Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Brain ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39279645

RESUMEN

Primary mitochondrial diseases (PMDs) are among the most common inherited neurological disorders. They are caused by pathogenic variants in mitochondrial or nuclear DNA that disrupt mitochondrial structure and/or function, leading to impaired oxidative phosphorylation (OXPHOS). One emerging subcategory of PMDs involves defective phospholipid (PL) metabolism. Cardiolipin (CL), the signature PL of mitochondria, resides primarily in the inner mitochondrial membrane, where it is biosynthesised and remodelled via multiple enzymes and is fundamental to several aspects of mitochondrial biology. Genes that contribute to CL biosynthesis have recently been linked with PMD. However, the pathophysiological mechanisms that underpin human CL-related PMDs are not fully characterised. Here, we report six individuals, from three independent families, harbouring biallelic variants in PTPMT1, a mitochondrial tyrosine phosphatase required for de novo CL biosynthesis. All patients presented with a complex, neonatal/infantile onset neurological and neurodevelopmental syndrome comprising developmental delay, microcephaly, facial dysmorphism, epilepsy, spasticity, cerebellar ataxia and nystagmus, sensorineural hearing loss, optic atrophy, and bulbar dysfunction. Brain MRI revealed a variable combination of corpus callosum thinning, cerebellar atrophy, and white matter changes. Using patient-derived fibroblasts and skeletal muscle tissue, combined with cellular rescue experiments, we characterise the molecular defects associated with mutant PTPMT1 and confirm the downstream pathogenic effects that loss of PTPMT1 has on mitochondrial structure and function. To further characterise the functional role of PTPMT1 in CL homeostasis, we established a zebrafish ptpmt1 knockout model associated with abnormalities in body size, developmental alterations, decreased total CL levels, and OXPHOS deficiency. Together, these data indicate that loss of PTPMT1 function is associated with a new autosomal recessive PMD caused by impaired CL metabolism, highlight the contribution of aberrant CL metabolism towards human disease, and emphasise the importance of normal CL homeostasis during neurodevelopment.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39113384

RESUMEN

Objective: Endocrine abnormalities may represent the only clinical manifestation of primary mitochondrial disorders. This study aimed to evaluate the endocrinological characteristics of mitochondrial disease in our cohort. Methods: A total of twenty-six pediatric patients diagnosed with mitochondrial disease were categorized on the basis of their specific genetic abnormalities. The auxologic data, pubertal development, and, based on their clinical symptoms, hormonal profiles were obtained. Results: Twelve of the cohort of 26 patients (46%) were female. In 15 of the patients (57.6%), their mitochondrial disease (MD) was caused by nuclear DNA mutations (nDNA group). Four patients had Leigh syndrome, 2 patients had LHON syndrome, 2 patients had MELAS, and 1 patient had KSS clinical phenotype. The median age at diagnosis was 2.91 (0.59-16.8) years, and the median age at first endocrinologic evaluation was 4.62 (1.26-18) years. The mean height SDS was -1.34 ± 2.12, and the mean BMI SDS was -0.82 ± 1.96 for all patients. Of the 26 patients, 6 (23%) had a range of hormonal deficits. Ovarian insufficiency, central adrenal insufficiency, central hypothyroidism, diabetes mellitus, and critical illness-related adrenal insufficiency were all observed. Three of the patients were initially monitored in the endocrine clinic for hormone deficiencies but it was later determined that the hormonal abnormalities were caused by underlying mitochondrial disease. Conclusion: Individuals diagnosed with mitochondrial disease, particularly those with specific genetic abnormalities, are considered a high-risk group for developing hormonal deficits. Endocrine diseases could be one of the primary mitochondrial disorders' early warning symptoms.

3.
Neurol Sci ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831166

RESUMEN

OBJECTIVE: Identify the genotype and clinical characteristics of mitochondrial epilepsy caused by nDNA mutations in Chinese children and explore the treatment and prognosis of the condition. STUDY DESIGN: This is a retrospective cohort study conducted at a single center, including patients diagnosed with an established nDNA mutation-associated primary mitochondrial disease between October 2012 and March 2023 who also met the practical clinical definition of epilepsy published by the ILAE in 2014. RESULTS: Of the 58 patients identified, 74.1% had an onset before the age of 1 year and 63.8% had seizures as their initial symptom. Developmental and epileptic encephalopathy (DEE) (31%) are the most common phenotypes. The most frequently observed MRI abnormalities include abnormal signal asymmetry in the bilateral basal ganglia and/or brainstem (34.7%), as well as brain atrophy, myelin sheath dysplasia, and corpus callosum dysplasia (32.7%). Of the 40 patients followed, seizure treatment was effective in 18 of the cases, while it was ineffective in 22. The mitochondrial DNA depletion syndrome (MDS) was found to be more difficult to control seizures than other phenotypes (P < 0.05). Additionally, the MDS was associated with a significantly higher mortality rate compared to alternative phenotypes (P < 0.05). CONCLUSIONS: The onset of mitochondrial epilepsy due to nDNA mutations is early and seizures are the most common initial symptom. DEE is the most common phenotype. Characteristic MRI abnormalities in the brain may be helpful in the diagnosis of primary mitochondrial disease. People with MDS typically face challenges in seizure control and have a poor prognosis.

4.
J Inherit Metab Dis ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872485

RESUMEN

Mitochondria are dynamic cellular organelles with complex roles in metabolism and signalling. Primary mitochondrial disorders are a group of approximately 400 monogenic disorders arising from pathogenic genetic variants impacting mitochondrial structure, ultrastructure and/or function. Amongst these disorders, defects of complex lipid biosynthesis, especially of the unique mitochondrial membrane lipid cardiolipin, and membrane biology are an emerging group characterised by clinical heterogeneity, but with recurrent features including cardiomyopathy, encephalopathy, neurodegeneration, neuropathy and 3-methylglutaconic aciduria. This review discusses lipid synthesis in the mitochondrial membrane, the mitochondrial contact site and cristae organising system (MICOS), mitochondrial dynamics and trafficking, and the disorders associated with defects of each of these processes. We highlight overlapping functions of proteins involved in lipid biosynthesis and protein import into the mitochondria, pointing to an overarching coordination and synchronisation of mitochondrial functions. This review also focuses on membrane interactions between mitochondria and other organelles, namely the endoplasmic reticulum, peroxisomes, lysosomes and lipid droplets. We signpost disorders of these membrane interactions that may explain the observation of secondary mitochondrial dysfunction in heterogeneous pathological processes. Disruption of these organellar interactions ultimately impairs cellular homeostasis and organismal health, highlighting the central role of mitochondria in human health and disease.

5.
Pharmacol Res ; 203: 107180, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599468

RESUMEN

Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.


Asunto(s)
Sulfuro de Hidrógeno , Mitocondrias , Enfermedades Mitocondriales , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/uso terapéutico , Humanos , Animales , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Suplementos Dietéticos , Transducción de Señal/efectos de los fármacos
6.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1022541

RESUMEN

Objective:To study the clinical manifestations and genetic characteristics of neonatal-onset primary mitochondrial disease (PMD) caused by nuclear gene mutations.Methods:From May 2020 to March 2022, the clinical data, genetic results and follow-up information of neonates with PMD admitted to the Department of Neonatology of our two hospitals were retrospectively analyzed.Results:A total of 4 patients were enrolled, all with hyperlactatemia and metabolic acidosis. In case 1, the fetal cranial MRI showed agenesis of corpus callosum. In case 2, echocardiography after birth indicated hypertrophic cardiomyopathy. Whole exome sequencing found the following mutations: EARS2 nuclear gene c.1294C>T and c.971G>T variants, COA6 nuclear gene c.411_412insAAAG variant, ACAD9 nuclear gene c.1278+1G>A and c.895A>T variants, FOXRED1 nuclear gene c.1054C>T and c.3dup variants. Mitochondrial second-generation sequencing and multiplex ligation-dependent probe amplification showed no abnormalities. Cases 1 and 3 died during the neonatal period. Case 2 died at 2-year-and-2-month of age. Case 4 was followed up to 1 year of age with developmental delay.Conclusions:The main phenotypes of neonatal-onset PMD caused by nuclear gene mutations are hyperlactatemia, refractory metabolic acidosis and cardiomyopathy, which have a poor prognosis. Proactive genetic tests are helpful for early diagnosis.

7.
Hum Genomics ; 17(1): 108, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012712

RESUMEN

Recent advances in next-generation sequencing (NGS) technology have greatly accelerated the need for efficient annotation to accurately interpret clinically relevant genetic variants in human diseases. Therefore, it is crucial to develop appropriate analytical tools to improve the interpretation of disease variants. Given the unique genetic characteristics of mitochondria, including haplogroup, heteroplasmy, and maternal inheritance, we developed a suite of variant analysis toolkits specifically designed for primary mitochondrial diseases: the Mitochondrial Missense Variant Annotation Tool (MmisAT) and the Mitochondrial Missense Variant Pathogenicity Predictor (MmisP). MmisAT can handle protein-coding variants from both nuclear DNA and mtDNA and generate 349 annotation types across six categories. It processes 4.78 million variant data in 76 min, making it a valuable resource for clinical and research applications. Additionally, MmisP provides pathogenicity scores to predict the pathogenicity of genetic variations in mitochondrial disease. It has been validated using cross-validation and external datasets and demonstrated higher overall discriminant accuracy with a receiver operating characteristic (ROC) curve area under the curve (AUC) of 0.94, outperforming existing pathogenicity predictors. In conclusion, the MmisAT is an efficient tool that greatly facilitates the process of variant annotation, expanding the scope of variant annotation information. Furthermore, the development of MmisP provides valuable insights into the creation of disease-specific, phenotype-specific, and even gene-specific predictors of pathogenicity, further advancing our understanding of specific fields.


Asunto(s)
Biología Computacional , Enfermedades Mitocondriales , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/genética , ADN Mitocondrial/genética , Mutación Missense , Secuenciación de Nucleótidos de Alto Rendimiento
8.
JBMR Plus ; 7(11): e10824, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38025043

RESUMEN

Monogenic diabetes, including mitochondrial diabetes, constitutes 1% to 3% of all diabetes. Although there is an increased interest in understanding the mechanisms of bone fragility in people with diabetes, skeletal research is mostly focused on type 1 and type 2 diabetes. Little is known on skeletal health among people with mitochondrial diabetes. In this single-center study, we presented clinical characteristics of individuals with mitochondrial diabetes and clinical diagnosis of osteoporosis. Of 10 patients with mitochondrial diabetes, 4 (40%) had a clinical diagnosis of osteoporosis. Patients with osteoporosis were older, had lower body mass index, longer diabetes duration, lower fasting C-peptide, and presence of multiple comorbidities compared with patients without osteoporosis. In addition to our cases, we also systematically reviewed literature on skeletal health in people with mitochondrial diabetes and provided an overview of potential factors affecting skeletal health and future clinical and research directions to improve the care of people with mitochondrial disease. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

10.
Neurotherapeutics ; 20(6): 1723-1745, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37723406

RESUMEN

We sought to prospectively characterize the nutritional status of adults ≥ 19 years (n = 22, 27% males) and children (n = 38, 61% male) with genetically-confirmed primary mitochondrial disease (PMD) to guide development of precision nutritional support strategies to be tested in future clinical trials. We excluded subjects who were exclusively tube-fed. Daily caloric requirements were estimated using World Health Organization (WHO) equations to predict resting energy expenditure (REE) multiplied by an activity factor (AF) based on individual activity levels. We developed a Mitochondrial Disease Activity Factors (MOTIVATOR) score to encompass the impact of muscle fatigue typical of PMD on physical activity levels. PMD cohort daily diet intake was estimated to be 1,143 ± 104.1 kcal in adults (mean ± SEM, 76.2% of WHO-MOTIVATOR predicted requirement), and 1,114 ± 62.3 kcal in children (86.4% predicted). A total of 11/22 (50%) adults and 18/38 (47.4%) children with PMD consumed ≤ 75% predicted daily Kcal needs. Malnutrition was identified in 16/60 (26.7%) PMD subjects. Increased protein and fat intake correlated with improved muscle strength in those with insufficient daily Kcal intake (≤ 75% predicted); higher protein and fat intake correlated with decreased muscle fatigue; and higher protein, fat, and carbohydrate intake correlated with improved quality of life (QoL). These data demonstrate the frequent occurrence of malnutrition in PMD and emphasize the critical need to devise nutritional interventions to optimize clinical outcomes.


Asunto(s)
Desnutrición , Enfermedades Mitocondriales , Adulto , Niño , Humanos , Masculino , Femenino , Estado Nutricional , Calidad de Vida , Ingestión de Energía , Fatiga Muscular , Metabolismo Energético
11.
J Prim Care Community Health ; 14: 21501319231193875, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37646180

RESUMEN

Primary mitochondrial myopathies (PMM) are rare disorders with diverse and progressive symptom presentations that cause a substantial, detrimental impact on the quality of life of patients and their caregivers. The burden of symptoms is compounded by their visibility and their unpredictable, progressive nature, leading to a sense of social stigmatization, limited autonomy, social isolation, and grief. There is also a lack of awareness and expertise in the medical community, which presents huge obstacles to diagnosis and provision of coordinated multidisciplinary care for these patients, along with a lack of disease-modifying treatments. The present commentary serves to raise awareness of the challenges faced by patients with PMM and their caregivers in their own words, including diagnostic delays, the burden of disease, and the need for further trials to develop disease-modifying treatments and improved understanding of the disease course. We also provide commentary on considerations for clinical practice, including the need for holistic care and multidisciplinary care teams, details of common 'red flag' symptoms, proposed diagnostic approaches, and suggested descriptions of multisystemic symptoms for physician-patient dialogue. In addition, we highlight the role patient advocacy and support groups play in supporting patients and providing access to reliable, up-to-date information and educational resources on these rare diseases.


Asunto(s)
Miopatías Mitocondriales , Calidad de Vida , Humanos , Miopatías Mitocondriales/terapia , Cuidadores , Costo de Enfermedad , Diagnóstico Tardío
13.
Handb Clin Neurol ; 194: 229-250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36813315

RESUMEN

Primary mitochondrial diseases are some of the most common and complex inherited inborn errors of metabolism. Their molecular and phenotypic diversity has led to difficulties in finding disease-modifying therapies and clinical trial efforts have been slow due to multiple significant challenges. Lack of robust natural history data, difficulties in finding specific biomarkers, absence of well-validated outcome measures, and small patient numbers have made clinical trial design and conduct difficult. Encouragingly, new interest in treating mitochondrial dysfunction in common diseases and regulatory incentives to develop therapies for rare conditions have led to significant interest and efforts to develop drugs for primary mitochondrial diseases. Here, we review past and present clinical trials and future strategies of drug development in primary mitochondrial diseases.


Asunto(s)
Enfermedades Mitocondriales , Humanos , Mitocondrias/metabolismo
14.
J Inherit Metab Dis ; 46(2): 243-260, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36502462

RESUMEN

Leigh syndrome is a rare, inherited, complex neurometabolic disorder with genetic and clinical heterogeneity. Features present in affected patients range from classical stepwise developmental regression to ataxia, seizures, tremor, and occasionally psychiatric manifestations. Currently, more than 100 monogenic causes of Leigh syndrome have been identified, yet the pathophysiology remains unknown. Here, we sought to determine the cellular specificity within the brain of all genes currently associated with Leigh syndrome. Further, we aimed to investigate potential genetic commonalities between Leigh syndrome and other disorders with overlapping clinical features. Enrichment of our target genes within the brain was evaluated with co-expression (CoExp) network analyses constructed using existing UK Brain Expression Consortium data. To determine the cellular specificity of the Leigh associated genes, we employed expression weighted cell type enrichment (EWCE) analysis of single-cell RNA-Seq data. Finally, CoExp network modules demonstrating enrichment of Leigh syndrome associated genes were then utilised for synaptic gene ontology analysis and heritability analysis. CoExp network analyses revealed that Leigh syndrome associated genes exhibit the highest levels of expression in brain regions most affected on MRI in affected patients. EWCE revealed significant enrichment of target genes in hippocampal and somatosensory pyramidal neurons and interneurons of the brain. Analysis of CoExp modules enriched with our target genes revealed preferential association with pre-synaptic structures. Heritability studies suggested some common enrichment between Leigh syndrome and Parkinson disease and epilepsy. Our findings suggest a primary mitochondrial dysfunction as the underlying basis of Leigh syndrome, with associated genes primarily expressed in neuronal cells.


Asunto(s)
Enfermedad de Leigh , Humanos , Enfermedad de Leigh/genética , Transcriptoma , Mutación , Encéfalo/metabolismo , Imagen por Resonancia Magnética
15.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36362003

RESUMEN

Primary mitochondrial diseases are relatively common inborn errors of energy metabolism, with a combined prevalence of 1 in 4300. These disorders typically affect tissues with high energy requirements, including the brain. Epilepsy affects >1% of the worldwide population, making it one of the most common neurological illnesses; it may be the presenting feature of a mitochondrial disease, but is often part of a multisystem clinical presentation. The major genetic causes of mitochondrial epilepsy are mutations in mitochondrial DNA and in the nuclear-encoded gene POLG. Treatment of mitochondrial epilepsy may be challenging, often representing a poor prognostic feature. This narrative review will cover the most recent advances in the field of mitochondrial epilepsy, from pathophysiology and genetic etiologies to phenotype and treatment options.


Asunto(s)
Epilepsia , Enfermedades Mitocondriales , Humanos , Neurólogos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Enfermedades Mitocondriales/complicaciones , ADN Mitocondrial/genética , Epilepsia/etiología , Epilepsia/genética , Mitocondrias/genética , Mutación
16.
Mol Genet Metab ; 137(3): 230-238, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36182714

RESUMEN

In this retrospective cohort study of 193 consecutive subjects with primary mitochondrial disease (PMD) seen at the Children's Hospital of Philadelphia Mitochondrial Medicine Frontier Program, we assessed prevalence, severity, and time of onset of sensorineural hearing loss (SNHL) for PMD cases with different genetic etiologies. Subjects were grouped by genetic diagnosis: mitochondrial DNA (mtDNA) pathogenic variants, single large-scale mtDNA deletions (SLSMD), or nuclear DNA (nDNA) pathogenic variants. SNHL was audiometrically confirmed in 27% of PMD subjects (20% in mtDNA pathogenic variants, 58% in SLSMD and 25% in nDNA pathogenic variants). SLSMD had the highest odds ratio for SNHL. SNHL onset was post-lingual in 79% of PMD cases, interestingly including all cases with mtDNA pathogenic variants and SLSMD, which was significantly different from PMD cases caused by nDNA pathogenic variants. SNHL onset during school age was predominant in this patient population. Regular audiologic assessment is important for PMD patients, and PMD of mtDNA etiology should be considered as a differential diagnosis in pediatric patients and young adults with post-lingual SNHL onset, particularly in the setting of multi-system clinical involvement. Pathogenic mtDNA variants and SLSMD are less likely etiologies in subjects with congenital, pre-lingual onset SNHL.


Asunto(s)
Pérdida Auditiva Sensorineural , Enfermedades Mitocondriales , Adulto Joven , Humanos , Niño , ADN Mitocondrial/genética , Estudios Retrospectivos , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/genética , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/diagnóstico , Mitocondrias/genética
17.
J Clin Endocrinol Metab ; 107(12): 3328-3340, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36074910

RESUMEN

CONTEXT: Premature ovarian insufficiency (POI) is a common form of female infertility that usually presents as an isolated condition but can be part of various genetic syndromes. Early diagnosis and treatment of POI can minimize comorbidity and improve health outcomes. OBJECTIVE: We aimed to determine the genetic cause of syndromic POI, intellectual disability, neutropenia, and cataracts. METHODS: We performed whole-exome sequencing (WES) followed by functional validation via RT-PCR, RNAseq, and quantitative proteomics, as well as clinical update of previously reported patients with variants in the caseinolytic peptidase B (CLPB) gene. RESULTS: We identified causative variants in CLPB, encoding a mitochondrial disaggregase. Variants in this gene are known to cause an autosomal recessive syndrome involving 3-methylglutaconic aciduria, neurological dysfunction, cataracts, and neutropenia that is often fatal in childhood; however, there is likely a reporting bias toward severe cases. Using RNAseq and quantitative proteomics we validated causation and gained insight into genotype:phenotype correlation. Clinical follow-up of patients with CLPB deficiency who survived to adulthood identified POI and infertility as a common postpubertal ailment. CONCLUSION: A novel splicing variant is associated with CLPB deficiency in an individual who survived to adulthood. POI is a common feature of postpubertal female individuals with CLPB deficiency. Patients with CLPB deficiency should be referred to pediatric gynecologists/endocrinologists for prompt POI diagnosis and hormone replacement therapy to minimize associated comorbidities.


Asunto(s)
Catarata , Menopausia Prematura , Neutropenia , Insuficiencia Ovárica Primaria , Femenino , Humanos , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Transcriptoma , Proteómica , Insuficiencia Ovárica Primaria/genética , Fenotipo , Catarata/genética
18.
Mol Metab ; 63: 101537, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35772644

RESUMEN

INTRODUCTION: Primary mitochondrial diseases (PMD) are a large, heterogeneous group of genetic disorders affecting mitochondrial function, mostly by disrupting the oxidative phosphorylation (OXPHOS) system. Understanding the cellular metabolic re-wiring occurring in PMD is crucial for the development of novel diagnostic tools and treatments, as PMD are often complex to diagnose and most of them currently have no effective therapy. OBJECTIVES: To characterize the cellular metabolic consequences of OXPHOS dysfunction and based on the metabolic signature, to design new diagnostic and therapeutic strategies. METHODS: In vitro assays were performed in skin-derived fibroblasts obtained from patients with diverse PMD and validated in pharmacological models of OXPHOS dysfunction. Proliferation was assessed using the Incucyte technology. Steady-state glucose and glutamine tracing studies were performed with LC-MS quantification of cellular metabolites. The therapeutic potential of nutritional supplements was evaluated by assessing their effect on proliferation and on the metabolomics profile. Successful therapies were then tested in a in vivo lethal rotenone model in zebrafish. RESULTS: OXPHOS dysfunction has a unique metabolic signature linked to an NAD+/NADH imbalance including depletion of TCA intermediates and aspartate, and increased levels of glycerol-3-phosphate. Supplementation with pyruvate and uridine fully rescues this altered metabolic profile and the subsequent proliferation deficit. Additionally, in zebrafish, the same nutritional treatment increases the survival after rotenone exposure. CONCLUSIONS: Our findings reinforce the importance of the NAD+/NADH imbalance following OXPHOS dysfunction in PMD and open the door to new diagnostic and therapeutic tools for PMD.


Asunto(s)
Enfermedades Mitocondriales , Fosforilación Oxidativa , Animales , Metaboloma , Enfermedades Mitocondriales/metabolismo , NAD/metabolismo , Ácido Pirúvico/metabolismo , Rotenona , Uridina/metabolismo , Uridina/farmacología , Pez Cebra/metabolismo
19.
J Inherit Metab Dis ; 45(4): 796-803, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35543492

RESUMEN

Primary mitochondrial disorders encompass a wide range of clinical presentations and a spectrum of severity. They currently lack effective disease-modifying therapies and have a high mortality and morbidity rate. It is therefore essential to know that competitively funded research designed by academics meets the core needs of people with mitochondrial disorders and their clinicians. Priority setting partnerships are an established collaborative methodology that brings patients, carers and families, charity representatives and clinicians together to try to establish the most pressing and unanswered research priorities for a particular disease. We developed a web-based questionnaire, requesting all patients affected by primary mitochondrial disease, their carers and clinicians to pose their research questions. This yielded 709 questions from 147 participants. These were grouped into overarching themes including basic biology, causation, health services, clinical management, social impacts, prognosis, prevention, symptoms, treatment and psychological impact. Following the removal of "answered questions", the process resulted in a list of 42 discrete, answerable questions. This was further refined by web-based ranking by the community to 24 questions. These were debated at a face-to-face workshop attended by a diverse range of patients, carers, charity representatives and clinicians to create a definitive "Top 10 of unanswered research questions for primary mitochondrial disorders". These Top 10 questions related to understanding biological processes, including triggers of disease onset, mechanisms underlying progression and reasons for differential symptoms between individuals with identical genetic mutations; new treatments; biomarker discovery; psychological support and optimal management of stroke-like episodes and fatigue.


Asunto(s)
Investigación Biomédica , Enfermedades Mitocondriales , Cuidadores , Prioridades en Salud , Humanos , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Encuestas y Cuestionarios
20.
Adv Genet (Hoboken) ; 3(1)2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35317023

RESUMEN

Primary mitochondrial diseases (PMD) are genetic disorders with extensive clinical and molecular heterogeneity where therapeutic development efforts have faced multiple challenges. Clinical trial design, outcome measure selection, lack of reliable biomarkers, and deficiencies in long-term natural history data sets remain substantial challenges in the increasingly active PMD therapeutic development space. Developing "FAIR" (findable, accessible, interoperable, reusable) data standards to make data sharable and building a more transparent community data sharing paradigm to access clinical research metadata are the first steps to address these challenges. This collaborative community effort describes the current landscape of PMD clinical research data resources available for sharing, obstacles, and opportunities, including ways to incentivize and encourage data sharing among diverse stakeholders. This work highlights the importance of, and challenges to, developing a unified system that enables clinical research structured data sharing and supports harmonized data deposition standards across clinical consortia and research groups. The goal of these efforts is to improve the efficiency and effectiveness of drug development and improve understanding of the natural history of PMD. This initiative aims to maximize the benefit for PMD patients, research, industry, and other stakeholders while acknowledging challenges related to differing needs and international policies on data privacy, security, management, and oversight.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA