Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Intervalo de año de publicación
1.
Foods ; 12(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37893751

RESUMEN

The use of phytochemicals as natural food additives is a topic of interest for both academic and food industry communities. However, many of these substances are sensitive to environmental conditions. For this reason, encapsulation is usually performed prior to incorporation into food products. In this sense, ultrasound-assisted encapsulation is an emerging technique that has been gaining attention in this field, bringing important advantages for the production of functional food products. This review article covered applications published in the last five years (from 2019 to 2023) on the use of ultrasound to encapsulate phytochemicals for further incorporation into food. The ultrasound mechanisms for encapsulation, its parameters, such as reactor configuration, frequency, and power, and the use of ultrasound technology, along with conventional encapsulation techniques, were all discussed. Additionally, the main challenges of existing methods and future possibilities were discussed. In general, ultrasound-assisted encapsulation has been considered a great tool for the production of smaller capsules with a lower polydispersity index. Encapsulated materials also present a higher bioavailability. However, there is still room for further developments regarding process scale-up for industrial applications. Future studies should also focus on incorporating produced capsules in model food products to further assess their stability and sensory properties.

2.
Environ Sci Pollut Res Int ; 29(28): 42157-42167, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34403059

RESUMEN

This work highlights the performance of an ultrafiltration ceramic membrane as photocatalyst support and oxidant-catalyst/water contactor to promote sulfate radical advanced oxidation processes (SR-AOPs). Peroxydisulfate (PDS) activation mechanisms include photolysis (UVC irradiation) and chemical electron transfer (TiO2-P25 photocatalysis). The photoreactor is composed of an outer quartz tube (the "window"-radiation entrance to the reactor) and an inner tubular ceramic ultrafiltration membrane, where the catalyst particles (TiO2-P25) are immobilized on the membrane shell-side. PDS stock solution is fed by the lumen side of the membrane, delivering the oxidant to the catalyst particles and to the annular reaction zone (ARZ), being the catalyst and PDS activated by UV light. The design facilitates controlled radial slip of PDS into the catalyst surface and to concurrent water to be treated, flowing with a helix trajectory in the ARZ. Under continuous mode operation, with an UV fluence of 45 mJ cm-2 (residence time of 4.6 s), the UVC/PDS/TiO2 system showed the best removal efficiency for two specific endocrine disrupting chemicals, 17ß-estradiol (E2) and 17α-ethinylestradiol (EE2), spiked (100 µg L-1 each) in demineralized water and urban wastewater after secondary treatment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cerámica , Estradiol/análisis , Etinilestradiol/análisis , Oxidantes , Oxidación-Reducción , Sulfatos , Ultrafiltración , Rayos Ultravioleta , Agua , Contaminantes Químicos del Agua/análisis
3.
Ultrason Sonochem ; 74: 105575, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33957370

RESUMEN

In this study, the convective heating/cooling process assisted by US irradiation is analyzed with the aims of developing a new convective heat transfer correlation. Heat transfer experiments were conducted with different copper machined geometries (cube, sphere and cylinder), fluid velocities (0.93-5.00 × 10-3 m/s), temperatures (5-60 °C), and US intensities (0-6913 W/m2) using water as heat transfer fluid. The Nusselt (Nu) equation was obtained by assuming an apparent Nu number in the US-assisted process, expressed as the sum of contributions of the forced convection and cavitation-acoustic streaming effects. The Nu equation was validated with two sets of experiments conducted with a mixture of ethylene glycol and water (1:1 V/V) or a CaCl2 aqueous solution (30 g/L) as immersion media, achieving a satisfactory reproduction of experimental data, with mean relative deviations of 17.6 and 17.8%, respectively. In addition, a conduction model with source term and the proposed correlation were applied to the analysis of US-accelerated heating kinetics of dry-cured ham reported in literature. Results demonstrated that US improves heating of ham slices because of the increased heat transfer coefficients and the direct absorption of US power by the foodstuff.

4.
Ultrason Sonochem ; 72: 105453, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33412386

RESUMEN

Nitrocellulose is a nitrated cellulose polymer with a broad application in industry. Depending on the nitrogen content, this polymer can be used for manufacturing explosives, varnishes, clothes, and films, being considered a product of high value-added. In this work, the use of ultrasound was investigated for the intensification of nitrocellulose synthesis from microcrystalline cellulose. The ultrasound-assisted nitrocellulose synthesis (UANS) was carried out using several ultrasound systems, such as baths and cup horns, allowing the evaluation of the frequency (from 20 to 130 kHz) and delivered power (from 23 to 134 W dm-3) to the reaction medium. The following parameters were evaluated: acid mixture (H2SO4, H3PO4, CH2O2 or CH3COOH with HNO3, 2 to 14.4 mol L-1), ultrasound amplitude (10 to 70%) and reaction time (5 to 50 min). Better nitrocellulose yield (nitrogen content of 12.5% was obtained from 1 g of microcrystalline cellulose employing a cup horn system operating at 20 kHz, 750 W of nominal power with 60% of amplitude, 25 mL of acid solution (13.6 mL of 18.4 mol L-1 H2SO4 + 9.2 mL of 14.4 mol L-1 HNO3 + 2.2 mL H2O), at 30 °C for 30 min. At silent conditions (mechanical stirring ranging from 100 to 500 rpm), the nitrogen content was lower than 11.8% which demonstrate the ultrasound effects for nitrocellulose synthesis.

5.
Environ Sci Pollut Res Int ; 28(19): 24023-24033, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33415626

RESUMEN

Solar-driven photocatalysis is a promising water-cleaning and energy-producing technology that addresses some of the most urgent engineering problems of the twenty-first century: universal access to potable water, use of renewable energy, and mitigation of CO2 emissions. In this work, we aim at improving the efficiency of solar-driven photocatalysis by studying a novel reactor design based on microfluidic principles using 3D-printable geometries. The printed reactors had a dimensional accuracy of 97%, at a cost of less than $1 per piece. They were packed with 1.0-mm glass and steel beads coated with ZnO synthesised by a sol-gel routine, resulting in a bed with 46.6% void fraction (reaction volume of ca. 840 µL and equivalent flow diameter of 580 µm) and a specific surface area of 3200 m2 m-3. Photocatalytic experiments, under sunlight-level UV-A irradiation, showed that reactors packed with steel supports had apparent reaction rates ca. 75% higher than those packed with glass supports for the degradation of an aqueous solution of acetaminophen; however, they were strongly deactivated after the first use suggesting poor fixation. Glass supports showed no measurable deactivation after three consecutive uses. The apparent first-order reaction rate constants were between 1.9 and 9.5 × 10-4 s-1, ca. ten times faster than observed for conventional slurry reactors. The mass transfer was shown to be efficient (Sh > 7.7) despite the catalyst being immobilised onto fixed substrates. Finally, the proposed reactor design has the merit of a straightforward scaling out by sizing the irradiation window according to design specifications, as exemplified in the paper.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Luz Solar , Titanio
6.
Chemosphere ; 263: 128049, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297062

RESUMEN

This work presents a disruptive approach to promote highly-efficient photo-Fenton process at neutral pH under continuous mode operation. The system consists of a tube-in-tube membrane reactor designed for continuous-flow titration of low iron doses to the annular reaction zone (ARZ). A concentrated acidic ferrous ion (Fe2+) solution is fed by the lumen-side of the membrane, permeating through the membrane pores (inside-out mode), being dosed and uniformly delivered to the membrane shell-side. Polluted water, containing amoxicillin (AMX) and oxidant (H2O2), flows continuously in the reactor annulus (space between the membrane shell-side and an outer quartz tube). The catalyst radial dispersion is enhanced by the helicoidal movement of water around the membrane shell-side, efficiently promoting its contact with H2O2 and UV light. The efficiency of photochemical and photocatalytic oxidation was evaluated as a function of catalyst dose, catalyst injection mode (radial permeation vs injection upstream from the reactor inlet), light source (UVA vs UVC) and aqueous solution matrix (synthetic vs real wastewater). At steady-state, photo-Fenton reaction with Fe2+ radial addition, driven by UVC light, showed the highest AMX removal for synthetic (∼65%, removal rate of 44 µMAMX/min, using [Fe2+]ARZ = 2 mg/L and [H2O2]inlet = 10 mg/L) and real municipal wastewaters (∼45%, removal rate of 31 µMAMX/min, with [Fe2+]ARZ = 5 mg/L and [H2O2]inlet = 40 mg/L), with a residence time of only 4.6 s.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Concentración de Iones de Hidrógeno , Hierro , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
7.
Ultrason Sonochem ; 67: 104945, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32278244

RESUMEN

It is well known that one of the main problems in galactooligosaccharide production (GOS) via tranglycosylation of lactose is the presence of monosaccharides that contribute to increasing the glycaemic index, as is the case of glucose. In this work, as well as studying the effect of ultrasound (US) on glucose oxidase (Gox) activation during gluconic acid (GA) production, we have carried out an investigation into the selective oxidation of glucose to gluconic acid in multienzymatic reactions (ß-galactosidase (ß-gal) and Gox) assisted by power US using different sources of lactose as substrate (lactose solution, whey permeate, cheese whey). In terms of the influence of matrix on GOS and GA production, lactose solution gave the best results, followed by cheese whey and whey permeate, salt composition being the most influential factor. The highest yields of GOS production with the lowest glucose concentration and highest GA production were obtained with lactose solution in multienzymatic systems in the presence of ultrasound (30% amplitude) when Gox was added after 1 h of treatment with ß-gal. This work demonstrates the ability of US to enhance efficiently the obtainment of prebiotic mixtures of low glycaemic index.


Asunto(s)
Enzimas/metabolismo , Galactosa/metabolismo , Gluconatos/metabolismo , Lactosa/metabolismo , Oligosacáridos/metabolismo , Sonicación , Suero Lácteo/química , Prebióticos
8.
Biotechnol Bioeng ; 117(6): 1661-1672, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32068248

RESUMEN

The available pneumococcal conjugate vaccines provide protection against only those serotypes that are included in the vaccine, which leads to a selective pressure and serotype replacement in the population. An alternative low-cost, safe and serotype-independent vaccine was developed based on a nonencapsulated pneumococcus strain. This study evaluates process intensification to improve biomass production and shows for the first time the use of perfusion-batch with cell recycling for bacterial vaccine production. Batch, fed-batch, and perfusion-batch were performed at 10 L scale using a complex animal component-free culture medium. Cells were harvested at the highest optical density, concentrated and washed using microfiltration or centrifugation to compare cell separation methods. Higher biomass was achieved using perfusion-batch, which removes lactate while retaining cells. The biomass produced in perfusion-batch would represent at least a fourfold greater number of doses per cultivation than in the previously described batch process. Each strategy yielded similar vaccines in terms of quality as evaluated by western blot and animal immunization assays, indicating that so far, perfusion-batch is the best strategy for the intensification of pneumococcal whole-cell vaccine production, as it can be integrated to the cell separation process keeping the same vaccine quality.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/instrumentación , Vacunas Neumococicas/inmunología , Streptococcus pneumoniae/inmunología , Animales , Técnicas de Cultivo Celular por Lotes/métodos , Biomasa , Reactores Biológicos , Diseño de Equipo , Femenino , Humanos , Inmunización , Ratones Endogámicos C57BL , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas/uso terapéutico , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/prevención & control , Streptococcus pneumoniae/citología
9.
Biotechnol Bioeng, p. 1-12, fev. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2983

RESUMEN

The available pneumococcal conjugate vaccines provide protection against only those serotypes that are included in the vaccine, which leads to a selective pressure and serotype replacement in the population. An alternative low-cost, safe and serotype-independent vaccine was developed based on a nonencapsulated pneumococcus strain. This study evaluates process intensification to improve biomass production and shows for the first time the use of perfusion-batch with cell recycling for bacterial vaccine production. Batch, fed-batch, and perfusion-batch were performed at 10 L scale using a complex animal component-free culture medium. Cells were harvested at the highest optical density, concentrated and washed using microfiltration or centrifugation to compare cell separation methods. Higher biomass was achieved using perfusion-batch, which removes lactate while retaining cells. The biomass produced in perfusion-batch would represent at least a fourfold greater number of doses per cultivation than in the previously described batch process. Each strategy yielded similar vaccines in terms of quality as evaluated by western blot and animal immunization assays, indicating that so far, perfusion-batch is the best strategy for the intensification of pneumococcal whole-cell vaccine production, as it can be integrated to the cell separation process keeping the same vaccine quality.

10.
Sci Total Environ ; 687: 1357-1368, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31412469

RESUMEN

The present work evaluates ozone driven processes (O3, O3/UVC, O3/TiO2/UVA) in the NETmix mili-photoreactor, as a cost-effective alternative for the removal of volatile organic compounds (VOCs) from air streams, using n-decane as a model pollutant. The network of channels and chambers of the mili-photoreactor was coated with a TiO2-P25 thin film, resulting in a catalyst coated surface per reactor volume of 990 m2 m-3. Ozone and n-decane streams were fed to alternate chambers of the mili-photoreactor, promoting a good contact between O3/n-decane/catalyst. Initially, direct reaction between n-decane and ozone (ozonation) was assessed for different O3/n-decane (O3/dec) feed molar ratios and total feed flow rates. Under the best conditions, ozonation process achieved total n-decane conversion (below the limit of detection), yielding a reaction rate (rdec) of 6.8 µmol min-1 or 6.7 mmol m-3reactor s-1. However, the low reactivity of ozone with the degradation by-products resulted in a quite poor mineralization (~10%). For the O3/UVC system, an increase on relative humidity from 7 to 40% slight improved the n-decane oxidation rate, mainly associated with the generation of HO from the reaction of active oxygen radicals (O) and water molecules. A strong synergistic effect was observed when coupling TiO2/UVA photocatalysis with ozonation (O3/TiO2/UVA), enhancing substantially the mineralization of n-decane molecules up to 100% under O3/dec feed molar ratio of 15, photonic flux of 2.67 ±â€¯0.03 J s-1 and a residence time of 2.0 s. Different reaction intermediates were detected for O3, TiO2/UVA and O3/TiO2/UVA oxidative systems, indicating the participation of different oxidant species (O3, HO, O, etc.).

11.
Micromachines (Basel) ; 9(6)2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-30424218

RESUMEN

Microfluidics has brought diverse advantages to chemical processes, allowing higher control of reactions and economy of reagents and energy. Low temperature co-fired ceramics (LTCC) have additional advantages as material for fabrication of microfluidic devices, such as high compatibility with chemical reagents with typical average surface roughness of 0.3154 µm, easy scaling, and microfabrication. The conjugation of LTCC technology with microfluidics allows the development of micrometric-sized channels and reactors exploiting the advantages of fast and controlled mixing and heat transfer processes, essential for the synthesis and surface functionalization of nanoparticles. Since the chemical process area is evolving toward miniaturization and continuous flow processing, we verify that microfluidic devices based on LTCC technology have a relevant role in implementing several chemical processes. The present work reviews various LTCC microfluidic devices, developed in our laboratory, applied to chemical process miniaturization, with different geometries to implement processes such as ionic gelation, emulsification, nanoprecipitation, solvent extraction, nanoparticle synthesis and functionalization, and emulsion-diffusion/solvent extraction process. All fabricated microfluidics structures can operate in a flow range of mL/min, indicating that LTCC technology provides a means to enhance micro- and nanoparticle production yield.

12.
Ultrason Sonochem ; 40(Pt B): 24-29, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28434880

RESUMEN

In view of the increasing demand for rare-earth elements (REE) in many areas of high technology, alternative methods for the extraction of these elements have been developed. In this work, a process based on the use of ultrasound for the extraction of REE from carbonatite (an igneous rock) is proposed to avoid the use of concentrated reagents, high temperature and excessive extraction time. In this pioneer work for REE extraction from carbonatite rocks in a preliminary investigation, ultrasonic baths, cup horn systems or ultrasound probes operating at different frequencies and power were evaluated. In addition, the power released to the extraction medium and the ultrasound amplitude were also investigated and the temperature and carbonatite mass/volume of extraction solution ratio were optimized to 70°C and 20mg/mL, respectively. Better extraction efficiencies (82%) were obtained employing an ultrasound probe operating at 20kHz for 15min, ultrasound amplitude of 40% (692Wdm-3) and using a diluted extraction solution (3% v/v HNO3+2% v/v HCl). It is important to mention that high extraction efficiency was obtained even using a diluted acid mixture and relatively low temperature in comparison to conventional extraction methods for REE. A comparison of results with those obtained by mechanical stirring (500rpm) using the same conditions (time, temperature and extraction solution) was carried out, showing that the use of ultrasound increased the extraction efficiency up to 35%. Therefore, the proposed ultrasound-assisted procedure can be considered as a suitable alternative for high efficiency extraction of REE from carbonatite rocks.

13.
Vaccine ; 36(22): 3140-3145, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28343780

RESUMEN

The recent spread of Zika virus (ZIKV) in the Americas and the Pacific has reached alarming levels in more than 60 countries. However, relatively little is known about the disease on a virological and epidemiological level and its consequences for humans. Accordingly, a large demand for in vitro derived Brazilian ZIKV material to support in vitro and in vivo studies has arisen. However, a prompt supply of ZIKV and ZIKV antigens cannot be guaranteed as the production of this virus typically using Vero or C6/36 cell lines remains challenging. Here we present a production platform based on BHK-21 suspension (BHK-21SUS) cells to propagate Brazilian ZIKV at larger quantities in perfusion bioreactors. Scouting experiments performed in tissue culture flasks using adherent BHK-21 and Vero cells have demonstrated similar permissivity and virus yields for four different Brazilian ZIKV isolates. The cell-specific yield of infectious virus particles varied between respective virus strains (1-48PFU/cell), and the ZIKV isolate from the Brazilian state Pernambuco (ZIKVPE) showed to be a best performing isolate for both cell lines. However, infection studies of BHK-21SUS cells with ZIKVPE in shake flasks resulted in poor virus replication, with a maximum titer of 8.9×103PFU/mL. Additional RT-qPCR measurements of intracellular and extracellular viral RNA levels revealed high viral copy numbers within the cell, but poor virus release. Subsequent cultivation in a perfusion bioreactor using an alternating tangential flow filtration system (ATF) under controlled process conditions enabled cell concentrations of about 1.2×107cells/mL, and virus titers of 3.9×107PFU/mL. However, while the total number of infectious virus particles was increased, the cell-specific yield (3.3PFU/cell) remained lower than determined in adherent cell lines. Nevertheless, the established perfusion process allows to provide large amounts of ZIKV material for research and is a first step towards process development for manufacturing inactivated or live-attenuated ZIKV vaccines.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Cultivo de Virus/métodos , Virus Zika/crecimiento & desarrollo , Animales , Reactores Biológicos , Recuento de Células , Línea Celular , Chlorocebus aethiops , Cricetinae , Células Vero , Carga Viral , Vacunas Virales , Replicación Viral , Virus Zika/fisiología
14.
Crit Rev Biotechnol ; 38(4): 483-493, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29233030

RESUMEN

Hydrodynamic cavitation (HC) is a process technology with potential for application in different areas including environmental, food processing, and biofuels production. Although HC is an undesirable phenomenon for hydraulic equipment, the net energy released during this process is enough to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also presented and discussed.


Asunto(s)
Biotecnología/métodos , Celulosa/química , Biocombustibles , Biomasa , Carbohidratos/química , Hidrodinámica
15.
Bioresour Technol ; 242: 272-282, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28341378

RESUMEN

Chemical interesterification of rubber seed oil has been investigated for four different designed orifice devices in a pilot scale hydrodynamic cavitation (HC) system. Upstream pressure within 1-3.5bar induced cavities to intensify the process. An optimal orifice plate geometry was considered as plate with 1mm dia hole having 21 holes at 3bar inlet pressure. The optimisation results of interesterification were revealed by response surface methodology; methyl acetate to oil molar ratio of 14:1, catalyst amount of 0.75wt.% and reaction time of 20min at 50°C. HC is compared to mechanical stirring (MS) at optimised values. The reaction rate constant and the frequency factor of HC were 3.4-fold shorter and 3.2-fold higher than MS. The interesterified product was characterised by following EN 14214 and ASTM D 6751 international standards.


Asunto(s)
Hevea , Aceites de Plantas , Catálisis , Hidrodinámica , Goma , Semillas
16.
Artículo en Inglés | MEDLINE | ID: mdl-27389621

RESUMEN

Degradation of paracetamol (N-(4-hydroxiphenyl)acetamide) in aqueous solution by gamma radiation, gamma radiation/H2O2 and gamma radiation/Fenton processes was studied. Parameters affecting the radiolysis of paracetamol such as radiation dose, initial concentration of pollutant, pH and initial oxidant concentration were investigated. Gamma radiation was performed using a (60)Co source irradiator. Paracetamol degradation and mineralization increased with increasing absorbed radiation dose, but decreased with increasing initial concentration of the drug in aqueous solution. The addition of H2O2 resulted in an increased effect on irradiation-driven paracetamol degradation in comparison with the performance of the irradiation-driven process alone: paracetamol removal increased from 48.9% in the absence of H2O2 to 95.2% for H2O2 concentration of 41.7 mmol/L. However, the best results were obtained with gamma radiation/Fenton process with 100% of the drug removal at 5 kGy, for optimal H2O2 and Fe(2+) concentrations at 13.9 and 2.3 mmol/L, respectively, with a high mineralization of 63.7%. These results suggest gamma radiation/H2O2 and gamma radiation/Fenton processes as promising methods for paracetamol degradation in polluted wastewaters.


Asunto(s)
Acetaminofén/química , Restauración y Remediación Ambiental/métodos , Rayos gamma , Peróxido de Hidrógeno/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química
17.
Bioresour Technol ; 199: 414-422, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26298387

RESUMEN

Pretreatment of the high free fatty acid rubber seed oil (RSO) via esterification reaction has been investigated by using a pilot scale hydrodynamic cavitation (HC) reactor. Four newly designed orifice plate geometries are studied. Cavities are induced by assisted double diaphragm pump in the range of 1-3.5 bar inlet pressure. An optimised plate with 21 holes of 1mm diameter and inlet pressure of 3 bar resulted in RSO acid value reduction from 72.36 to 2.64 mg KOH/g within 30 min of reaction time. Reaction parameters have been optimised by using response surface methodology and found as methanol to oil ratio of 6:1, catalyst concentration of 8 wt%, reaction time of 30 min and reaction temperature of 55°C. The reaction time and esterified efficiency of HC was three fold shorter and four fold higher than mechanical stirring. This makes the HC process more environmental friendly.


Asunto(s)
Biocombustibles , Biotecnología/métodos , Hevea/química , Aceites de Plantas/química , Biotecnología/instrumentación , Catálisis , Diseño de Equipo , Esterificación , Ácidos Grasos no Esterificados/química , Hidrodinámica , Metanol/química , Presión , Semillas/química , Temperatura
18.
Pharmacogn Rev ; 8(16): 88-95, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25125880

RESUMEN

Extraction processes are largely used in many chemical, biotechnological and pharmaceutical industries for recovery of bioactive compounds from medicinal plants. To replace the conventional extraction techniques, new techniques as high-pressure extraction processes that use environment friendly solvents have been developed. However, these techniques, sometimes, are associated with low extraction rate. The ultrasound can be effectively used to improve the extraction rate by the increasing the mass transfer and possible rupture of cell wall due the formation of microcavities leading to higher product yields with reduced processing time and solvent consumption. This review presents a brief survey about the mechanism and aspects that affecting the ultrasound assisted extraction focusing on the use of ultrasound irradiation for high-pressure extraction processes intensification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA