cultivation zones (G), and control zones (C). These samples were then analyzed using 18S and 16S rRNA gene sequencing to ascertain the fungal and bacterial communities, respectively, along with the determination of environmental factors. Our results showed that increased dissolved oxygen (DO), decreased inorganic nutrients, and released dissolved organic matter (DOM) in seaweed cultivation zone predominantly altered the variability of eukaryotic and prokaryotic microbial communities. Certain microbial groups such as Aurantivirga, Pseudomonas, and Woeseia were stimulated and enriched in response to seaweed cultivation, and the enriched microorganisms varied across seaweed cultivation zones due to differences in the composition of released DOM. In addition, seasonal changes in salinity and temperature were strongly correlated with microbial community composition and structure. Our study provides new insights into the interactions between seaweed and microbial communities.

11.
Mol Ecol ; 31(22): 5745-5764, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36112071

RESUMEN

Subterranean estuaries are biogeochemically active coastal sites resulting from the underground mixing of fresh aquifer groundwater and seawater. In these systems, microbial activity can largely transform the chemical elements that may reach the sea through submarine groundwater discharge (SGD), but little is known about the microorganisms thriving in these land-sea transition zones. We present the first spatially-resolved characterization of the bacterial assemblages along a coastal aquifer in the NW Mediterranean, considering the entire subsurface salinity gradient. Combining bulk heterotrophic activity measurements, flow cytometry, microscopy and 16S rRNA gene sequencing we find large variations in prokaryotic abundances, cell size, activity and diversity at both the horizontal and vertical scales that reflect the pronounced physicochemical gradients. The parts of the transect most influenced by freshwater were characterized by smaller cells and lower prokaryotic abundances and heterotrophic production, but some activity hotspots were found at deep low-oxygen saline groundwater sites enriched in nitrite and ammonium. Diverse, heterogeneous and highly endemic communities dominated by Proteobacteria, Patescibacteria, Desulfobacterota and Bacteroidota were observed throughout the aquifer, pointing to clearly differentiated prokaryotic niches across these transition zones and little microbial connectivity between groundwater and Mediterranean seawater habitats. Finally, experimental manipulations unveiled large increases in community heterotrophic activity driven by fast growth of some rare and site-specific groundwater Proteobacteria. Our results indicate that prokaryotic communities within subterranean estuaries are highly heterogeneous in terms of biomass, activity and diversity, suggesting that their role in transforming nutrients will also vary spatially within these terrestrial-marine transition zones.


Asunto(s)
Estuarios , Agua Subterránea , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Agua Subterránea/microbiología , Bacterias/genética , Monitoreo del Ambiente
12.
Mol Ecol ; 31(19): 4932-4948, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35881675

RESUMEN

Understanding the maintenance and origin of beta diversity is a central topic in ecology. However, the factors that drive diversity patterns and underlying processes remain unclear, particularly for host-prokaryotic associations. Here, beta diversity patterns were studied in five prokaryotic biotopes, namely, two high microbial abundance (HMA) sponge taxa (Xestospongia spp. and Hyrtios erectus), one low microbial abundance (LMA) sponge taxon (Stylissa carteri), sediment and seawater sampled across thousands of kilometres. Using multiple regression on distance matrices (MRM), spatial (geographic distance) and environmental (sea surface temperature and chlorophyll α concentrations) variables proved significant predictors of beta diversity in all five biotopes and together explained from 54% to 82% of variation in dissimilarity of both HMA species, 27% to 43% of variation in sediment and seawater, but only 20% of variation of the LMA S. carteri. Variance partitioning was subsequently used to partition the variation into purely spatial, purely environmental and spatially-structured environmental components. The amount of variation in dissimilarity explained by the purely spatial component was lowest for S. carteri at 11% and highest for H. erectus at 55%. The purely environmental component, in turn, only explained from 0.15% to 2.83% of variation in all biotopes. In addition to spatial and environmental variables, a matrix of genetic differences between pairs of sponge individuals also proved a significant predictor of variation in prokaryotic dissimilarity of the Xestospongia species complex. We discuss the implications of these results for the HMA-LMA dichotomy and compare the MRM results with results obtained using constrained ordination and zeta diversity.


Asunto(s)
Biodiversidad , Poríferos , Animales , Bacterias/genética , Clorofila , Humanos , Filogenia , Poríferos/genética , ARN Ribosómico 16S/genética , Agua de Mar
13.
Microbiol Spectr ; 10(3): e0148122, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35638815

RESUMEN

Eutrophication occurring in coastal bays is prominent in impacting local ecosystem structure and functioning. To understand how coastal bay ecosystem function responds to eutrophication, comprehending the ecological processes associated with microbial community assembly is critical. However, quantifying the contribution of ecological processes to the assembly of prokaryotic communities is still limited in eutrophic waters. Moreover, the influence of these ecological processes on microbial interactions is poorly understood. Here, we examined the assembly processes and co-occurrence patterns of prokaryotic communities in a eutrophic bay using 156 surface seawater samples collected over 12 months. The variation of prokaryotic community compositions (PCCs) could be mainly explained by environmental factors, of which temperature was the most important. Under high environmental heterogeneity conditions in low-temperature seasons, heterogeneous selection was the major assembly process, resulting in high ß-diversity and more tightly connected co-occurrence networks. When environmental heterogeneity decreased in high-temperature seasons, drift took over, leading to decline in ß-diversity and network associations. Microeukaryotes were found to be important biological factors affecting PCCs. Our results first disentangled the contribution of drift and microbial interactions to the large unexplained variation of prokaryotic communities in eutrophic waters. Furthermore, a new conceptual model linking microbial interactions to ecological processes was proposed under different environmental heterogeneity. Overall, our study sheds new light on the relationship between assembly processes and co-occurrence of prokaryotic communities in eutrophic waters. IMPORTANCE A growing number of studies have examined roles of microbial community assembly in modulating community composition. However, the relationships between community assembly and microbial interactions are not fully understood and rarely tested, especially in eutrophic waters. In this study, we built a conceptual model that links seasonal microbial interactions to ecological processes, which has not been reported before. The model showed that heterogeneous selection plays an important role in driving community assembly during low-temperature seasons, resulting in higher ß-diversity and more tightly connected networks. In contrast, drift became a dominant force during high-temperature seasons, leading to declines in the ß-diversity and network associations. This model could function as a new framework to predict how prokaryotic communities respond to intensified eutrophication induced by climate change in coastal environment.


Asunto(s)
Bahías , Microbiota , Estaciones del Año , Agua de Mar
14.
Front Bioeng Biotechnol ; 10: 1100533, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686251

RESUMEN

The current research work attempted to investigate, for the first time, the impact of biochar addition, on anaerobic digestion of olive mill wastewater with different initial chemical oxygen demand loads in batch cultures (10 g/L, 15 g/L, and 20 g/L). Methane yields were compared by applying one-way analysis of variance (ANOVA) followed by post-hoc Tukey's analysis. The results demonstrated that adding at 5 g/L biochar to olive mill wastewater with an initial chemical oxygen demand load of 20 g/L increased methane yield by 97.8% and mitigated volatile fatty acid accumulation compared to the control batch. According to the results of microbial community succession revealed by the Illumina amplicon sequencing, biochar supplementation significantly increased diversity of the microbial community and improved the abundance of potential genera involved in direct interspecies electron transfer, including Methanothrix and Methanosarcina. Consequently, biochar can be a promising alternative in terms of the recovery of metabolic activity during anaerobic digestion of olive mill wastewater at a large scale.

15.
Microorganisms ; 9(7)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34361898

RESUMEN

The rhizosphere is a microhabitat where there is an intense chemical dialogue between plants and microorganisms. The two coexist and develop synergistic actions, which can promote plants' functions and productivity, but also their capacity to respond to stress conditions, including heavy metal (HM) contamination. If HMs are present in soils used for agriculture, there is a risk of metal uptake by edible plants with subsequent bioaccumulation in humans and animals and detrimental consequences for their health. Plant productivity can also be negatively affected. Many bacteria have defensive mechanisms for resisting heavy metals and, through various complex processes, can improve plant response to HM stress. Bacteria-plant synergic interactions in the rhizosphere, as a homeostatic ecosystem response to HM disturbance, are common in soil. However, this is hard to achieve in agroecosystems managed with traditional practices, because concentrating on maximizing crop yield does not make it possible to establish rhizosphere interactions. Improving knowledge of the complex interactions mediated by plant exudates and secondary metabolites can lead to nature-based solutions for plant health in HM contaminated soils. This paper reports the main ecotoxicological effects of HMs and the various compounds (including several secondary metabolites) produced by plant-microorganism holobionts for removing, immobilizing and containing toxic elements.

16.
Environ Monit Assess ; 193(8): 485, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34241704

RESUMEN

The use of landfill gas for power production is a very attractive option in tropical sanitary landfills mainly in developing countries, where the waste composition, water content, and the climate conditions are favorable to a fast depletion of waste organic matter and a robust short term biogas production response. In this paper, the results of long-term monitoring and methane extraction activities in a tropical landfill are presented, and the obtained results are analyzed taking into account the structure of the prokaryotic communities and the fugitive emissions through the temporary covers. It is shown that waste depletion by aerobic processes and fugitive emissions are probable related to the drop in the efficiency of the extraction system verified in the field and that the performance of the temporary covers is of paramount importance when implementing good practices of waste management in sanitary landfills. The fugitive emissions through temporary covers was estimated at about 12% of the methane production in the field, and the distance from drains and sampling depth were confirmed as having an influence on the environmental conditions for waste depletion and on the relative abundance of the bacterial communities.


Asunto(s)
Contaminantes Atmosféricos , Eliminación de Residuos , Administración de Residuos , Contaminantes Atmosféricos/análisis , Biocombustibles , Monitoreo del Ambiente , Metano/análisis , Instalaciones de Eliminación de Residuos
17.
Appl Environ Microbiol ; 87(17): e0088521, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34160281

RESUMEN

The mud cellar creates a unique microenvironment for the fermentation of strong-flavor baijiu (SFB). Recent research and long-term practice have highlighted the key roles of microbes inhabiting pit mud in the formation of SFB's characteristic flavor. A positive correlation between the quality of SFB and cellar age was extracted from practice; however, the evolutionary patterns of pit mud microbiome and driving factors remain unclear. Here, based on the variation regularity analysis of microbial community structure and metabolites of samples from cellars of different ages (∼30/100/300 years), we further investigated the effects of lactate and acetate (main microbial metabolites in fermented grains) on modulating the pit mud microbiome. Esters (50.3% to 64.5%) dominated the volatile compounds identified in pit mud, and contents of the four typical acids (lactate, hexanoate, acetate, and butyrate) increased with cellar age. Bacteria (9.5 to 10.4 log10 [lg] copies/g) and archaea (8.3 to 9.1 lg copies/g) mainly constituted pit mud microbiota, respectively dominated by Clostridia (39.7% to 81.2%) and Methanomicrobia (32.8% to 92.9%). An upward trend with cellar age characterized the relative and absolute abundance of the most predominant bacterial and archaeal genera, Caproiciproducens and Methanosarcina. Correlation analysis revealed significantly (P < 0.05) positive relationships between the two genera and major metabolites. Anaerobic fermentation with acetate and lactate as carbon sources enhanced the enrichment of Clostridia, and furthermore, the relative abundance of Caproiciproducens (40.9%) significantly increased after 15-day fed-batch fermentation with lactate compared with the initial pit mud (0.22%). This work presents a directional evolutionary pattern of pit mud microbial consortia and provides an alternative way to accelerate the enrichment of functional microbes. IMPORTANCE The solid-state anaerobic fermentation in a mud cellar is the most typical feature of strong-flavor baijiu (SFB). Metabolites produced by microbes inhabiting pit mud are crucial to create the unique flavor of SFB. Accordingly, craftspeople have always highlighted the importance of the pit mud microbiome and concluded by centuries of practice that the production rate of high-quality baijiu increases with cellar age. To deepen the understanding of the pit mud microbiome, we determined the microbial community and metabolites of different-aged pit mud, inferred the main functional groups, and explored the forces driving the microbial community evolution through metagenomic, metabolomic, and multivariate statistical analyses. The results showed that the microbial consortia of pit mud presented a regular and directional evolutionary pattern under the impact of continuous batch-to-batch brewing activities. This work provides insight into the key roles of the pit mud microbiome in SFB production and supports the production optimization of high-quality pit mud.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Arcilla/microbiología , Aromatizantes/metabolismo , Microbiota , Vino/análisis , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , China , Fermentación , Aromatizantes/análisis , Almacenamiento de Alimentos/instrumentación , Vino/microbiología
18.
Microorganisms ; 9(4)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33923859

RESUMEN

Microbial communities are important players in coastal sediments for the functioning of the ecosystem and the regulation of biogeochemical cycles. They also have great potential as indicators of environmental perturbations. To assess how microbial communities can change their composition and abundance along coastal areas, we analyzed the composition of the microbiome of four locations of the Yucatan Peninsula using 16S rRNA gene amplicon sequencing. To this end, sediment from two conserved (El Palmar and Bocas de Dzilam) and two contaminated locations (Sisal and Progreso) from the coast northwest of the Yucatan Peninsula in three different years, 2017, 2018 and 2019, were sampled and sequenced. Microbial communities were found to be significantly different between the locations. The most noticeable difference was the greater relative abundance of Planctomycetes present at the conserved locations, versus FBP group found with greater abundance in contaminated locations. In addition to the difference in taxonomic groups composition, there is a variation in evenness, which results in the samples of Bocas de Dzilam and Progreso being grouped separately from those obtained in El Palmar and Sisal. We also carry out the functional prediction of the metabolic capacities of the microbial communities analyzed, identifying differences in their functional profiles. Our results indicate that landscape of the coastal microbiome of Yucatan sediment shows changes along the coastline, reflecting the constant dynamics of coastal environments and their impact on microbial diversity.

19.
FEMS Microbiol Rev ; 45(5)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-33538813

RESUMEN

Despite the relevance of submarine groundwater discharge (SGD) for ocean biogeochemistry, the microbial dimension of SGD remains poorly understood. SGD can influence marine microbial communities through supplying chemical compounds and microorganisms, and in turn, microbes at the land-ocean transition zone determine the chemistry of the groundwater reaching the ocean. However, compared with inland groundwater, little is known about microbial communities in coastal aquifers. Here, we review the state of the art of the microbial dimension of SGD, with emphasis on prokaryotes, and identify current challenges and future directions. Main challenges include improving the diversity description of groundwater microbiota, characterized by ultrasmall, inactive and novel taxa, and by high ratios of sediment-attached versus free-living cells. Studies should explore microbial dynamics and their role in chemical cycles in coastal aquifers, the bidirectional dispersal of groundwater and seawater microorganisms, and marine bacterioplankton responses to SGD. This will require not only combining sequencing methods, visualization and linking taxonomy to activity but also considering the entire groundwater-marine continuum. Interactions between traditionally independent disciplines (e.g. hydrogeology, microbial ecology) are needed to frame the study of terrestrial and aquatic microorganisms beyond the limits of their presumed habitats, and to foster our understanding of SGD processes and their influence in coastal biogeochemical cycles.


Asunto(s)
Agua Subterránea , Microbiota , Monitoreo del Ambiente , Agua de Mar
20.
FEMS Microbiol Ecol ; 96(12)2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33038219

RESUMEN

Soil microbial communities play critical roles in maintaining natural ecosystems such as the Campos biome grasslands of southern South America. These grasslands are characterized by a high diversity of soils, low available phosphorus (P) and limited water holding capacity. This work aimed to describe prokaryotic communities associated with different soil types and to examine the relationship among these soil communities, the parent material and the soil nutrient status. Five Uruguayan soils with different parent material and nutrient status, under natural grasslands, were compared. The structure and diversity of prokaryotic communities were characterized by sequencing 16S rRNA gene amplicons. Proteobacteria, Actinobacteria, Firmicutes,Verrucomicrobia, Acidobacteria, Planctomycetes and Chloroflexi were the predominant phyla. Ordination based on several distance measures was able to discriminate clearly between communities associated with different soil types. Edge-PCA phylogeny-sensitive ordination and differential relative abundance analyses identified Archaea and the bacterial phyla Firmicutes, Acidobacteria, Actinobacteria and Verrucomicrobia as those with significant differences among soil types. Canonical analysis of principal coordinates identified porosity, clay content, available P, soil organic carbon and water holding capacity as the main variables contributing to determine the characteristic prokaryotic communities of each soil type.


Asunto(s)
Microbiología del Suelo , Suelo , Carbono , Ecosistema , Pradera , Nutrientes , ARN Ribosómico 16S/genética , América del Sur , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA