Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
1.
ACS Appl Mater Interfaces ; 16(37): 49544-49555, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39231379

RESUMEN

Utilizing noble metal nanoparticles through novel technologies is a promising avenue for enhancing the performance of organic/inorganic photodetectors. This study investigates the performance enhancement of Formamidinium-based perovskite (Pe) photodetectors (PDs) through the incorporation of plasmonic silver nanoparticles (Ag NPs) arrays using a 2D printing technique. The incorporation of plasmonic Ag NPs leads to a major improvement in the performance of the planar PD device, which is attributed to increased light absorption, hot electron generation, and more efficient charge extraction and transport. The unique aspect of this study lies in the method of incorporating plasmonic NPs using a two-dimensional printing technology. This approach offers several advantages over traditional methods, including lower cost, nonvacuum operation, and compatibility with room temperature fabrication. The printed plasmon-enhanced optimized perovskite PD exhibits remarkable performance metrics, including a peak responsivity of 1.03 A/W at 5 V external bias, which is significantly high compared to the reported devices. Moreover, the PD demonstrates exceptional detectivity with a peak value of 3.7 × 1012 Jones at 5 V, highlighting its capability to detect ultralow light signals with high precision. The device can be reversibly switched between low and high conductance states, yielding a stable and repeatable Ilight/Idark ratio of 1.06 × 104. In addition, the integration of plasmonic nanoparticles imparts remarkable photovoltaic characteristics to the perovskite photodetector, enabling it to function as a self-biased device. The hybrid device demonstrates a peak responsivity of 15 mA/W, a high detectivity of 2.15 × 1011 Jones, and a significant on-off ratio of 2.23 × 103, all achieved at zero external bias. Overall, this study presents a significant advancement in the field of plasmon-enhanced Pe photodetection technology. By utilizing the benefits of printing technology to incorporate NPs, we have developed a high-performance PD that combines cost-effectiveness with exceptional performance. Thus, we believe that this study will pave the way for the development of a low-cost, high-performance plasmon-enhanced Pe-based PD.

2.
Curr Pharm Des ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39289943

RESUMEN

The advent of 3D printing technology has emerged as a key technical revolution in recent years, enabling the development and production of innovative medication delivery methods in the pharmaceutical sector. The designs, concepts, techniques, key challenges, and potential benefits during 3D-printing technology are the key points discussed in this review. This technology primarily enables rapid, safe, and low-cost development of pharmaceutical formulations during the conventional and additive manufacturing processes. This phenomenon has wide-ranging implications in current as well as future medicinal developments. Advanced technologies such as Ink-Jet printing, drop-on-demand printing, Zip dose, Electrohydrodynamic Printing (Ejet) etc., are the current focus of the drug delivery systems for enhancing patient convenience and improving medication compliance. The current and future applications of various software, such as CAD software, and regulatory aspects in 3D and 4D printing technology are discussed briefly in this article. With respect to the prospective trajectory of 3D and 4D printing, it is probable that the newly developed methods will be predominantly utilized in pharmacies and hospitals to accommodate the unique requirements of individuals or niche groups. As a result, it is imperative that these technologies continue to advance and be improved in comparison to 2D printing in order to surmount the aforementioned regulatory and technical obstacles, render them applicable to a vast array of drug delivery systems, and increase their acceptability among patients of every generation.

3.
Materials (Basel) ; 17(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39274789

RESUMEN

This article discusses special additive technologies, with a particular focus on the innovative binder jetting technology used to create three-dimensional objects. The theoretical part of this article defines the production process-its shortcomings and benefits. Also, the article describes process parameters and individual steps that must be optimally set for the desired result. Further, the article characterizes the most influential factors that are indispensable in the printing process-metallic powder, binder, printing parameters, and finishing operations after the printing itself. The conclusion of the theoretical part deals with various material possibilities when using binder jetting technology. In the practical part of the article, the properties of the material, the chemical composition, and the resulting accuracy of the printed samples will be verified experimentally. The information obtained will subsequently be used to identify an economically advantageous application of binder jetting technology.

4.
J Pers Med ; 14(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39202002

RESUMEN

3D-printing technology has revolutionized spinal implant manufacturing, particularly in developing personalized and custom-fit titanium interbody fusion cages. These cages are pivotal in supporting inter-vertebral stability, promoting bone growth, and restoring spinal alignment. This article reviews the latest advancements in 3D-printed titanium interbody fusion cages, emphasizing their relevance in modern personalized surgical spine care protocols applied to common clinical scenarios. Furthermore, the authors review the various printing and post-printing processing technologies and discuss how engineering and design are deployed to tailor each type of implant to its patient-specific clinical application, highlighting how anatomical and biomechanical considerations impact their development and manufacturing processes to achieve optimum osteoinductive and osteoconductive properties. The article further examines the benefits of 3D printing, such as customizable geometry and porosity, that enhance osteointegration and mechanical compatibility, offering a leap forward in patient-specific solutions. The comparative analysis provided by the authors underscores the unique challenges and solutions in designing cervical, and lumbar spine implants, including load-bearing requirements and bioactivity with surrounding bony tissue to promote cell attachment. Additionally, the authors discuss the clinical outcomes associated with these implants, including the implications of improvements in surgical precision on patient outcomes. Lastly, they address strategies to overcome implementation challenges in healthcare facilities, which often resist new technology acquisitions due to perceived cost overruns and preconceived notions that hinder potential savings by providing customized surgical implants with the potential for lower complication and revision rates. This comprehensive review aims to provide insights into how modern 3D-printed titanium interbody fusion cages are made, explain quality standards, and how they may impact personalized surgical spine care.

5.
Forensic Sci Int ; 362: 112183, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096794

RESUMEN

The development of 3D printing technology has brought new risks and challenges to stamp impression identification. To prevent potential risks, a total of 45 stamps were printed using three types of 3D printers: fused deposition molding (FDM) printer, stereo lithography (SLA) printer, and liquid crystal display (LCD)-based SLA 3D printer, including 6 stamps replicated using LCD-based SLA 3D printer. A preliminary study was conducted on the printed stamps and stamped impressions, and the results showed that stamp are influenced by various factors such as printer type, printing material, the technology level of the producer, mold parameters such as font, size, printing parameters, slicing direction, and polishing process, etc., resulting in significant differences in characteristics. However, there are some obviously common characteristics such as missing of strokes, exposure of white and mottled phenomenon in the impression stamped by the 3D produced stamp. The impression of stamp replicated with an LCD 3D printer can be easily identified since it is difficult to achieve consistency with the real impression in detail characteristics.

6.
Diagnostics (Basel) ; 14(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125465

RESUMEN

Noise in computed tomography (CT) is inevitably generated, which lowers the accuracy of disease diagnosis. The non-local means approach, a software technique for reducing noise, is widely used in medical imaging. In this study, we propose a noise reduction algorithm based on fast non-local means (FNLMs) and apply it to CT images of a phantom created using 3D printing technology. The self-produced phantom was manufactured using filaments with similar density to human brain tissues. To quantitatively evaluate image quality, the contrast-to-noise ratio (CNR), coefficient of variation (COV), and normalized noise power spectrum (NNPS) were calculated. The results demonstrate that the optimized smoothing factors of FNLMs are 0.08, 0.16, 0.22, 0.25, and 0.32 at 0.001, 0.005, 0.01, 0.05, and 0.1 of noise intensities, respectively. In addition, we compared the optimized FNLMs with noisy, local filters and total variation algorithms. As a result, FNLMs showed superior performance compared to various denoising techniques. Particularly, comparing the optimized FNLMs to the noisy images, the CNR improved by 6.53 to 16.34 times, COV improved by 6.55 to 18.28 times, and the NNPS improved by 10-2 mm2 on average. In conclusion, our approach shows significant potential in enhancing CT image quality with anthropomorphic phantoms, thus addressing the noise issue and improving diagnostic accuracy.

7.
Sci Total Environ ; 950: 175296, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39111417

RESUMEN

The microbial enrichment of traditional biocarriers is limited due to the inadequate consideration of spatial structure and surface charging characteristics. Here, capitalizing on the ability of 3D printing technology to fabricate high-resolution materials, we further designed a positively charged sodium alginate/ε-poly-l-lysine (SA/ε-PL) printing ink, and the 3D printed biocarriers with ideal pore structure and rich positive charge were constructed to enhance the microbial enrichment. The rheological and mechanical tests confirmed that the developed SA/ε-PL ink could simultaneously satisfy the smooth extrusion for printing process and the maintenance of 3D structure. The utilization of the ε-PL secondary cross-linking strategy reinforced the 3D mechanical structure and imparted the requisite physical properties for its application as a biocarrier. Compared with traditional sponge carriers, 3D printed biocarrier had a faster initial attachment rate and a higher biomass of 14.58 ± 1.18 VS/cm3, and the nitrogen removal efficiency increased by 53.9 %. Besides, due to the superior electrochemical properties and biocompatibility, the 3D printed biocarriers effectively enriched the electroactive denitrifying bacteria genus Trichococcus, thus supporting its excellent denitrification performance. This study provided novel insights into the development of new functional biocarriers in the wastewater treatment, thereby providing scientific guidance for practical engineering.


Asunto(s)
Alginatos , Nitrógeno , Polilisina , Impresión Tridimensional , Eliminación de Residuos Líquidos , Aguas Residuales , Alginatos/química , Aguas Residuales/química , Aguas Residuales/microbiología , Polilisina/química , Eliminación de Residuos Líquidos/métodos , Tinta
8.
Materials (Basel) ; 17(16)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39203168

RESUMEN

The article explores innovative methods for creating high-insulation walls, essential for the future of energy-efficient and sustainable construction. It focuses on advanced 3D-printing technologies that allow for the construction of walls with superior insulation materials, optimizing thermal properties and significantly reducing energy for heating and cooling. The integration of thermal insulation within wall structures and innovations in building materials like lightweight composites, aerogels, and nanotechnology-based insulations are highlighted. It discusses the environmental, economic, and technical benefits of these innovations and the challenges to fully leverage 3D printing in construction. Future development directions emphasize materials that enhance thermal efficiency, sustainability, and functionality, promising a new era of sustainable and innovative construction practices.

9.
Front Pediatr ; 12: 1342980, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170604

RESUMEN

Background: This study was aimed to assess the feasibility and efficacy of 3D printing digital template for treatment of cubitus varus deformity. Methods: 32 patients who underwent lateral closing osteotomy were evaluated between January 2018 and January 2020 in this retrospective study. Navigation templates were used in 17 cases, while conventional surgery in 15 cases. The carrying angles before and after surgery, operation time and elbow joint function were compared. Results: Navigation templates matched well with the anatomical markers of the lateral humerus. More accurate osteotomy degrees, shorter operation time and less radiation exposure were achieved in the navigation template group (p < 0.05). At the last follow-up time, significant difference was found based on the Bellemore criteria (p = 0.0288). Conclusions: The novel navigation template can shorten operation time, improve the lateral closing osteotomy accuracy and improve postoperative elbow joint function.

10.
Heliyon ; 10(12): e32664, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975088

RESUMEN

Background: 3D printing is one of the fastest-growing technologies in medicine, but it is essential to have a system for 3D printing documentation that is accessible for not only clinical engineers and surgeons, but also quality managers and data-privacy officers in hospitals. Dedicated software such as product lifecycle management (PLM) software could enable comprehensive management and traceability of all data relevant to 3D printing tasks in a hospital and would highly beneficial. Therefore, customizable software called 3Diamond was developed for 3D printing in medicine. Methods: The software development process involved several stages, including setting specifications based on end-user requirements, design, implementation, and testing. In order to ensure the software's long-term success and smooth operation, critical phases were also considered, such as deployment and maintenance. Results: The developed software provides immediate and complete traceability of all preparations and controls, as well as management of reports, orders, stock, and post-operative follow-up of tasks related to 3D printing in a hospital. Based on user requirements, software testing is provided automatically with each release. The software was implemented in a natural clinical environment with a developed 3D printing center. Conclusion: Although 3D printing has potential for innovation in the medical profession, it is nevertheless subject to regulations. Even though there are exemptions for patient-specific products, the effects of their local legal implementations related to 3D printing cannot be fully overseen. To this end, 3Diamond provides a robust system for 3D printing documentation that is accessible to different personnel in hospitals.

11.
BMC Urol ; 24(1): 153, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068429

RESUMEN

BACKGROUND: Renal calculi are one of the most frequent diseases in urology, and percutaneous nephrolithotomy (PCNL) being the gold standard for treating renal calculi larger than 2 cm. However, traditional rigid nephroscope cannot bend, presents significant limitations during PCNL. This study aims to develop a novel digital flexible nephroscope for PCNL and verify its safety and efficacy using 3D printed models and ex vivo porcine kidney models, providing new equipment for PCNL. METHODS: Based on the determined technical parameters, the novel digital flexible nephroscope was manufactured. First, 3D-printed model and ex vivo porcine kidney models were utilized to simulate the PCNL procedures. Then, the traditional rigid nephroscope and the novel digital flexible nephroscope were utilized to simulate the PCNL procedures on 10 ex vivo porcine kidneys for comparison. We observed and recorded the renal calyces visualized and accessed by both the traditional rigid nephroscope and the novel digital flexible nephroscope. RESULTS: In both the 3D printing and ex vivo porcine kidney models, the novel percutaneous digital flexible nephroscope smoothly entered the renal collecting system through the percutaneous renal tract. It freely changed angles to reach most target calyces, demonstrating significant advantages over the traditional rigid nephroscope. CONCLUSION: The successful development of the novel percutaneous digital flexible nephroscope allows it to be used either independently or as an adjunct in complex stone cases, providing more effective and safer surgical equipment for percutaneous nephrolithotomy.


Asunto(s)
Diseño de Equipo , Impresión Tridimensional , Animales , Porcinos , Nefrolitotomía Percutánea/métodos , Nefrolitotomía Percutánea/instrumentación , Cálculos Renales/cirugía , Nefrostomía Percutánea/instrumentación , Nefrostomía Percutánea/métodos
12.
J Pain Res ; 17: 2347-2356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983246

RESUMEN

Background: Trigeminal neuralgia (TN) is a common form of craniofacial pain, and Radiofrequency thermocoagulation (RFT) has become a commonly utilized treatment modality for TN. However, the complex anatomical configuration of the maxillofacial region and the difficulties inherent in positioning the neck in a hyperextended manner can present challenges for CT-guided punctures. Aim: The objective of this study is to assess the effectiveness and safety of 3D printed tooth-supported template(3D-PTST) guided RFT in patients who have previously undergone unsuccessful CT-guided puncture. Methods: Patients with TN undergoing RFT at the Department of Pain Medicine, PLA General Hospital, from January 2018 to January 2023, were assessed. 3D-PTST guided RFT was employed as an alternative when percutaneous puncture failed. Clinical, demographic, and follow-up data were collected. The duration of the procedure was determined by subtracting the time of anesthesia administration from the time of surgical drape removal. Pain intensity was assessed using the Numerical Rating Scale-11 scale. Treatment effects were evaluated utilizing the Barrow Neurological Institute scale. Incidences of complications related to RFA were documented. Results: Six TN patients underwent 3D-PTST guided RFT. With tooth-supported template guidance, five patients achieved therapeutic target puncture in one attempt with one CT scan. One patient required two attempts with two CT scans. Operation duration ranged from 18 to 46 mins (mean 30 mins). All completed 3D-PTST-guided RFT without difficulty, significantly improving pain symptoms. Four patients had no pain recurrence at 12, 18, 36 and 37 months follow-up, respectively. Recurrence occurred in two patients (at 1 and 13 months). No serious treatment-related complications were observed. Conclusion: 3D-PTST guided RFT is an effective, repeatable, safe, and minimally invasive treatment method for patients with TN who have failed due to difficulty in puncture.

13.
Sensors (Basel) ; 24(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39000861

RESUMEN

Ultrasonic focusing transducers have broad prospects in advanced ultrasonic non-destructive testing fields. However, conventional focusing methods that use acoustic concave lenses can disrupt the acoustic impedance matching condition, thereby adversely affecting the sensitivity of the transducers. In this paper, an active focusing planar ultrasonic transducer is designed and presented to achieve a focusing effect with a higher sensitivity. An electrode pattern consisting of multiple concentric rings is designed, which is inspired by the structure of Fresnel Zone Plates (FZP). The structural parameters are optimized using finite element simulation methods. A prototype of the transducer is manufactured with electrode patterns made of conductive silver paste using silk screen-printing technology. Conventional focusing transducers using an acoustic lens and an FZP baffle are also manufactured, and their focusing performances are comparatively tested. The experimental results show that our novel transducer has a focal length of 16 mm and a center frequency of 1.16 MHz, and that the sensitivity is improved by 23.3% compared with the conventional focusing transducers. This research provides a new approach for the design of focusing transducers.

14.
J Orthop Surg Res ; 19(1): 418, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033286

RESUMEN

BACKGROUND: Clinical repair of critical-sized bone defects (CBDs) in the tibial diaphysis presents numerous challenges, including inadequate soft tissue coverage, limited blood supply, high load-bearing demands, and potential deformities. This study aimed to investigate the clinical feasibility and efficacy of employing 3D-printed prostheses for repairing CBDs exceeding 10 cm in the tibial diaphysis. METHODS: This retrospective study included 14 patients (11 males and 3 females) with an average age of 46.0 years. The etiologies of CBDs comprised chronic osteomyelitis (10 cases) and aseptic non-union (4 cases), with an average defect length of 16.9 cm. All patients underwent a two-stage surgical approach: (1) debridement, osteotomy, and cement spacer implantation; and (2) insertion of 3D-printed prostheses. The interval between the two stages ranged from 8 to 12 weeks, during which the 3D-printed prostheses and induced membranes were meticulously prepared. Subsequent to surgery, patients engaged in weight-bearing and functional exercises under specialized supervision. Follow-up assessments, including gross observation, imaging examinations, and administration of the Lower Extremity Functional Scale (LEFS), were conducted at 3, 6, and 12 months postoperatively, followed by annual evaluations thereafter. RESULTS: The mean postoperative follow-up duration was 28.4 months, with an average waiting period between prosthesis implantation and weight-bearing of 10.4 days. At the latest follow-up, all patients demonstrated autonomous ambulation without assistance, and their LEFS scores exhibited a significant improvement compared to preoperative values (30.7 vs. 53.1, P < 0.001). Imaging assessments revealed progressive bone regeneration at the defect site, with new bone formation extending along the prosthesis. Complications included interlocking screw breakage in two patients, interlocking screw loosening in one patient, and nail breakage in another. CONCLUSIONS: Utilization of 3D-printed prostheses facilitates prompt restoration of CBDs in the tibial diaphysis, enabling early initiation of weight-bearing activities and recovery of ambulatory function. This efficacious surgical approach holds promise for practical application.


Asunto(s)
Diáfisis , Osteomielitis , Impresión Tridimensional , Tibia , Humanos , Masculino , Femenino , Persona de Mediana Edad , Osteomielitis/cirugía , Osteomielitis/diagnóstico por imagen , Estudios Retrospectivos , Adulto , Tibia/cirugía , Tibia/diagnóstico por imagen , Diáfisis/cirugía , Diáfisis/diagnóstico por imagen , Fracturas no Consolidadas/cirugía , Fracturas no Consolidadas/diagnóstico por imagen , Procedimientos de Cirugía Plástica/métodos , Procedimientos de Cirugía Plástica/instrumentación , Anciano , Estudios de Seguimiento , Diseño de Prótesis , Prótesis e Implantes , Osteotomía/métodos , Soporte de Peso , Estudios de Factibilidad
15.
Cancer ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959293

RESUMEN

BACKGROUND: The surgical treatment of retroperitoneal sarcoma (RPS) is highly challenging because of its complex anatomy. In this study, the authors compared the surgical outcomes of patients with RPS who underwent surgical resection guided by three-dimensional (3D) printing technology versus traditional imaging. METHODS: This retrospective study included 251 patients who underwent RPS resection guided by 3D-printing technology or traditional imaging from January 2019 to December 2022. The main outcome measures were operative time, intraoperative blood loss, postoperative complications, and hospital stay. RESULTS: In total, 251 patients were enrolled in the study: 46 received 3D-printed navigation, and 205 underwent traditional surgical methods. Propensity score matching yielded 44 patients in the 3D group and 82 patients in the control group. The patients' demographics and tumor characteristics were comparable in the matched cohorts. The 3D group had significantly shorter operative time (median, 186.5 minutes [interquartile range (IQR), 130.0-251.3 minutes] vs. 210.0 minutes [IQR, 150.8-277.3 minutes]; p = .04), less intraoperative blood loss (median, 300.0 mL [IQR, 100.0-575.0 mL] vs. 375.0 mL [IQR, 200.0-925.0 mL]; p = .02), shorter postoperative hospital stays (median, 11.0 days [IQR, 9.0-13.0 days] vs. 14.0 days [IQR, 10.8-18.3 days]; p = .02), and lower incidence rate of overall postoperative complications than the control group (18.1% vs. 36.6%; p = .03). There were no differences with regard to the intraoperative blood transfusion rate, the R0/R1 resection rate, 30-day mortality, or overall survival. CONCLUSIONS: Patients in the 3D group had favorable surgical outcomes compared with those in the control group. These results suggest that 3D-printing technology might overcome challenges in RPS surgical treatment. PLAIN LANGUAGE SUMMARY: The surgical treatment of retroperitoneal sarcoma (RPS) is highly challenging because of its complex anatomy. The purpose of this study was to investigate whether three-dimensional (3D) printing technology offers advantages over traditional two-dimensional imaging (such as computed tomography and magnetic resonance imaging) for guiding the surgical treatment of RPS. In a group of patients who had RPS, surgery guided by 3D-printing technology was associated with better surgical outcomes, including shorter operative time, decreased blood loss, shorter hospital stays, and fewer postoperative complications. These findings suggested that 3D-printing technology could help surgeons overcome challenges in the surgical treatment of RPS. 3D-printing technology has important prospects in the surgical treatment of RPS.

16.
Int J Ophthalmol ; 17(7): 1331-1336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026899

RESUMEN

AIM: To investigate the biomechanical properties and practical application of absorbable materials in orbital fracture repair. METHODS: The three-dimensional (3D) model of orbital blowout fractures was reconstructed using Mimics21.0 software. The repair guide plate model for inferior orbital wall fracture was designed using 3-matic13.0 and Geomagic wrap 21.0 software. The finite element model of orbital blowout fracture and absorbable repair plate was established using 3-matic13.0 and ANSYS Workbench 21.0 software. The mechanical response of absorbable plates, with thicknesses of 0.6 and 1.2 mm, was modeled after their placement in the orbit. Two patients with inferior orbital wall fractures volunteered to receive single-layer and double-layer absorbable plates combined with 3D printing technology to facilitate surgical treatment of orbital wall fractures. RESULTS: The finite element models of orbital blowout fracture and absorbable plate were successfully established. Finite element analysis (FEA) showed that when the Young's modulus of the absorbable plate decreases to 3.15 MPa, the repair material with a thickness of 0.6 mm was influenced by the gravitational forces of the orbital contents, resulting in a maximum total deformation of approximately 3.3 mm. Conversely, when the absorbable plate was 1.2 mm thick, the overall maximum total deformation was around 0.4 mm. The half-year follow-up results of the clinical cases confirmed that the absorbable plate with a thickness of 1.2 mm had smaller maximum total deformation and better clinical efficacy. CONCLUSION: The biomechanical analysis observations in this study are largely consistent with the clinical situation. The use of double-layer absorbable plates in conjunction with 3D printing technology is recommended to support surgical treatment of infraorbital wall blowout fractures.

17.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(6): 748-754, 2024 Jun 15.
Artículo en Chino | MEDLINE | ID: mdl-38918198

RESUMEN

Objective: To investigate the construction of a novel tissue engineered meniscus scaffold based on low temperature deposition three-dimenisonal (3D) printing technology and evaluate its biocompatibility. Methods: The fresh pig meniscus was decellularized by improved physicochemical method to obtain decellularized meniscus matrix homogenate. Gross observation, HE staining, and DAPI staining were used to observe the decellularization effect. Toluidine blue staining, safranin O staining, and sirius red staining were used to evaluate the retention of mucopolysaccharide and collagen. Then, the decellularized meniscus matrix bioink was prepared, and the new tissue engineered meniscus scaffold was prepared by low temperature deposition 3D printing technology. Scanning electron microscopy was used to observe the microstructure. After co-culture with adipose-derived stem cells, the cell compatibility of the scaffolds was observed by cell counting kit 8 (CCK-8), and the cell activity and morphology were observed by dead/live cell staining and cytoskeleton staining. The inflammatory cell infiltration and degradation of the scaffolds were evaluated by subcutaneous experiment in rats. Results: The decellularized meniscus matrix homogenate appeared as a transparent gel. DAPI and histological staining showed that the immunogenic nucleic acids were effectively removed and the active components of mucopolysaccharide and collagen were remained. The new tissue engineered meniscus scaffolds was constructed by low temperature deposition 3D printing technology and it had macroporous-microporous microstructures under scanning electron microscopy. CCK-8 test showed that the scaffolds had good cell compatibility. Dead/live cell staining showed that the scaffold could effectively maintain cell viability (>90%). Cytoskeleton staining showed that the scaffolds were benefit for cell adhesion and spreading. After 1 week of subcutaneous implantation of the scaffolds in rats, there was a mild inflammatory response, but no significant inflammatory response was observed after 3 weeks, and the scaffolds gradually degraded. Conclusion: The novel tissue engineered meniscus scaffold constructed by low temperature deposition 3D printing technology has a graded macroporous-microporous microstructure and good cytocompatibility, which is conducive to cell adhesion and growth, laying the foundation for the in vivo research of tissue engineered meniscus scaffolds in the next step.


Asunto(s)
Menisco , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Animales , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Porcinos , Ratas , Menisco/citología , Materiales Biocompatibles , Ratas Sprague-Dawley , Células Cultivadas , Meniscos Tibiales/citología , Microscopía Electrónica de Rastreo
18.
J Maxillofac Oral Surg ; 23(3): 644-652, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38911428

RESUMEN

Introduction: Maxillary reconstruction is often a challenging task for the surgeons because of the complex anatomy. However, with the advances in virtual surgical planning (VSP) and 3D printing technology there is a new avenue for the surgeons which offers a suitable alternative to conventional flap-based reconstructions. Patients and Methods: In this article, we have described 4 case scenarios which were managed with the help of VSP and additive manufacturing technology for complex maxillary reconstruction procedures. Use of the technologies aided the clinician in achieving optimal outcomes with regards to form, function and esthetics. Discussion: Virtual surgical planning (VSP) has gained a lot of impetus in past 1 decade. These aides the surgeon in determining the extent of disease and also carry out the treatment planning. In addition to VSP, the concept of additive manufacturing provides a viable alternative to the conventional reconstruction modalities for maxillary defect rehabilitation. Increased accuracy, rehabilitation of normal anatomical configuration, appropriate dental rehabilitation, decreased intra-operative time and post-operative complications are some of the advantages. In addition, patient-specific implants eliminate the need for a separate donor site. Apart from the treatment of pathologies, they also can be used for reconstruction of post-traumatic defect, where endosteal implant placement is not possible. Conclusion: These modalities show promising results for reconstruction of complex maxillary defects.

19.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38892343

RESUMEN

Nanogenerators possess the capability to harvest faint energy from the environment. Among them, thermoelectric (TE), triboelectric, piezoelectric (PE), and moisture-enabled nanogenerators represent promising approaches to micro-nano energy collection. These nanogenerators have seen considerable progress in material optimization and structural design. Printing technology has facilitated the large-scale manufacturing of nanogenerators. Although inks can be compatible with most traditional functional materials, this inevitably leads to a decrease in the electrical performance of the materials, necessitating control over the rheological properties of the inks. Furthermore, printing technology offers increased structural design flexibility. This review provides a comprehensive framework for ink-based nanogenerators, encompassing ink material optimization and device structural design, including improvements in ink performance, control of rheological properties, and efficient energy harvesting structures. Additionally, it highlights ink-based nanogenerators that incorporate textile technology and hybrid energy technologies, reviewing their latest advancements in energy collection and self-powered sensing. The discussion also addresses the main challenges faced and future directions for development.


Asunto(s)
Tinta , Nanotecnología , Nanotecnología/métodos , Suministros de Energía Eléctrica , Reología , Impresión/métodos
20.
JSES Int ; 8(3): 646-653, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38707552

RESUMEN

Background: Various methods of two or three-dimensional (3D) corrective osteotomy for cubitus varus deformity have been reported. However, whether 3D correction of cubitus varus deformity is necessary is controversial because of technical difficulties and surgical complications. This study introduced 3D simulations and printing technology for corrective osteotomy against cubitus varus deformities. Moreover, recent studies on the application of these technologies were reviewed. Methods: The amount of 3D deformity was calculated based on the difference in 3D shape between the affected side and the contralateral normal side. Patient-matched instruments were created to perform the actual surgery as simulated. Further, a 3D corrective osteotomy was performed using patient-matched instruments for cubitus varus deformity in pediatric and adolescent patients. The humerus-elbow-wrist angle, tilting angle, and elbow ranges of motion were evaluated. Results: Humerus-elbow-wrist angle and tilting angle were corrected from -21° to 14° and from 30° to 43°, respectively, in the pediatric patient and from -18° to 10° and from 20° to 40°, respectively, in the adolescent patient. The elbow flexion and extension angles changed from 130° to 140° and from 20° to 10°, respectively, in the pediatric patient and from 120° to 130° and from 15° to 0°, respectively, in the adolescent patient. Conclusion: The 3D computer simulations and the use of patient-matched instruments for cubitus varus deformity are reliable and can facilitate an accurate and safe correction. These technologies can simplify the complexity of 3D surgical procedures and contribute to the standardization of treatment for cubitus varus deformity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA