Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39205105

RESUMEN

This study investigates a novel approach for assessing the health status of rotating machinery transmission systems by analyzing the dynamic degradation of bearings. The proposed method generates multi-dimensional data by creating virtual states and constructs a multi-dimensional model using virtual state-space in conjunction with mechanism model analysis. Innovatively, the Hammerstein-Wiener (HW) modeling technique from control theory is applied to identify these dynamic multi-dimensional models. The modeling experiments are performed, focusing on the model's input and output types, the selection of nonlinear module estimators, the configuration of linear module transfer functions, and condition transfer. Dynamic degradation response signals are generated, and the method is validated using four widely recognized databases consisting of accurate measurement signals collected by vibration sensors. Experimental results demonstrated that the model achieved a modeling accuracy of 99% for multiple bearings under various conditions. The effectiveness of this dynamic modeling method is further confirmed through comparative experimental data and signal images. This approach offers a novel reference for evaluating the health status of transmission systems.

2.
Sci Rep ; 14(1): 13443, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862621

RESUMEN

As a facilitator of smart upgrading, digital twin (DT) is emerging as a driving force in prognostics and health management (PHM). Faults can lead to degradation or malfunction of industrial assets. Accordingly, DT-driven PHM studies are conducted to improve reliability and reduce maintenance costs of industrial assets. However, there is a lack of systematic research to analyze and summarize current DT-driven PHM applications and methodologies for industrial assets. Therefore, this paper first analyzes the application of DT in PHM from the application field, aspect, and hierarchy at application layer. The paper next deepens into the core and mechanism of DT in PHM at theory layer. Then enabling technologies and tools for DT modeling and DT system are investigated and summarized at implementation layer. Finally, observations and future research suggestions are presented.

3.
Sensors (Basel) ; 24(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38544078

RESUMEN

This paper highlights the significance of safety and reliability in modern industries, particularly in sectors like petroleum and LNG, where safety valves play a critical role in ensuring system safety under extreme conditions. To enhance the reliability of these valves, this study aims to develop a deep learning-based prognostics and health management (PHM) model. Past empirical methods have limitations, driving the need for data-driven prediction models. The proposed model monitors safety valve performance, detects anomalies in real time, and prevents accidents caused by system failures. The research focuses on collecting sensor data, analyzing trends for lifespan prediction and normal operation, and integrating data for anomaly detection. This study compares related research and existing models, presents detailed results, and discusses future research directions. Ultimately, this research contributes to the safe operation and anomaly detection of pilot-operated cryogenic safety valves in industrial settings.


Asunto(s)
Aprendizaje Profundo , Pronóstico , Reproducibilidad de los Resultados , Industrias , Longevidad
4.
Sensors (Basel) ; 24(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38203133

RESUMEN

In machine fault diagnosis, despite the wealth of information multi-sensor data provide for constructing high-quality graphs, existing graph data-driven diagnostic methods face challenges posed by handling these heterogeneous multi-sensor data. To address this issue, we propose CEVAE-HGANN, an innovative model for fault diagnosis based on the electric rudder, which can process heterogeneous data efficiently. Initially, we facilitate interaction between conditional information and the original features, followed by dimensional reduction via a conditional enhanced variational autoencoder, thereby achieving a more robust state representation. Subsequently, we define two meta-paths and employ both the Euclidean distance and Pearson coefficient in crafting an effective adjacency matrix to delineate the relationships among edges within the graph, thereby effectively representing the complex interrelations among these subsystems. Ultimately, we incorporate heterogeneous graph attention neural networks for classification, which emphasizes the connections among different subsystems, moving beyond the reliance on node-level fault identification and effectively capturing the complex interactions between subsystems. The experimental outcomes substantiate the superiority of the electric rudder-based CEVAE-HGANN model fault diagnosis.

5.
Sensors (Basel) ; 23(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836954

RESUMEN

Prognostic and health management (PHM) plays a vital role in ensuring the safety and reliability of aircraft systems. The process entails the proactive surveillance and evaluation of the state and functional effectiveness of crucial subsystems. The principal aim of PHM is to predict the remaining useful life (RUL) of subsystems and proactively mitigate future breakdowns in order to minimize consequences. The achievement of this objective is helped by employing predictive modeling techniques and doing real-time data analysis. The incorporation of prognostic methodologies is of utmost importance in the execution of condition-based maintenance (CBM), a strategic approach that emphasizes the prioritization of repairing components that have experienced quantifiable damage. Multiple methodologies are employed to support the advancement of prognostics for aviation systems, encompassing physics-based modeling, data-driven techniques, and hybrid prognosis. These methodologies enable the prediction and mitigation of failures by identifying relevant health indicators. Despite the promising outcomes in the aviation sector pertaining to the implementation of PHM, there exists a deficiency in the research concerning the efficient integration of hybrid PHM applications. The primary aim of this paper is to provide a thorough analysis of the current state of research advancements in prognostics for aircraft systems, with a specific focus on prominent algorithms and their practical applications and challenges. The paper concludes by providing a detailed analysis of prospective directions for future research within the field.


Asunto(s)
Aeronaves , Aviación , Pronóstico , Estudios Prospectivos , Reproducibilidad de los Resultados
6.
J Med Internet Res ; 25: e46340, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37477951

RESUMEN

BACKGROUND: Deep learning (DL) prediction models hold great promise in the triage of COVID-19. OBJECTIVE: We aimed to evaluate the diagnostic test accuracy of DL prediction models for assessing and predicting the severity of COVID-19. METHODS: We searched PubMed, Scopus, LitCovid, Embase, Ovid, and the Cochrane Library for studies published from December 1, 2019, to April 30, 2022. Studies that used DL prediction models to assess or predict COVID-19 severity were included, while those without diagnostic test accuracy analysis or severity dichotomies were excluded. QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2), PROBAST (Prediction Model Risk of Bias Assessment Tool), and funnel plots were used to estimate the bias and applicability. RESULTS: A total of 12 retrospective studies involving 2006 patients reported the cross-sectionally assessed value of DL on COVID-19 severity. The pooled sensitivity and area under the curve were 0.92 (95% CI 0.89-0.94; I2=0.00%) and 0.95 (95% CI 0.92-0.96), respectively. A total of 13 retrospective studies involving 3951 patients reported the longitudinal predictive value of DL for disease severity. The pooled sensitivity and area under the curve were 0.76 (95% CI 0.74-0.79; I2=0.00%) and 0.80 (95% CI 0.76-0.83), respectively. CONCLUSIONS: DL prediction models can help clinicians identify potentially severe cases for early triage. However, high-quality research is lacking. TRIAL REGISTRATION: PROSPERO CRD42022329252; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD 42022329252.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , COVID-19/diagnóstico , Estudios Retrospectivos , PubMed , Pruebas Diagnósticas de Rutina , Prueba de COVID-19
7.
Sensors (Basel) ; 23(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37447820

RESUMEN

Appropriate maintenance of industrial equipment keeps production systems in good health and ensures the stability of production processes. In specific production sectors, such as the electrical power industry, equipment failures are rare but may lead to high costs and substantial economic losses not only for the power plant but for consumers and the larger society. Therefore, the power production industry relies on a variety of approaches to maintenance tasks, ranging from traditional solutions and engineering know-how to smart, AI-based analytics to avoid potential downtimes. This review shows the evolution of maintenance approaches to support maintenance planning, equipment monitoring and supervision. We present older techniques traditionally used in maintenance tasks and those that rely on IT analytics to automate tasks and perform the inference process for failure detection. We analyze prognostics and health-management techniques in detail, including their requirements, advantages and limitations. The review focuses on the power-generation sector. However, some of the issues addressed are common to other industries. The article also presents concepts and solutions that utilize emerging technologies related to Industry 4.0, touching on prescriptive analysis, Big Data and the Internet of Things. The primary motivation and purpose of the article are to present the existing practices and classic methods used by engineers, as well as modern approaches drawing from Artificial Intelligence and the concept of Industry 4.0. The summary of existing practices and the state of the art in the area of predictive maintenance provides two benefits. On the one hand, it leads to improving processes by matching existing tools and methods. On the other hand, it shows researchers potential directions for further analysis and new developments.


Asunto(s)
Inteligencia Artificial , Industrias , Costos y Análisis de Costo , Ingeniería , Macrodatos
8.
Sensors (Basel) ; 23(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514628

RESUMEN

Pumped-storage hydroelectricity (PSH) is a facility that stores energy in the form of the gravitational potential energy of water by pumping water from a lower to a higher elevation reservoir in a hydroelectric power plant. The operation of PSH can be divided into two states: the turbine state, during which electric energy is generated, and the pump state, during which this generated electric energy is stored as potential energy. Additionally, the condition monitoring of PSH is generally challenging because the hydropower turbine, which is one of the primary components of PSH, is immersed in water and continuously rotates. This study presents a method that automatically detects new abnormal conditions in target structures without the intervention of experts. The proposed method automatically updates and optimizes existing abnormal condition classification models to accommodate new abnormal conditions. The performance of the proposed method was evaluated with sensor data obtained from on-site PSH. The test results show that the proposed method detects new abnormal PSH conditions with an 85.89% accuracy using fewer than three datapoints and classifies each condition with a 99.73% accuracy on average.

9.
Sensors (Basel) ; 23(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37112350

RESUMEN

The development of prognostics and health management solutions in the manufacturing industry has lagged behind academic advances due to a number of practical challenges. This work proposes a framework for the initial development of industrial PHM solutions that is based on the system development life cycle commonly used for software-based applications. Methodologies for completing the planning and design stages, which are critical for industrial solutions, are presented. Two challenges that are inherent to health modeling in manufacturing environments, data quality and modeling systems that experience trend-based degradation, are then identified and methods to overcome them are proposed. Additionally included is a case study documenting the development of an industrial PHM solution for a hyper compressor at a manufacturing facility operated by The Dow Chemical Company. This case study demonstrates the value of the proposed development process and provides guidelines for utilizing it in other applications.


Asunto(s)
Industrias , Programas Informáticos , Pronóstico , Comercio , Modelos Biológicos
10.
ISA Trans ; 137: 379-392, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36740557

RESUMEN

The modern engineering systems often operate under varying environments and only partial information can be observed at discrete monitoring epochs. For such systems, few works have been done for the prognostics of health status using the available environment and monitoring information. Therefore, the aim of this article is to present a new health prediction method for modern engineering systems whose condition is partially observable under varying environments. A dynamic Gamma process is proposed to model the system degradation observations under changing environments. To describe the relation of system actual status to the observed information, a proportional hazard (PH) model integrating internal aging and external observations is presented for modeling the system hazard rate. To realize prediction of residual life of such systems, a matrix operation-based prognostic method is presented to calculate the closed-form solutions of health characteristics for the system. A case study of partially observable failing systems is demonstrated, and comparisons with other recent developed approaches are also given to show the effectiveness of the model.

11.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36501766

RESUMEN

Most methodologies for fault detection and diagnosis in prognostics and health management (PHM) systems use machine learning (ML) or deep learning (DL), in which either some features are extracted beforehand (in the case of typical ML approaches) or the filters are used to extract features autonomously (in the case of DL) to perform the critical classification task. In particular, in the fault detection and diagnosis of industrial robots where the primary sources of information are electric current, vibration, or acoustic emissions signals that are rich in information in both the temporal and frequency domains, techniques capable of extracting meaningful information from non-stationary frequency-domain signals with the ability to map the signals into their constituent components with compressed information are required. This has the potential to minimise the complexity and size of traditional ML- and DL-based frameworks. The deep scattering spectrum (DSS) is one of the approaches that use the Wavelet Transform (WT) analogy for separating and extracting information embedded in a signal's various temporal and frequency domains. Therefore, the primary focus of this work is the investigation of the efficacy and applicability of the DSS's feature domain relative to fault detection and diagnosis for the mechanical components of industrial robots. For this, multiple industrial robots with distinct mechanical faults were studied. Data were collected from these robots under different fault conditions and an approach was developed for classifying the faults using DSS's low-variance features extracted from input signals. The presented approach was implemented on the practical test benches and demonstrated satisfactory performance in fault detection and diagnosis for simple and complex classification problems with a classification accuracy of 99.7% and 88.1%, respectively. The results suggest that, similarly to other ML techniques, the DSS offers significant potential in addressing fault classification challenges, especially for cases where the data are in the form of signals.


Asunto(s)
Estado de Salud , Aprendizaje Automático , Pronóstico , Acústica , Electricidad
12.
Sensors (Basel) ; 21(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34696058

RESUMEN

Sensor monitoring networks and advances in big data analytics have guided the reliability engineering landscape to a new era of big machinery data. Low-cost sensors, along with the evolution of the internet of things and industry 4.0, have resulted in rich databases that can be analyzed through prognostics and health management (PHM) frameworks. Several data-driven models (DDMs) have been proposed and applied for diagnostics and prognostics purposes in complex systems. However, many of these models are developed using simulated or experimental data sets, and there is still a knowledge gap for applications in real operating systems. Furthermore, little attention has been given to the required data preprocessing steps compared to the training processes of these DDMs. Up to date, research works do not follow a formal and consistent data preprocessing guideline for PHM applications. This paper presents a comprehensive step-by-step pipeline for the preprocessing of monitoring data from complex systems aimed for DDMs. The importance of expert knowledge is discussed in the context of data selection and label generation. Two case studies are presented for validation, with the end goal of creating clean data sets with healthy and unhealthy labels that are then used to train machinery health state classifiers.


Asunto(s)
Macrodatos , Manejo de Datos , Bases de Datos Factuales , Pronóstico , Reproducibilidad de los Resultados
13.
PeerJ Comput Sci ; 7: e690, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604520

RESUMEN

As an important part of prognostics and health management, remaining useful life (RUL) prediction can provide users and managers with system life information and improve the reliability of maintenance systems. Data-driven methods are powerful tools for RUL prediction because of their great modeling abilities. However, most current data-driven studies require large amounts of labeled training data and assume that the training data and test data follow similar distributions. In fact, the collected data are often variable due to different equipment operating conditions, fault modes, and noise distributions. As a result, the assumption that the training data and the test data obey the same distribution may not be valid. In response to the above problems, this paper proposes a data-driven framework with domain adaptability using a bidirectional gated recurrent unit (BGRU). The framework uses a domain-adversarial neural network (DANN) to implement transfer learning (TL) from the source domain to the target domain, which contains only sensor information. To verify the effectiveness of the proposed method, we analyze the IEEE PHM 2012 Challenge datasets and use them for verification. The experimental results show that the generalization ability of the model is effectively improved through the domain adaptation approach.

14.
Sensors (Basel) ; 21(17)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34502778

RESUMEN

In the last five years, the inclusion of Deep Learning algorithms in prognostics and health management (PHM) has led to a performance increase in diagnostics, prognostics, and anomaly detection. However, the lack of interpretability of these models results in resistance towards their deployment. Deep Learning-based models fall within the accuracy/interpretability tradeoff, which means that their complexity leads to high performance levels but lacks interpretability. This work aims at addressing this tradeoff by proposing a technique for feature selection embedded in deep neural networks that uses a feature selection (FS) layer trained with the rest of the network to evaluate the input features' importance. The importance values are used to determine which will be considered for deployment of a PHM model. For comparison with other techniques, this paper introduces a new metric called ranking quality score (RQS), that measures how performance evolves while following the corresponding ranking. The proposed framework is exemplified with three case studies involving health state diagnostics and prognostics and remaining useful life prediction. Results show that the proposed technique achieves higher RQS than the compared techniques, while maintaining the same performance level when compared to the same model but without an FS layer.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Redes Neurales de la Computación , Pronóstico
15.
Sensors (Basel) ; 21(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34577203

RESUMEN

Advances in the manufacturing industry have led to modern approaches such as Industry 4.0, Cyber-Physical Systems, Smart Manufacturing (SM) and Digital Twins. The traditional manufacturing architecture that consisted of hierarchical layers has evolved into a hierarchy-free network in which all the areas of a manufacturing enterprise are interconnected. The field devices on the shop floor generate large amounts of data that can be useful for maintenance planning. Prognostics and Health Management (PHM) approaches use this data and help us in fault detection and Remaining Useful Life (RUL) estimation. Although there is a significant amount of research primarily focused on tool wear prediction and Condition-Based Monitoring (CBM), there is not much importance given to the multiple facets of PHM. This paper conducts a review of PHM approaches, the current research trends and proposes a three-phased interoperable framework to implement Smart Prognostics and Health Management (SPHM). The uniqueness of SPHM lies in its framework, which makes it applicable to any manufacturing operation across the industry. The framework consists of three phases: Phase 1 consists of the shopfloor setup and data acquisition steps, Phase 2 describes steps to prepare and analyze the data and Phase 3 consists of modeling, predictions and deployment. The first two phases of SPHM are addressed in detail and an overview is provided for the third phase, which is a part of ongoing research. As a use-case, the first two phases of the SPHM framework are applied to data from a milling machine operation.


Asunto(s)
Industria Manufacturera
16.
J Manuf Sci Eng ; 143(4)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34092998

RESUMEN

Manufacturing processes have become increasingly sophisticated leading to greater usage of robotics. Sustaining successful manufacturing robotic operations requires a strategic maintenance program. Without careful planning, maintenance can be very costly. To reduce maintenance costs, manufacturers are exploring how they can assess the health of their robot workcell operations to enhance their maintenance strategies. Effective health assessment relies upon capturing appropriate data and generating intelligence from the workcell. Multiple data streams relevant to a robot workcell may be available including robot controller data, a supervisory programmable logic controller data, maintenance logs, process and part quality data, and equipment and process fault and failure data. These data streams can be extremely informative, yet the massive volume and complexity of this data can be overwhelming, confusing, and sometimes paralyzing. Researchers at the National Institute of Standards and Technology have developed a test method and companion sensor to assess the health of robot workcells which will yield an additional and unique data stream. The intent is that this data stream can either serve as a surrogate for larger data volumes to reduce the data collection and analysis burden on the manufacturer, or add more intelligence to assessing robot workcell health. This article presents the most recent effort focused on verifying the companion sensor. Results of the verification test process are discussed along with preliminary results of the sensor's performance during verification testing. Lessons learned indicate that the test process can be an effective means of quantifying the sensor's measurement capability particularly after test process anomalies are addressed in future efforts.

17.
Entropy (Basel) ; 23(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33435637

RESUMEN

Anomaly detection refers to detecting data points, events, or behaviour that do not comply with expected or normal behaviour. For example, a typical problem related to anomaly detection on an industrial level is having little labelled data and a few run-to-failure examples, making it challenging to develop reliable and accurate prognostics and health management systems for fault detection and identification. Certain machine learning approaches for anomaly detection require normal data to train, which reduces the need for historical data with fault labels, where the main task is to differentiate between normal and anomalous behaviour. Several reconstruction-based deep learning approaches are explored in this work and compared towards detecting anomalies in air compressors. Anomalies in such systems are not point-anomalies, but instead, an increasing deviation from the normal condition as the system components start to degrade. In this paper, a descriptive range of the deviation based on the reconstruction-based techniques is proposed. Most anomaly detection approaches are considered black box models, predicting whether an event should be considered an anomaly or not. This paper proposes a method for increasing the transparency and explainability of reconstruction-based anomaly detection to indicate which parts of a system contribute to the deviation from expected behaviour. The results show that the proposed methods detect abnormal behaviour in air compressors accurately and reliably and indicate why it deviates. The proposed approach is capable of detecting faults without the need for historical examples of similar faults. The proposed method for explainable anomaly detection is crucial to any prognostics and health management (PHM) system due to its purpose of detecting deviations and identifying causes.

18.
ISA Trans ; 113: 81-96, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32209250

RESUMEN

In recent years, the development of autonomous health management systems received increasing attention from worldwide companies to improve their performances and avoid downtime losses. This can be done, in the first step, by constructing powerful health indicators (HI) from intelligent sensors for system monitoring and for making maintenance decisions. In this context, this paper aims to develop a new methodology that allows automatically choosing the pertinent measurements among various sources and also handling raw data from high-frequency sensors to extract the useful low-level features. Then, it combines these features to create the most appropriate HI following the previously defined multiple evaluation criteria. Thanks to the flexibility of the genetic programming, the proposed methodology does not require any expertise knowledge about system degradation trends but allows easily integrating this information if available. Its performance is then verified on two real application case studies. In addition, an insightful overview on HI evaluation criteria is also discussed in this paper.


Asunto(s)
Indicadores de Salud , Pronóstico , Automatización , Benchmarking , Gestión de la Información en Salud , Humanos
19.
ISA Trans ; 113: 9-27, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32005404

RESUMEN

In order to identify and eliminate known or potential failures from the process of product design, development and production, failure mode and effect analysis (FMEA) have been widely used in a variety of industries as a useful tool in prognostics and health management, safety and reliability analysis. The traditional FMEA shows two significant flaws while calculating the risk priority number (RPN). First, recovery time that considerably affects the safety, cost, and sustainability of the system is not considered in the RPN calculation. Second, in order to capture different conflicting experts' views, especially when the obtained data are fuzzy, there is no mechanism. In order to overcome these issues, this paper presents a resilience-based risk priority number for considering the recovery and repair time of each failure mode, then a risk-based fuzzy information processing and decision-making is developed by modifying the R-numbers methodology and on the basis of simultaneous evaluation of criteria and alternatives (SECA) approach which is so-called R-SECA method. The capability of proposed models is tested by a case study of a centrifugal air compressor in a steel manufacturing company. Results show the robustness of proposed R-SECA model in dealing with different scenarios of risky information.

20.
Sensors (Basel) ; 20(23)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266036

RESUMEN

In prognostics and health management (PHM), the majority of fault detection and diagnosis is performed by adopting segregated methodology, where electrical faults are detected using motor current signature analysis (MCSA), while mechanical faults are detected using vibration, acoustic emission, or ferrography analysis. This leads to more complicated methods for overall fault detection and diagnosis. Additionally, the involvement of several types of data makes system management difficult, thus increasing computational cost in real-time. Aiming to resolve that, this work proposes the use of the embedded electrical current signals of the control unit (MCSA) as an approach to detect and diagnose mechanical faults. The proposed fault detection and diagnosis method use the discrete wavelet transform (DWT) to analyze the electric motor current signals in the time-frequency domain. The technique decomposes current signals into wavelets, and extracts distinguishing features to perform machine learning (ML) based classification. To achieve an acceptable level of classification accuracy for ML-based classifiers, this work extends to presenting a methodology to extract, select, and infuse several types of features from the decomposed wavelets of the original current signals, based on wavelet characteristics and statistical analysis. The mechanical faults under study are related to the rotate vector (RV) reducer mechanically coupled to electric motors of the industrial robot Hyundai Robot YS080 developed by Hyundai Robotics Co. The proposed approach was implemented in real-time and showed satisfying results in fault detection and diagnosis for the RV reducer, with a classification accuracy of 96.7%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA