Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Res Pract Thromb Haemost ; 8(1): 102253, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38268518

RESUMEN

Background: Glanzmann thrombasthenia (GT) is a rare bleeding disorder caused by inherited defects of the platelet αIIbß3 integrin. Platelet transfusions can be followed by an immune response that can block integrin function by interfering with fibrinogen binding. Objectives: In this study, we aimed to determine the prevalence of such isoantibodies and better characterize their pathogenic properties. Methods: Twelve patients with GT were evaluated for anti-αIIbß3 isoantibodies. Sera from patients with GT with or without anti-αIIbß3 isoantibodies were then used to study their in vitro effect on platelets from healthy donors. We used several approaches (IgG purification, immunofluorescence staining, and inhibition of signaling pathways) to characterize the pathogenic properties of the anti-αIIbß3 isoantibodies. Results: Only 2 samples were able to severely block integrin function. We observed that these 2 sera caused a reduction in platelet size similar to that observed when platelets become procoagulant. Mixing healthy donor platelets with patients' sera or purified IgGs led to microvesiculation, phosphatidylserine exposure, and induction of calcium influx. This was associated with an increase in procoagulant platelets. Pore formation and calcium entry were associated with complement activation, leading to the constitution of a membrane attack complex (MAC) with enhanced complement protein C5b-9 formation. This process was inhibited by the complement 5 inhibitor eculizumab and reduced by polyvalent human immunoglobulins. Conclusion: Our data suggest that complement activation induced by rare blocking anti-αIIbß3 isoantibodies may lead to the formation of a MAC with subsequent pore formation, resulting in calcium influx and procoagulant platelet phenotype.

2.
Thromb Res ; 234: 39-50, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38159323

RESUMEN

INTRODUCTION: GATA1 is one of the master transcription factors in hematopoietic lineages development which is crucial for megakaryocytic differentiation and maturation. Previous studies have shown that distinct GATA1 variants are associated with varying severities of macrothrombocytopenia and platelet dysfunction. OBJECTIVE: To determine the underlying pathological mechanisms of a novel GATA1 variant (c. 686G > A, p. G229D) in a patient with recurrent traumatic muscle hematomas. METHODS: Comprehensive phenotypic analysis of the patient platelets was performed. Procoagulant platelet formation and function were detected using flow cytometry assay and thrombin generation test (TGT), respectively. The ANO6 expression was measured by qPCR and western blot. The intracellular supramaximal calcium flux was detected by Fluo-5N fluorescent assay. RESULTS: The patient displayed mild macrothrombocytopenia with defects of platelet granules, aggregation, and integrin αIIbß3 activation. The percentage of the procoagulant platelet formation of the patient upon the stimulation of thrombin plus collagen was lower than that of the healthy controls (40.9 % vs 49.0 % ± 5.1 %). The patient platelets exhibited a marked reduction of thrombin generation in platelet rich plasma TGT compared to the healthy controls (peak value: ∼70 % of the healthy controls; the endogenous thrombin potential: ∼40 % of the healthy controls). The expression of ANO6 and intracellular calcium flux were impaired, which together with abnormal granules of the patient platelets might contribute to defect of procoagulant platelet function. CONCLUSIONS: The G229D variant could lead to a novel platelet phenotype characterized by defective procoagulant platelet formation and function, which extended the range of GATA1 variants associated platelet disorders.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Trombocitopenia , Humanos , Trombina/metabolismo , Calcio/metabolismo , Plaquetas/metabolismo , Trombocitopenia/patología , Activación Plaquetaria , Factor de Transcripción GATA1/metabolismo
3.
Clin Appl Thromb Hemost ; 29: 10760296231193398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37563884

RESUMEN

Thrombotic complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) significantly impact transplant outcomes. We focused on high mobility group box-protein (HMGB)1, one causative agent of thrombotic lesions in allo-HSCT, and investigated its association with platelets. We statistically analyzed available data from 172 patients with hematopoietic malignancies receiving allo-HSCT. A significant enhancement of monocyte-chemotactant protein-1, HMGB1, and platelet-derived microparticle (PDMP) levels was observed at day 0 after transplantation as compared to pre-transplantation. Multivariate analysis of the association among HMGB1 and 16 factors on day 0 revealed a significant correlation of HMGB1 levels with thrombin-antithrombin complex, interleukin-6, and PDMPs. High mobility group box-protein 1-induced procoagulant platelet induction and PDMP generation were performed in vitro using healthy platelets. High mobility group box-protein 1-induced PDMP generation was suppressed by toll-like receptor inhibitors and recombinant thrombomodulin. These results suggest that HMGB1 contributes to platelet activation in patients after allo-HSCT and is associated with PDMP-related thrombotic complications.


Asunto(s)
Proteína HMGB1 , Trasplante de Células Madre Hematopoyéticas , Trombosis , Humanos , Trasplante Homólogo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Plaquetas/patología , Activación Plaquetaria , Trombosis/etiología , Trombosis/patología , Estudios Retrospectivos
4.
Methods Mol Biol ; 2663: 441-461, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37204729

RESUMEN

Heparin-induced thrombocytopenia (HIT) is a well-characterized, iatrogenic complication of heparin anticoagulation with significant morbidity. In contrast, vaccine-induced immune thrombotic thrombocytopenia (VITT) is a recently recognized severe prothrombotic complication of adenoviral vaccines, including the ChAdOx1 nCoV-19 (Vaxzevria, AstraZeneca) and Ad26.COV2.S (Janssen, Johnson & Johnson) vaccines against COVID-19. The diagnosis of HIT and VITT involve laboratory testing for antiplatelet antibodies by immunoassays followed by confirmation by functional assays to detect platelet-activating antibodies. Functional assays are critical to detect pathological antibodies due to the varying sensitivity and specificity of immunoassays. This chapter presents a protocol for a novel whole blood flow cytometry-based assay to detect procoagulant platelets in healthy donor blood in response to plasma from patients suspected of HIT or VITT. A method to identify suitable healthy donors for HIT and VITT testing is also described.


Asunto(s)
COVID-19 , Trombocitopenia , Trombosis , Vacunas , Humanos , Plaquetas , Ad26COVS1 , Vacunas contra la COVID-19/efectos adversos , ChAdOx1 nCoV-19 , Citometría de Flujo , Trombocitopenia/inducido químicamente , Trombocitopenia/diagnóstico , Anticuerpos , Factor Plaquetario 4
5.
J Thromb Haemost ; 20(2): 387-398, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34752677

RESUMEN

BACKGROUND: Thromboembolic events are frequently reported in patients infected with the SARS-CoV-2. Recently, we observed that platelets from patients with severe COVID-19 infection express procoagulant phenotype. The molecular mechanisms that induce the generation of procoagulant platelets in COVID-19 patients are not completely understood. OBJECTIVES: In this study, we investigated the role of AKT (also known as Protein Kinase B), which is the major downstream effector of PI3K (phosphoinositid-3-kinase) (PI3K/AKT) signaling pathway in platelets from patients with COVID-19. PATIENTS AND METHODS: Platelets, Sera and IgG from COVID-19 patients who were admitted to the intensive care unit (ICU) were analyzed by flow cytometry as well as western blot and adhesion assays. RESULTS: Platelets from COVID-19 patients showed significantly higher levels of phosphorylated AKT, which was correlated with CD62p expression and phosphatidylserine (PS) externalization. In addition, healthy platelets incubated with sera or IgGs from ICU COVID-19 patients induced phosphorylation of PI3K and AKT and were dependent on Fc-gamma-RIIA (FcγRIIA). In contrast, ICU COVID-19 sera mediated generation of procoagulant platelets was not dependent on GPIIb/IIIa. Interestingly, the inhibition of phosphorylation of both proteins AKT and PI3K prevented the generation of procoagulant platelets. CONCLUSIONS: Our study shows that pAKT/AKT signaling pathway is associated with the formation of procoagulant platelets in severe COVID-19 patients without integrin GPIIb/IIIa engagement. The inhibition of PI3K/AKT phosphorylation might represent a promising strategy to reduce the risk for thrombosis in patients with severe COVID-19.


Asunto(s)
COVID-19 , Proteínas Proto-Oncogénicas c-akt , Plaquetas , Humanos , Fosfatidilinositol 3-Quinasas , Activación Plaquetaria , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , SARS-CoV-2
6.
J Control Release ; 338: 462-471, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34481024

RESUMEN

An ideal anticoagulant should have at least three properties including targeted delivery to the thrombosis site, local activation or releasing to centralize the anti-thrombosis effects and thus reduce the bleeding risks, and long persistence in circulation to avoid repeated administration. In the present study, we sought to test a "three-in-one" strategy to design new protein anticoagulants. Based on these criteria, we constructed two hirudin prodrugs, R824-HV-ABD and ABD-HV-R824. The R824 peptide can bind phosphatidylserine on the surface of the procoagulant platelets and thus guide the prodrug to the thrombosis sites; albumin-binding domain (ABDs) can bind the prodrug to albumin, and thereby increase its persistence in circulation; the hirudin (HV) core in the prodrug is flanked by factor Xa recognition sites, thus factor Xa at the thrombosis site can cleave the fusion proteins and release the activated hirudin locally. Hirudin prodrugs were able to bind with procoagulant platelets and human serum albumin in vitro with high affinity, targeted concentrated and prevented the formation of occlusive thrombi in rat carotid artery injury model. Their effective time was significantly extended compared to native hirudin, and R824-HV-ABD showed a significantly improved half-life of about 24 h in rats. The bleeding time of prodrug-treated mice was much shorter than that of hirudin-treated mice. The results from the proof-of-concept studies, for the first time, demonstrate that "three-in-one" prodrug strategy may be a good solution for protein or peptide anticoagulants to reduce their bleeding risks.


Asunto(s)
Profármacos , Trombosis , Animales , Anticoagulantes , Plaquetas , Hirudinas , Ratones , Ratas , Trombosis/tratamiento farmacológico , Trombosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA