Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.987
Filtrar
1.
Food Chem ; 462: 141030, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39241685

RESUMEN

The human milk fat globule membrane (hMFGM) and Lactobacillus modulate the infant's gut and benefit health. Hence, the current study assesses the probiotic potential of Lactiplantibacillus plantarum (MRK3), Limosilactobacillus ferementum (MK1) isolated from infant feces, and its interaction with hMFGM during conditions mimicking infant digestive tract. Both strains showed high tolerance to gastrointestinal conditions, cell surface hydrophobicity, and strong anti-pathogen activity against Staphylococcus aureus. During digestion, hMFGM significantly exhibited xanthine oxidase activity, membrane roughness, and surface topography. In the presence of hMFGM, survival of MRK3 was higher than MK1, and electron microscopic observation revealed successful entrapment of MRK3 in the membrane matrix throughout digestion. Interestingly, probiotic-membrane matrix interaction showed significant synergy to alleviate oxidative stress and damage induced by cell-free supernatant of Escherichia coli in Caco-2 cells. Our results show that a probiotic-encapsulated membrane matrix potentially opens the functional infant formula development pathway.


Asunto(s)
Glucolípidos , Glicoproteínas , Gotas Lipídicas , Leche Humana , Estrés Oxidativo , Probióticos , Humanos , Probióticos/farmacología , Probióticos/química , Gotas Lipídicas/química , Gotas Lipídicas/metabolismo , Glicoproteínas/química , Glicoproteínas/farmacología , Glicoproteínas/metabolismo , Células CACO-2 , Glucolípidos/química , Glucolípidos/farmacología , Glucolípidos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Leche Humana/química , Lactante , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Fórmulas Infantiles/química , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo
2.
Food Chem ; 462: 140916, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39216372

RESUMEN

Probiotic viability, metabolite concentrations, physicochemical parameters, and volatile compounds were characterized in Gueuze beers formulated with probiotic lactic acid bacteria (LAB) and yeast. Additionally, the sensory profile of the beers and the resistance of the probiotics to digestion were determined. The use of 2 International Bitterness Units resulted in high concentrations of probiotic LAB but a decline in probiotic yeast as pH decreased. Secondary fermentation led to the consumption of maltose, citric acid, and malic acid, and the production of lactic and propionic acids. Carbonation and storage at 4 °C had minimal impact on probiotic viability. The addition of probiotic LAB resulted in a distinct aroma profile with improved sensory characteristics. Our results demonstrate that sour beers produced with probiotic LAB and a probiotic yeast, and fermented using a two-step fermentation process, exhibited optimal physicochemical parameters, discriminant volatile compound profiles, promising sensory characteristics, and high probiotic concentrations after digestion.


Asunto(s)
Cerveza , Fermentación , Probióticos , Gusto , Compuestos Orgánicos Volátiles , Cerveza/análisis , Cerveza/microbiología , Probióticos/metabolismo , Probióticos/análisis , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Humanos , Digestión , Lactobacillales/metabolismo , Lactobacillales/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Viabilidad Microbiana
3.
World J Microbiol Biotechnol ; 40(10): 314, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249571

RESUMEN

This research propounds an innovative technology focused on sustainability to increase the biomass yield of Akkermansia muciniphila, the next-generation probiotic, using prebiotic sources to replace or reduce animal mucin levels. A series of experimental design approaches were developed aiming to optimize the growth of Akkermansiamuciniphila by incorporating extracts of green leafy vegetables and edible mushroom into the cultivation media. Experiments using kale extract (KE), Brassica oleracea L., associated with lyophilized mushroom extract (LME) of Pleurotus ostreatus were the most promising, highlighting the assays with 0.376% KE and 0.423% LME or 1.05% KE and 0.5% LME, in which 3.5 × 1010 CFU (Colony Forming Units) mL- 1 was achieved - higher than in experiments in optimized synthetic media. Such results enhance the potential of using KE and LME not only as mucin substitutes, but also as a source to increase Akkermansia muciniphila biomass yields and release short-chain fatty acids. The work is relevant to the food and pharmaceutical industries in the preparation of the probiotic ingredient.


Asunto(s)
Akkermansia , Biomasa , Medios de Cultivo , Prebióticos , Probióticos , Verrucomicrobia , Akkermansia/crecimiento & desarrollo , Medios de Cultivo/química , Verrucomicrobia/crecimiento & desarrollo , Verrucomicrobia/metabolismo , Pleurotus/crecimiento & desarrollo , Pleurotus/metabolismo , Ácidos Grasos Volátiles/metabolismo , Extractos Vegetales/química , Brassica/crecimiento & desarrollo , Brassica/microbiología
4.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39289777

RESUMEN

Bariatric surgery may cause intestinal microecological environment imbalance due to changes in gastrointestinal anatomy. Some patients may have complications, even regain weight. Probiotics can act on intestinal mucosa, epithelium and gut-associated lymphoid tissue to improve the intestinal microecological environment of obese patients after bariatric surgery. Probiotics can promote the production of intestinal antibacterial substances, bind specifically to receptors, decrease intestinal pH value, reduce the inflammatory factors, thus helping patients lose weight and lower blood sugar levels after bariatric surgery. Probiotics can produce lactic acid, acetic acid, lactase, etc., inhibit the growth of harmful bacteria, improve gastrointestinal symptoms of patients after bariatric surgery. Probiotics can activate the AMP-activated protein kinase signaling pathway, improve lipid metabolism, and promote the recovery of symptom indicators of nonalcoholic fatty liver disease after bariatric surgery. Probiotics can regulate the release of neurotransmitters or metabolites by the microbiota through the gut-brain axis to affect brain activity and behavior, thus helping patients improve bad mood after bariatric surgery. This article describes the intestinal microecological environment of obese patients and the change mechanism after bariatric surgery and summarizes the effects and possible mechanisms of probiotics in improving the intestinal microecological environment of obese patients after bariatric surgery, in order to provide references for promoting the clinical application of probiotics.

5.
J Food Sci ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289791

RESUMEN

The goal of this study was to create a fermented probiotic fruit puree for lactose-intolerant people, vegetarians, and infants over 6 months old. Fermented fruit purees were developed using apples, peaches, and bananas with lactic acid bacteria (LAB) strains: Lactobacillus plantarum subsp. plantarum (S5), Lactobacillus fermentum strain w8 (S10), and Lactobacillus pentosus strain ml104 (S14). Different fruit puree formulations were produced using three strains, two inoculation ratios (4% and 5%), and two fermentation durations (24  and 48 h). The physicochemical parameters (pH, total soluble solids, and color), total phenols content (TPC), total antioxidant capacity, bacterial viability, volatile aroma profile (VAP), and individual phenolic compound profile of fruit puree fermented for both 24  and 48 h were compared with the unfermented (control) purees. The results of VAP were evaluated via PROMETHEE and cluster analysis. Time of fermentation and bacterial cultures at varied concentrations improved color values of samples (L*, a*, and b*) compared to controls. The level of bioactive compounds in several samples (S10 and S14) decreased after fermentation in contrast to S5 samples. The bacterial population in the samples ranged from ∼7.00 to 9.50 log CFU/g after 48-h fermentation. The fruit puree samples exhibited the presence of two different phenolic compounds and a total of 17 distinct volatile aroma compounds. The control sample scored highest for aromatic components in PROMETHEE, while S14-II was the most unique sample in cluster analysis. In conclusion, fermented probiotic fruit puree shown high promise as a carrier for live probiotics, and the fermentation process boosted the nutritional content of the fruit puree.

6.
J Ethnopharmacol ; 337(Pt 1): 118815, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270882

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese herbal medicines (TCHM) have been extensively used in China and other East and Southeast Asian countries. Due to the low content of bioactive components in most TCHM and the potential toxicity of some herbal ingredients to humans, researchers have turned to probiotic fermentation to enhance the efficacy, mitigate the toxic or side effects and improve the taste of TCHM. Both probiotics and certain TCHM benefit the intestinal microbiota and intestinal barrier of human body, demonstrating synergistic effects on in intestinal microecology. AIM OF THE STUDY: This review aims to provide an overview of the development of fermentation technology, commonly used probiotic strains for TCHM fermentation, the advantages of probiotic fermentation and the challenges and limitations of probiotic-fermented TCHM. Additionally, it summarises and discusses the impact of probiotic-fermented TCHM on the intestinal barrier and microbiota, as well as the possible mechanisms involved. MATERIALS AND METHODS: An extensive search of primary literature was conducted using various databases including PubMed, Google Scholar, Web of Science, Elsevier, SpringerLink, ScienceDirect, CNKI, and others. All the plant names have been checked with World Flora Online (http://www.worldfloraonline.org) on August 7, 2024. RESULTS: The literature mentioned above was analyzed and summarized comprehensively. Probiotic-fermented TCHM can improve the intestinal barrier, modulate gut microbiota, and maintain homeostasis of the intestinal microecology. Modulating intestinal microecology by probiotic-fermented TCHM may be a crucial mechanism for its beneficial effects. CONCLUSIONS: This article establishes a theoretical basis for further research on the relationship between probiotic-fermented TCHM and the intestinal microecology, with the hope of inspiring innovative concepts for the development of TCHM and exploring the potential of probiotic-fermented TCHM as a promising strategy for maintaining intestinal microecological balance.

7.
Nutrients ; 16(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39275216

RESUMEN

This study aimed to assess the impact of a combination of probiotic strains of Lactiplantibacillus on the treatment of androgenic alopecia (AGA). To this end, 136 individuals with AGA (62 men and 74 women) aged 18-65 years were enrolled in a double-blind, parallel-group clinical trial. A total of 115 individuals (57 in the probiotic group and 58 in the placebo group) completed this study within a 16-week intervention period. Capillary density, thickness, and length of hair were analyzed before and after the intervention using FotoFinder Trichoscale Pro. In addition, the gut microbiota was assessed by paired-end sequencing on the Illumina MiSeq platform (2 × 300 bp). At the conclusion of the treatment period, a notable decline (p < 0.05) in the number of telogen hairs was evident in the probiotic group while hair thickness decreased in the placebo group (p < 0.05). However, the remaining variables did not exhibit any statistically significant changes. In the probiotic-treated group, individuals aged less than 37.5 years exhibited a reduction in the number and density of telogen hair (p = 0.0693 and p = 0.0669, respectively) and an increase in hair length (p = 0.0871). Furthermore, a notable decline in the number and density of vellus hair (p < 0.05) was observed, and this was accompanied by no change in the hair thickness. The probiotic-treated group exhibited a significantly higher abundance of Lactobacillus (p-adjusted < 0.05, DEseq2 test) and demonstrated a notable reduction in the number and density of telogen hair, and this was accompanied by an increase in the percentage of anagen hair. The probiotic mixture was well tolerated by the participants, with a treatment adherence rate of 90%. In light of this study's limitations, it can be concluded that a mixture of three strains of Lactiplantibacillus promotes the presence of terminal follicles, preventing their gradual miniaturization, which is a characteristic of AGA.


Asunto(s)
Alopecia , Microbioma Gastrointestinal , Cabello , Probióticos , Humanos , Probióticos/administración & dosificación , Alopecia/tratamiento farmacológico , Alopecia/terapia , Masculino , Adulto , Femenino , Persona de Mediana Edad , Método Doble Ciego , Adulto Joven , Microbioma Gastrointestinal/efectos de los fármacos , Cabello/efectos de los fármacos , Anciano , Adolescente , Resultado del Tratamiento
8.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273301

RESUMEN

Milk boasts an array of potent bioactive compounds, such as lactoferrin (Lf), immunoglobulins, and functional proteins, all delivering substantial therapeutic benefits. In this study, Immune Powder (a functional dairy formulation) and its primary component called Fractionated Milk Protein (FMP) containing Lf, zinc, and immunoglobulins and formulated by Ausnutria Pty Ltd. were evaluated for their potential broad-spectrum pharmacological activity. In particular, this study investigated the antibacterial (against pathogenic Escherichia coli), prebiotic (promoting Lactobacillus delbrueckii growth), anti-inflammatory (inhibition of NO production in RAW264.7 macrophages), and antiviral (against human coronavirus 229E) effects of the samples. In addition, the impact of simulated gastric digestion on the efficacy of the samples was explored. LCMS-based proteomics was implemented to unveil cellular and molecular mechanisms underlying antiviral activity. The Immune Powder demonstrated antibacterial activity against E. coli (up to 99.74 ± 11.47% inhibition), coupled with prebiotic action (10.84 ± 2.2 viability fold-change), albeit these activities diminished post-digestion (p < 0.01). The Immune Powder effectively mitigated NO production in lipopolysaccharide-stimulated RAW264.7 macrophages, with declining efficacy post-digestion (p < 0.0001). The Immune Powder showed similar antiviral activity before and after digestion (p > 0.05) with up to 3-fold improvement. Likewise, FMP exhibited antibacterial potency pre-digestion at high concentrations (95.56 ± 1.23% inhibition at 125 mg/mL) and post-digestion at lower doses (61.82 ± 5.58% inhibition at 3906.25 µg/mL). FMP also showed enhanced prebiotic activity post-digestion (p < 0.0001), NO inhibition pre-digestion, and significant antiviral activity. The proteomics study suggested that the formulation and its primary component shared similar antiviral mechanisms by inhibiting scavenger receptor binding and extracellular matrix interaction.


Asunto(s)
Polvos , Probióticos , Animales , Ratones , Probióticos/farmacología , Células RAW 264.7 , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Antivirales/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Antibacterianos/farmacología , Proteínas de la Leche/farmacología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Óxido Nítrico/metabolismo , Prebióticos , Productos Lácteos/microbiología , Coronavirus/efectos de los fármacos
9.
Transl Anim Sci ; 8: txae124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281311

RESUMEN

Probiotics are commonly incorporated into equine diets to impart health and performance benefits; however, peer-reviewed evidence supporting their efficacy in horses is limited. Interestingly, bacteria from the Bacillus genus are gaining interest for their unique ability to impact metabolic, immune, and inflammatory pathways. The objective of this trial was to evaluate a selection of Bacilli for their role in altering the inflammatory response in horses to exercise. Eighteen horses were utilized in a randomized cross-over trial. Horses were randomly assigned to one of 6 starting treatments including a negative and positive control, and groups that received one of 4 probiotics (Bacillus coagulans GBI-30, 6086, Bacillus subtilis-1, Bacillus subtilis-2, or Bacillus amyloliquefaciens) top dressed to their daily ration at a rate of 8 billion CFU/d mixed into dried whey powder. All horses received a similar base diet of grass hay offered at 2.0% of bodyweight daily along with 4.54 kg of a commercially available textured horse feed. Each 3-wk phase of the trial consisted of a 2-wk dietary acclimation followed by a 1-wk exercise challenge and sample collection. Between phases, horses were offered only their base diet. On the day of exercise, horses were offered their 0700 ration and then subjected to a 2-h standardized exercise test. Blood samples were obtained prior to starting exercise and then again at 0, 2, 4, 6, 8, 24, 48, and 72-h postexercise. Horses in the positive control group were administered 0.23 mg/kg BW flunixin meglumine immediately following the 0-h sampling. Samples were analyzed for serum amyloid A (SAA), interleukin-6 (IL-6), and prostaglandin E2 (PGE2) concentrations. Data were evaluated via ANOVA using the MIXED procedure in SAS 9.4. Exercise-induced inflammation as evidenced by SAA, IL-6, and PGE2 increases postexercise. Horses consuming B. coagulans GBI-30, 6086 had reduced production of SAA, IL-6, and PGE2 compared to all other probiotic-fed groups and the negative control (P < 0.001). The positive control successfully ameliorated the postexercise inflammatory response. These data highlight the potential for B. coagulans GBI-30, 6086 to be incorporated into equine rations as a method to support optimal response to exercise or other inflammation-inducing challenges. Additional research is ongoing to elucidate the methodology by which these results occur.

10.
Heliyon ; 10(17): e37157, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286230

RESUMEN

Objective: The main aim of this study was to evaluate the effect of oral probiotics on the human milk microbiota and determine whether that influenced infant microbiota development. Methods: A total of 27 pregnant women were recruited; 14 were assigned to the probiotic group, and the rest were assigned to the control group. Their infants were likewise assigned to the probiotic group or the control group. Pregnant women in the probiotic group received probiotic supplementation from 32 weeks of gestation until delivery. Human milk samples and infant fecal samples were collected at 6 months after delivery, and 16S rRNA sequencing was used to analyze the composition of the human milk and infant gut microbiota (NCT06241222). Results: In the control group, bacterial microbiota were detected in 8 out of 13 milk samples, whereas in the probiotic group, only 6 out of 14 milk samples contained bacterial microbiota. We examined the composition of the human milk and infant gut microbiota in both the control and probiotic groups. Spearman correlation analysis revealed that various genera in human milk were correlated with the infant gut microbiota. The Linear discriminant analysis effect size (LEfSe) showed that 6 bacteria in the human milk microbiota in the control group were significantly more abundant than those in the probiotic group. Nine bacteria were significantly more abundant in the human milk microbiota in the probiotic group than the control group. According to the LEfSe results, 11 bacteria in the infant gut microbiota in the control group were significantly more abundant than those in the probiotic group. Fourteen bacteria were significantly more abundant in the infant gut microbiota in the probiotic group than in the control group. Conclusion: The infant gut microbiota at 6 months has a complicated relationship with the maternal human milk microbiota. Oral probiotic supplementation can change the composition of the human milk microbiota and the infant gut microbiota.

11.
mBio ; : e0241624, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287438

RESUMEN

The oral microbiome is a critical determinant of health and disease, as interactions between oral microorganisms can influence their physiology and the development or severity of oral infections. Lactobacilli have a widely recognized antagonistic relationship with Candida albicans and may exhibit probiotic properties that limit oral fungal infection. We previously reported that Lactobacillus johnsonii strain MT4, an oral strain isolated from C57BL/6 mice, can induce global changes in the murine oral microbiome and has anti-Candida activity in vitro. To build on this information, we analyzed its abundance on the mouse oral mucosa, tested its impact on the severity and progression of oropharyngeal candidiasis (OPC) in a mouse model, and further explored the mechanism of antifungal activity in vitro. Our findings reveal that L. johnsonii MT4 is a dominant cultivable Lactobacillus in the oral mucosa of C57BL/6 mice. Strain MT4 has chitinase activity against C. albicans, which damages the cell wall and compromises fungal metabolic activity. Oral inoculation with strain MT4 causes a reduction in the Candida-induced rise in the abundance of oral enterococci and oral mucosal damage. This research underscores the potential of L. johnsonii strain MT4 as a novel probiotic agent in the prevention or management of OPC, and it contributes to a better understanding of the role of oral bacterial microbiota role in the pathogenesis of fungal infections. IMPORTANCE: The interactions between the opportunistic pathogen Candida albicans and resident oral bacteria are particularly crucial in maintaining oral health. Emerging antifungal drug-resistant strains, slow-paced drug discovery, and the risk of side effects can compromise the effectiveness of current treatments available for oropharyngeal candidiasis. This study advances the search for alternative microbiome-targeted therapies in oral fungal infections. We report that Lactobacillus johnsonii strain MT4 prevents the Candida-induced bloom of dysbiotic oral enterococci and reduces oral mucosal lesions in an oropharyngeal candidiasis murine model. We also show that this strain directly compromises the cell wall and reduces fungal metabolic activity, partly due to its chitinase activity.

12.
Microbiol Spectr ; : e0017724, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287453

RESUMEN

The probiotic Bacillus subtilis 29784 (Bs29784) sustains chicken's intestinal health, enhancing animal resilience and performance through the production of the bioactive metabolites hypoxanthine (HPX), niacin (NIA), and pantothenate (PTH). Here, using enterocyte in vitro models, we determine the functional link between these metabolites and the three pillars of intestinal resilience: immune response, intestinal barrier, and microbiota. We evaluated in vitro the capacity of Bs29784 vegetative cells, spores, and metabolites to modulate global immune regulators (using HT-29-NF-κB and HT-29-AP-1 reporter cells), intestinal integrity (HT-29-MUC2 reporter cells and Caco-2 cells), and cytokine production (Caco-2 cells). Finally, we simulated intestinal fermentations using chicken's intestinal contents as inocula to determine the effect of Bs29784 metabolites on the microbiota and their fermentation profile. Bs29784 vegetative cells reduced the inflammatory response more effectively than spores, indicating that their benefit is linked to metabolic activity. To assess this hypothesis, we studied Bs29784 metabolites individually. The results showed that each metabolite had different beneficial effects. PTH and NIA reduced the activation of the pro-inflammatory pathways AP-1 and NF-κB. HPX upregulated mucin production by enhancing MUC2 expression. HPX, NIA, and PTH increased cell proliferation. PTH and HPX increased epithelial resilience to an inflammatory challenge by limiting permeability increase. In cecal fermentations, NIA increased acetate, HPX increased butyrate, whereas PTH increased acetate, butyrate, and propionate. In ileal fermentations, PTH increased butyrate. All molecules modulated microbiota, explaining the different fermentation patterns. Altogether, we show that Bs29784 influences intestinal health by acting on the three lines of resilience via its secreted metabolites. IMPORTANCE: Probiotics provide beneficial metabolites to its host. Here, we describe the mode of action of a commonly used probiotic in poultry, Bs29784. By using in vitro cellular techniques and simulated chickens' intestinal model, we show the functional link between Bs29784 metabolites and the three lines of animal resilience. Indeed, both Bs29784 vegetative cells and its metabolites stimulate cellular anti-inflammatory responses, strengthen intestinal barrier, and positively modulate microbiota composition and fermentative profile. Taken together, these results strengthen our understanding of the effect of Bs29784 on its host and explain, at least partly, its positive effects on animal health, resilience, and performance.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39287748

RESUMEN

Human milk is the best nutrition for infants, providing optimal support for the developing immune system and gut microbiota. Hence, it has been used as source for probiotic strain isolation, including members of the genus Bifidobacterium, in an effort to provide beneficial effects to infants who cannot be exclusively breastfed. However, not all supplemented bifidobacteria can effectively colonise the infant gut, nor confer health benefits to the individual infant host; therefore, new isolates are needed to develop a range of dietary products for this specific age group. Here, we investigated the beneficial potential of Bifidobacterium breve DSM 32583 isolated from human milk. We show that in vitro B. breve DSM 32583 exhibited several characteristics considered fundamental for beneficial bacteria, including survival in conditions simulating those present in the digestive tract, adherence to human epithelial cell lines, and inhibition of growth of potentially pathogenic microorganisms. Its antibiotic resistance patterns were comparable to those of known beneficial bifidobacterial strains, and its genome did not contain plasmids nor virulence-associated genes. These results suggest that B. breve DSM 32583 is a potential probiotic candidate.

14.
Int Microbiol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39289261

RESUMEN

The main objective of this study was to assess cellulolytic probiotic strains from traditional fermented beverages such as palm wine in order to supplement the animal feed and strengthen the gut health of the animal for better digestibility and absorption. In the present study, different types of microbes were isolated from traditionally prepared palm wine and analyzed for their probiotic nature. For any microbe to be probiotic in nature, it has to sustain the harsh conditions of the human gastrointestinal tract such as acid tolerance, bile tolerance at the lower range of pH, and other properties like auto aggregation test, cell surface hydrophobicity test with non-polar hydrocarbons for evaluating its capabilities to adhere to the intestinal cells and antimicrobial nature against pathogens. Bacillus mycoides strain PR04 and Bacillus subtilis strain PR21 were found to be resistant to acid and bile in simulated artificial gastrointestinal tract model, found to be than 55% hydrophobic with xylene and n-hexadecane and also showed antimicrobial activity greater towards pathogenic strains like Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, and Salmonella typhimurium respectively. The cellulolytic activity of the isolates PR04 and PR21 was evaluated in (0.2-2) % CMC (carboxymethyl cellulose) plate. Bacillus mycoides PR04 and Bacillus subtilis PR21 could degrade carboxymethyl cellulose, filter paper, and sugarcane bagasse. The degradation of sugarcane bagasse was confirmed by Scanning electron microscopy and filter paper degradation after 4 days of incubation at 37 °C. Cellulase gene of the identified Bacillus sp. strains was amplified by primers CF5'-ACAGGATCCGATGAAAACGGTCAATTTCTATTTT-3' and CR5'-ACTCTCGAGATTGGGTTCTGTTCCCAAT-3'. This study proposes potential probiotic Bacillus mycoides PR04 (Accession no. OR625070) and Bacillus subtilis PR21 (Accession no. OR625072) in the application as an animal feed additive to assist in its digestibility and encourage the gut health.

15.
Polymers (Basel) ; 16(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274126

RESUMEN

The development of functional foods is a viable alternative for the prevention of numerous diseases. However, the food industry faces significant challenges in producing functional foods based on probiotics due to their high sensitivity to various processing and gastrointestinal tract conditions. This study aimed to evaluate the effect of the operational conditions during the extrusion encapsulation process using vibrating technology on the viability of Lactobacillus fermentum K73, a lactic acid bacterium with hypocholesterolemia probiotic potential. An optimal experimental design approach was employed to produce sweet whey-sodium alginate (SW-SA) beads with high bacterial content and good morphological characteristics. In this study, the effects of frequency, voltage, and pumping rate were optimized for a 300 µm nozzle. The microspheres were characterized using RAMAN spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy. The optimal conditions for bead production were found: 70 Hz, 250 V, and 20 mL/min with a final cell count of 8.43 Log10 (CFU/mL). The mean particle diameter was 620 ± 5.3 µm, and the experimental encapsulation yield was 94.3 ± 0.8%. The INFOGEST model was used to evaluate the survival of probiotic beads under gastrointestinal tract conditions. Upon exposure to in vitro conditions of oral, gastric, and intestinal phases, the encapsulated viability of L. fermentum was 7.6 Log10 (CFU/mL) using the optimal encapsulation parameters, which significantly improved the survival of probiotic bacteria during both the encapsulation process and under gastrointestinal conditions compared to free cells.

16.
Nutrients ; 16(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39275234

RESUMEN

Previous studies have indicated a critical role of intestinal bacteria in the pathogenesis of ulcerative colitis (UC). B. salyersiae is a commensal species from the human gut microbiota. However, what effect it has on UC development has not been investigated. In the present study, we explored this issue and demonstrated for the first time that oral administration of B. salyersiae CSP6, a bacterium previously isolated from the fecal sample of a healthy individual, protected against dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice. In particular, B. salyersiae CSP6 improved mucosal damage and attenuated gut dysbiosis in the colon of DSS-fed mice. Specifically, B. salyersiae CSP6 decreased the population of pathogenic Escherichia-Shigella spp. and increased the abundance of probiotic Dubosiella spp. and Bifidobacterium pseudolongum. Additionally, by reshaping the colonic microbiota, B. salyersiae CSP6 remarkably increased the fecal concentrations of equol, 8-deoxylactucin, and tiglic acid, three beneficial metabolites that have been well documented to exert strong anti-inflammatory effects. Altogether, our study provides novel evidence that B. salyersiae is a candidate probiotic species with potential anti-colitis properties in the human colon, which has applications for the development of next-generation probiotics.


Asunto(s)
Bacteroides , Colon , Sulfato de Dextran , Modelos Animales de Enfermedad , Heces , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Probióticos , Animales , Probióticos/farmacología , Humanos , Colon/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Bacteroides/aislamiento & purificación , Heces/microbiología , Masculino , Colitis/microbiología , Colitis/inducido químicamente , Disbiosis/microbiología , Colitis Ulcerosa/microbiología
17.
Nutrients ; 16(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39275319

RESUMEN

Autism Spectrum Disorder (ASD) is a multifactorial disorder involving genetic and environmental factors leading to pathophysiologic symptoms and comorbidities including neurodevelopmental disorders, anxiety, immune dysregulation, and gastrointestinal (GI) abnormalities. Abnormal intestinal permeability has been reported among ASD patients and it is well established that disturbances in eating patterns may cause gut microbiome imbalance (i.e., dysbiosis). Therefore, studies focusing on the potential relationship between gut microbiota and ASD are emerging. We compared the intestinal bacteriome and mycobiome of a cohort of ASD subjects with their non-ASD siblings. Differences between ASD and non-ASD subjects include a significant decrease at the phylum level in Cyanobacteria (0.015% vs. 0.074%, p < 0.0003), and a significant decrease at the genus level in Bacteroides (28.3% vs. 36.8%, p < 0.03). Species-level analysis showed a significant decrease in Faecalibacterium prausnitzii, Prevotella copri, Bacteroides fragilis, and Akkermansia municiphila. Mycobiome analysis showed an increase in the fungal Ascomycota phylum (98.3% vs. 94%, p < 0.047) and an increase in Candida albicans (27.1% vs. 13.2%, p < 0.055). Multivariate analysis showed that organisms from the genus Delftia were predictive of an increased odds ratio of ASD, whereas decreases at the phylum level in Cyanobacteria and at the genus level in Azospirillum were associated with an increased odds ratio of ASD. We screened 24 probiotic organisms to identify strains that could alter the growth patterns of organisms identified as elevated within ASD subject samples. In a preliminary in vivo preclinical test, we challenged wild-type Balb/c mice with Delftia acidovorans (increased in ASD subjects) by oral gavage and compared changes in behavioral patterns to sham-treated controls. An in vitro biofilm assay was used to determine the ability of potentially beneficial microorganisms to alter the biofilm-forming patterns of Delftia acidovorans, as well as their ability to break down fiber. Downregulation of cyanobacteria (generally beneficial for inflammation and wound healing) combined with an increase in biofilm-forming species such as D. acidovorans suggests that ASD-related GI symptoms may result from decreases in beneficial organisms with a concomitant increase in potential pathogens, and that beneficial probiotics can be identified that counteract these changes.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Micobioma , Hermanos , Trastorno del Espectro Autista/microbiología , Humanos , Femenino , Masculino , Niño , Animales , Ratones , Preescolar , Disbiosis/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Candida albicans/aislamiento & purificación , Heces/microbiología
18.
Poult Sci ; 103(12): 104207, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39278111

RESUMEN

This study aimed to explore the probiotic characteristics of Lacticaseibacillus rhamnosus SN21-1 and Lactiplantibacillus plantarum SN21-2 by genotype and phenotype analysis, assess their safety in vitro and in vivo, and investigate the effects of L. rhamnosus SN21-1 and L. plantarum SN21-2 on Salmonella typhimurium-infected broilers in an in vivo experiment. L. rhamnosus SN21-1 and L. plantarum SN21-2 showed antimicrobial activity against pathogens, including S. Typhimurium, resistance to simulated gastrointestinal digestive fluid, and adhesion to HT-29 cells. In addition, L. rhamnosus SN21-1 and L. plantarum SN21-2 showed no resistance to most common antimicrobial agents and no haemolysis in vitro. Whole-genome sequence analyses of L. rhamnosus SN21-1 and L. plantarum SN21-2 provided basic genomic information, functional genes underlying the probiotic characteristics, and evidence of safety. Furthermore, feeding with L. rhamnosus SN21-1 or L. plantarum SN21-2 for 28 d had no significant effect on the growth or blood biochemical parameters of the broilers, and hematoxylin-eosin staining revealed no liver, spleen, heart, or kidney damage. Additionally, L. rhamnosus SN21-1 or L. plantarum SN21-2 did not translocate to the blood, liver, spleen, heart, or kidney of the broilers. Moreover, L. rhamnosus SN21-1 and L. plantarum SN21-2 significantly reduced S. Typhimurium counts in the faeces and caecal contents of S. Typhimurium-infected broilers and reduced small intestinal bleeding in S. Typhimurium-infected broilers. Consequently, L. rhamnosus SN21-1 and L. plantarum SN21-2 have excellent probiotic characteristics and are safe for use as anti-S. typhimurium probiotics in broilers.

19.
Int J Pharm ; : 124689, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278289

RESUMEN

Immunogene therapy has emerged as strategy against cancer by introducing immune-stimulating components into gene therapy. However, there is still a need for an ideal platform to achieve both immune stimulation and efficient gene delivery. Lactobacillus reuteri has potential immunomodulatory activity owing to its unique antigenicity, which is potentially relevant to cancer progression. Here, we designed a novel non-viral siRNA vector (DMPLAC) by encapsulating Lactobacillus reuteri lysate in DMP. DMPLAC can promote maturation and activation of immune cells, increase infiltration of APC and cytotoxic T cells in tumor microenvironment, and exhibit tumor suppressive effects. Loading of siRNA targeting Stat3, DMPLAC/siStat3 further inhibits tumor in multiple models. We designed a strategy that combines immune activation with Stat3 silencing, triggering an immune response and tumor killing. This dual-functional design provides a new choice in development of effective immunogene therapy.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39283566

RESUMEN

Probiotic bacteria, and especially lactic acid bacteria, have long been known to wield a variety of health-beneficial effects, including antioxidant, antimicrobial, anti-inflammatory, immunomodulatory, and anticancer activities. However, our understanding of the mechanisms involved in these activities remains incomplete. In this study, we wished to investigate the processes that give rise to the anticancer activity of Lacticaseibacillus casei ATCC393 and the possibility that immunogenic cell death of cancer cells can be induced following treatment with this probiotic. In both cell lines that we have examined, we detected notable pro-apoptotic signaling, including the upregulation of death receptors, that culminated in the activation of caspase 3, the endpoint and most characteristic effector molecule of all pro-apoptotic cascades. In addition, we identified damage-associated molecular patterns associated with immunogenic cell death. Calreticulin exposure on the outer cell membrane, HMGB1 translocation outside the nucleus and depletion of intracellular ATP was evident in both cancer cell lines treated with the probiotic, while expression of type I interferons was upregulated in CT26 cells. Our findings suggest that treatment with the probiotic induced apoptosis in cancer cells, mediated by extrinsic death receptor signaling. Moreover, it resulted in the release of molecular signals related with immunogenic cell death and induction of cancer cell-specific adaptive immune responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA