RESUMEN
The world's primates have been severely impacted in diverse and profound ways by anthropogenic pressures. Here, we evaluate the impact of various infrastructures and human-modified landscapes on spatial patterns of primate species richness, at both global and regional scales. We overlaid the International Union for the Conservation of Nature (IUCN) range maps of 520 primate species and applied a global 100 km2 grid. We used structural equation modeling and simultaneous autoregressive models to evaluate direct and indirect effects of six human-altered landscapes variables (i.e., human footprint [HFP], croplands [CROP], road density [ROAD], pasture lands [PAST], protected areas [PAs], and Indigenous Peoples' lands [IPLs]) on global primate species richness, threatened and non-threatened species, as well as on species with decreasing and non-decreasing populations. Two-thirds of all primate species are classified as threatened (i.e., Critically Endangered, Endangered, and Vulnerable), with ~86% experiencing population declines, and ~84% impacted by domestic or international trade. We found that the expansion of PAST, HFP, CROP, and road infrastructure had the most direct negative effects on primate richness. In contrast, forested habitat within IPLs and PAs was positively associated in safeguarding primate species diversity globally, with an even stronger effect at the regional level. Our results show that IPLs and PAs play a critical role in primate species conservation, helping to prevent their extinction; in contrast, HFP growth and expansion has a dramatically negative effect on primate species worldwide. Our findings support predictions that the continued negative impact of anthropogenic pressures on natural habitats may lead to a significant decline in global primate species richness, and likely, species extirpations. We advocate for stronger national and international policy frameworks promoting alternative/sustainable livelihoods and reducing persistent anthropogenic pressures to help mitigate the extinction risk of the world's primate species.
Asunto(s)
Comercio , Conservación de los Recursos Naturales , Humanos , Animales , Internacionalidad , Primates , Ecosistema , Especies en Peligro de Extinción , Extinción Biológica , BiodiversidadRESUMEN
Geographic gradients in the species richness of non-human primates have traditionally been attributed to the variation in forest productivity (related to precipitation levels), although an all-inclusive, global-scale analysis has never been conducted. We perform a more comprehensive test on the role of precipitation and biomass production and propose an alternative hypothesis - the variation in vertical structure of forest habitats as measured by forest canopy height - in determining primate species richness on a global scale. Considering the potential causal relationships among precipitation, productivity and forest structure, we arranged these variables within a path framework to assess their direct and indirect associations with the pattern of primate species richness using structural equation modelling. The analysis also accounted for the influence of spatial autocorrelation in the relationships and assessed possible historical differences among biogeographical regions. The path coefficients indicate that forest canopy height (used as a proxy for vertical forest structure) is a better predictor of primate species richness than either precipitation or productivity on both global and continental scales. The only exception was Asia, where precipitation prevailed, albeit independently from productivity or forest structure. The influence of spatially structured processes varied markedly among biogeographical regions. Our results challenge the traditional rainfall-based viewpoint in favour of forest distribution and structure as primary drivers of primate species richness, which aggregate potential effects from both climatic factors and habitat complexity. These findings may support predictions of the impact of forest removal on primate species richness.