Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plants (Basel) ; 13(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891265

RESUMEN

This study explores how elevated carbon dioxide (CO2) levels affects the growth and defense mechanisms of plants. We focused on Aristolochia contorta Bunge (Aristolochiaceae), a wild plant that exhibits growth reduction under elevated CO2 in the previous study. The plant has Sericinus montela Gray (Papilionidae) as a specialist herbivore. By analyzing primary metabolites, understanding both the growth and defense response of plants to herbivory under elevated CO2 conditions is possible. The experiment was conducted across four groups, combining two CO2 concentration conditions (ambient CO2 and elevated CO2) with two herbivory conditions (herbivory treated and untreated). Although many plants exhibit increased growth under elevated CO2 levels, A. contorta exhibited reduced growth with lower height, dry weight, and total leaf area. Under herbivory, A. contorta triggered both localized and systemic responses. More primary metabolites exhibited significant differences due to herbivory treatment in systemic tissue than local leaves that herbivory was directly treated. Herbivory under elevated CO2 level triggered more significant responses in primary metabolites (17 metabolites) than herbivory under ambient CO2 conditions (five metabolites). Several defense-related metabolites exhibited higher concentrations in the roots and lower concentrations in the leaves in response to the herbivory treatment in the elevated CO2 group. This suggests a potential intensification of defensive responses in the underground parts of the plant under elevated CO2 levels. Our findings underscore the importance of considering both abiotic and biotic factors in understanding plant responses to environmental changes. The adaptive strategies of A. contorta suggest a complex response mechanism to elevated CO2 and herbivory pressures.

2.
Plant Cell Environ ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935880

RESUMEN

Climate warming poses major threats to temperate forests, but the response of tree root metabolism has largely remained unclear. We examined the impact of long-term soil warming (>14 years, +4°C) on the fine root metabolome across three seasons for 2 years in an old spruce forest, using a liquid chromatography-mass spectrometry platform for primary metabolite analysis. A total of 44 primary metabolites were identified in roots (19 amino acids, 12 organic acids and 13 sugars). Warming increased the concentration of total amino acids and of total sugars by 15% and 21%, respectively, but not organic acids. We found that soil warming and sampling date, along with their interaction, directly influenced the primary metabolite profiles. Specifically, in warming plots, concentrations of arginine, glycine, lysine, threonine, tryptophan, mannose, ribose, fructose, glucose and oxaloacetic acid increased by 51.4%, 19.9%, 21.5%, 19.3%, 22.1%, 23.0%, 38.0%, 40.7%, 19.8% and 16.7%, respectively. Rather than being driven by single compounds, changes in metabolite profiles reflected a general up- or downregulation of most metabolic pathway network. This emphasises the importance of metabolomics approaches in investigating root metabolic pathways and understanding the effects of climate change on tree root metabolism.

3.
J Exp Bot ; 75(6): 1726-1740, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-37864494

RESUMEN

Classically fruit ripening and development was studied using genetic approaches, with understanding of metabolic changes that occurred in concert largely focused on a handful of metabolites including sugars, organic acids, cell wall components, and phytohormones. The advent and widespread application of metabolomics has, however, led to far greater understanding of metabolic components that play a crucial role not only in this process but also in influencing the organoleptic and nutritive properties of the fruits. Here we review how the study of natural variation, mutants, transgenics, and gene-edited fruits has led to a considerable increase in our understanding of these aspects. We focus on fleshy fruits such as tomato but also review berries, receptacle fruits, and stone-bearing fruits. Finally, we offer a perspective as to how comparative analyses and machine learning will likely further improve our comprehension of the functional importance of various metabolites in the future.


Asunto(s)
Frutas , Metabolómica , Frutas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Biomolecules ; 13(12)2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38136571

RESUMEN

The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of direct UV-B treatment on R. chrysanthum. The ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methodology and TMT quantitative proteomics are used in this study to describe the metabolic response of R. chrysanthum to UV-B radiation and annotate the response mechanism of the primary metabolism and phenolic metabolism of R. chrysanthum. The outcomes demonstrated that following UV-B radiation, the primary metabolites (L-phenylalanine and D-lactose*) underwent considerable changes to varying degrees. This gives a solid theoretical foundation for investigating the use of precursor substances, such as phenylalanine, to aid plants in overcoming abiotic stressors. The external application of ABA produced a considerable increase in the phenolic content and improved the plants' resistance to UV-B damage. Our hypothesis is that externally applied ABA may work in concert with UV-B to facilitate the transformation of primary metabolites into phenolic compounds. This hypothesis offers a framework for investigating how ABA can increase a plant's phenolic content in order to help the plant withstand abiotic stressors. Overall, this study revealed alterations and mechanisms of primary and secondary metabolic strategies in response to UV-B radiation.


Asunto(s)
Rhododendron , Cromatografía Liquida , Espectrometría de Masas en Tándem , Rayos Ultravioleta , Plantas
5.
J Biosci Bioeng ; 136(5): 374-382, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37689569

RESUMEN

Demand for minimally processed fresh fruit is increasing due to its convenience. However, the distribution of fresh-cut fruits is limited because of their short shelf life. Pineapple, a popular tropical fruit, sold in fresh-cut form has a shelf life of approximately 5-7 days at 4 °C. Chitosan, an edible coating, is commonly used to prolong the shelf life of food products. Similarly, the sugar melezitose has been reported to change during pineapple ripening and may play a role in regulating the shelf life of pineapple. However, the direct effects of this sugar have yet to be studied. The objective of this study was to investigate the effect of chitosan coating with melezitose to prolong the shelf life of fresh-cut pineapple. Full-ripe Bogor pineapples from Okinawa, Japan, were cut into cubes and soaked in either chitosan 1.25%, melezitose 5 mg/L, or chitosan+melezitose and stored for 5 days under dark conditions (23.6 ± 0.5 °C; relative humidity, 40.0 ± 10.4%). None of the treatments significantly altered the weight loss or color changes in the fresh-cut fruit. However, treatment significantly altered the primary metabolites, namely quinic acid, sucrose, and xylitol based on orthogonal projection to latent structures data with the screening from p-value score. Moreover, cell-wall metabolism is possibly affected in pineapple cut fruit treated by chitosan-melezitose as shown from metabolite sets enrichment analysis. This study showed that chitosan added with melezitose might have potential to prolong the shelf-life of fresh-cut pineapple, providing a basis for further post-harvest studies of the whole pineapple fruit.

6.
Bioresour Technol ; 385: 129386, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37364652

RESUMEN

This study investigates temperature and light impact on the ability of Micractinium pusillum microalgae to mitigate CO2 and produce bioenergy in semi-continuous mode. Microalgae were exposed to temperatures (15, 25, and 35 °C) and light intensities (50, 350, and 650 µmol m-2 s-1), including two temperature cycles, 25 °C had the maximum growth rate, with no significant difference at 35 °C and light intensities of 350 and 650 µmol m-2 s-1. 15 °C temperature and 50 µmol m-2 s-1 light intensity reduced growth. Increased light intensity accelerated growth, CO2 utilization with carbon and bioenergy accumulation. Microalgae demonstrate rapid primary metabolic adjustment and acclimation reactions in response to changes in light and temperature conditions. Temperature correlated positively with carbon and nitrogen fixation, CO2 fixation, and carbon accumulation in the biomass, whereas there was no correlation found between light. In the temperature regime experiment, higher light intensity boosted nutrient and CO2 utilization, carbon buildup, and biomass bioenergy.


Asunto(s)
Microalgas , Temperatura , Microalgas/metabolismo , Dióxido de Carbono/metabolismo , Luz , Aclimatación , Biomasa , Carbono/metabolismo
7.
Plant Physiol Biochem ; 190: 109-118, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113306

RESUMEN

Flowering is one of the most important physiological processes of plants that ensures continuity of genetic flow from one generation to the next and also maintains food security. Therefore, impact of various climate-related abiotic stresses on flowering have been assessed to evaluate the long-term impact of global climate change. In contrast to the enormous volume of research that has been conducted at the genetic, transcriptional, post-transcriptional, and protein level, much less attention has been paid to understand the role of various metabolites in flower induction and floral organ development during normal growth or in stressed environmental condition. This review article aims at summarizing information on various primary (e.g., carbohydrates, lipids, fatty acid derivatives, protein and amino acids) and secondary metabolites (e.g., polyamines, phenolics, neuro-indoles, phenylpropanoid, flavonoids and terpenes) that have so far been identified either during flower induction or in individual floral organs implying their possible role in organ development. Specialized metabolites responsible for flower colour, scent and shape to support plant-pollinator interaction have been extensively reviewed by many research groups and hence are not considered in this article. Many of the metabolites discussed here may be used as metabolomarkers to identify tolerant crop genotypes. Several agrochemicals have been successfully used to release endodormancy in temperate trees. Along the same line, a strategy that combines metabolite profiling, screening of small-molecule libraries, and structural alteration of selected compounds has been proposed in order to identify novel lead compounds that can regulate flowering time when applied exogenously.


Asunto(s)
Flores , Plantas , Agroquímicos/metabolismo , Aminoácidos/metabolismo , Carbohidratos , Ácidos Grasos/metabolismo , Flavonoides/metabolismo , Flores/genética , Indoles/metabolismo , Lípidos , Plantas/metabolismo , Poliaminas/metabolismo , Terpenos/metabolismo
8.
Curr Opin Plant Biol ; 67: 102201, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35349968

RESUMEN

Plants produce a large number of diverse metabolites when they grow and develop as well as when they respond to the changing external environment. These are an important source of human nutrition and medicine. In this review we emphasized the major issues of the primary-specialized metabolic interface in plant metabolism, described the metabolic flow from primary to specialized metabolism, and the conservation and diversity of primary and specialized metabolites. At the same time, we summarized the regulatory mechanisms underpinning the dynamic balance primary and specialized metabolism based on multi-omics integration analysis, as well as the natural variation of primary and specialized metabolic pathways and genes during the plant evolution. Moreover, the discovery and optimization of the synthesis and regulation elements of various primary to specialized metabolic flows provide the possibility for precise modification and personalized customization of metabolic pathways, which will greatly promote the development of synthetic biology.


Asunto(s)
Plantas , Biología Sintética , Redes y Vías Metabólicas/genética , Plantas/genética , Plantas/metabolismo
9.
Plants (Basel) ; 10(7)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202618

RESUMEN

Rose hips are the fruits of the beach rose (Rosa rugosa). To determine the optimal harvest time and to obtain the maximum functional compounds, rose hips at various stages of ripeness (immature, early, mid, and late) were harvested, and the flesh tissue and seeds were separated. The rose hip flesh showed the highest total phenolic content at the mid-ripeness stage (8.45 ± 0.62 mg/g gallic acid equivalent concentration (dry weight)). The early-, mid-, and late-ripeness stages of rose hip flesh did not show significantly different 2,2-diphenyl-1-picrylhydrazyl antioxidant capacities. The elastase inhibitory activity of the 95% ethanol extract from the rose hip seeds was highest at the mid-ripeness stage; however, the elastase inhibitory activity of the rose hip tissue was not significantly different from that of the seeds. Pathway analysis using MetaboAnalyst showed that sucrose, fructose, and glucose gradually increased as the fruit ripened. Ursolic acid was detected in the seeds but not in the flesh. Of the fatty acids, linoleic acid concentrations were highest in rose hip seeds, followed by linolenic acid, oleic acid, and palmitic acid. Fatty acids and ursolic acid might be the active compounds responsible for elastase inhibitory activity and can be utilized as a functional cosmetic material.

10.
Planta ; 254(2): 35, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34292405

RESUMEN

MAIN CONCLUSION: Accumulation patterns and gene regulatory networks of sugars and cucurbitacins and related primary and secondary metabolites during cultivated watermelon 'Cheng Lan' and wild watermelon 'PI 632,751' fruit development were identified. Metabolites are the end products of cellular regulatory processes and play important roles in fruit taste formation. However, comprehensive studies on the accumulation patterns of watermelon fruit metabolites and transcriptional regulatory networks are still scarce. In this study, 451 annotated metabolites were identified at four key fruit developmental stages in wild watermelon 'PI 632,751' and modern cultivated watermelon 'Cheng Lan'. Interestingly, 11 sugars and 25 major primary metabolites were mainly accumulated in 'Cheng Lan' during fruit development, which are considered to be the potential metabolites beneficial to the formation of watermelon taste. Cucurbitacins and the main flavonoids were mainly specifically accumulated in 'PI 632,751', not being considered to be responsible for the taste. Moreover, forty-seven genes involved in carbohydrate metabolism, glycolysis, and TCA cycle were highly expressed in 'Cheng Lan', which was positively correlated with the accumulation of major primary metabolites. Alternatively, seven UDP-glycosyltransferase genes are closely related to the glycosylation of cucurbitacins through co-expression analysis. Our findings established a global map of metabolite accumulation and gene regulation during fruit development in wild and cultivated watermelons and provided valuable information on taste formation in watermelon fruit.


Asunto(s)
Citrullus , Citrullus/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Metaboloma , Gusto , Transcriptoma/genética
11.
Futur J Pharm Sci ; 7(1): 120, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150912

RESUMEN

BACKGROUND: Influenza is an acute respiratory tract infection caused by the influenza virus. Vaccination and antiviral drugs are the two methods opted to control the disease. Besides their efficiency, they also cause adverse side effects. Hence, scientists turned their attention to powerful herbal medicines. This review put focus on various proven, scientifically validated anti-influenza compounds produced by the plants suggested for the production of newer drugs for the better treatment of influenza and its related antiviral diseases too. MAIN BODY: In this review, fifty medicinal herb phytochemical constituents and their anti-influenza activities have been documented. Specifically, this review brings out the accurate and substantiates mechanisms of action of these constituents. This study categorizes the phytochemical constituents into primary and secondary metabolites which provide a source for synthesizing and developing new drugs. CONCLUSION: This article provides a summary of the actions of the herbal constituents. Since the mechanisms of action of the components are elucidated, the pandemic situation arising due to influenza and similar antiviral diseases can be handled promisingly with greater efficiency. However, clinical trials are in great demand. The formulation of usage may be a single drug compound or multi-herbal combination. These, in turn, open up a new arena for the pharmaceutical industries to develop innovative drugs.

12.
Front Mol Biosci ; 8: 632341, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33768116

RESUMEN

Morchella sextelata, one of the true morels, has recently been artificially cultivated with stable production in China. Analysis of the variations in primary metabolites during the vegetative stages of M. sextelata is critical for understanding the metabolic process. In this study, three developmental stages were categorized based on morphological and developmental changes, including the young mushroom period, marketable mature period, and physiological maturity period. Untargeted metabolomics-based mass spectrometry was used to analyze the change of metabolites during the growth stages of M. sextelata. The result showed that the metabolites' content at the different growth stages were significantly different. The relative contents of linoleic acid, mannitol, oleamide, and betaine were higher at each growth stage. Flavor substances were significantly metabolizable during commodity maturity, while amino acids, organic acids, and lipids were significantly metabolizing at physiological maturity. Pathway analysis of the most significant changes involved Pyrimidine metabolism, Vitamin B6 metabolism, Arginine biosynthesis, Lysine biosynthesis, and Lysine degradation. The results can provide a theoretical basis for further clarifying the metabolic regulation mechanism and lay the foundation for optimizing the cultivation process of M. sextelata.

13.
Plants (Basel) ; 10(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498148

RESUMEN

Reductions in crop yields brought about by abiotic stress are expected to increase as climate change, and other factors, generate harsher environmental conditions in regions traditionally used for cultivation. Although breeding and genetically modified and edited organisms have generated many varieties with greater abiotic stress tolerance, their practical use depends on lengthy processes, such as biological cycles and legal aspects. On the other hand, a non-genetic approach to improve crop yield in stress conditions involves the exogenous application of natural compounds, including plant metabolites. In this review, we examine the recent literature related to the application of different natural primary (proline, l-tryptophan, glutathione, and citric acid) and secondary (polyols, ascorbic acid, lipoic acid, glycine betaine, α-tocopherol, and melatonin) plant metabolites in improving tolerance to abiotic stress. We focus on drought, saline, heavy metal, and temperature as environmental parameters that are forecast to become more extreme or frequent as the climate continues to alter. The benefits of such applications are often evaluated by measuring their effects on metabolic, biochemical, and morphological parameters in a variety of crop plants, which usually result in improved yields when applied in greenhouse conditions or in the field. As this strategy has proven to be an effective way to raise plant tolerance to abiotic stress, we also discuss the prospect of its widespread implementation in the short term.

14.
Molecules ; 27(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35011454

RESUMEN

Magnolia flower buds are a source of herbal medicines with various active compounds. In this study, differences in the distribution and abundance of major essential oils, phenolic acids, and primary metabolites between white flower buds of Magnolia heptapeta and violet flower buds of Magnolia denudata var. purpurascens were characterised. A multivariate analysis revealed clear separation between the white and violet flower buds with respect to primary and secondary metabolites closely related to metabolic systems. White flower buds contained large amounts of monoterpene hydrocarbons (MH), phenolic acids, aromatic amino acids, and monosaccharides, related to the production of isoprenes, as MH precursors, and the activity of MH synthase. However, concentrations of ß-myrcene, a major MH compound, were higher in violet flower buds than in white flower buds, possibly due to higher threonine levels and low acidic conditions induced by comparatively low levels of some organic acids. Moreover, levels of stress-related metabolites, such as oxygenated monoterpenes, proline, and glutamic acid, were higher in violet flower buds than in white flower buds. Our results support the feasibility of metabolic profiling for the identification of phytochemical differences and improve our understanding of the correlated biological pathways for primary and secondary metabolites.


Asunto(s)
Flores/química , Hidroxibenzoatos/análisis , Magnolia/química , Aceites Volátiles/análisis , Biología Computacional/métodos , Flores/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Hidroxibenzoatos/química , Magnolia/metabolismo , Redes y Vías Metabólicas , Metaboloma , Metabolómica/métodos , Peso Molecular , Aceites Volátiles/química , Extractos Vegetales/análisis , Extractos Vegetales/química , Plantas Medicinales/química , Plantas Medicinales/metabolismo
15.
J Agric Food Chem ; 68(47): 13711-13719, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33190495

RESUMEN

We profiled and quantified primary and secondary metabolites in the leaves and roots of xBrassicoraphanus (Baemuchae), Brassica campestris ssp. pekinensis (Chinese cabbage), and Raphanus sativus (radish). We obtained 72 metabolites from leaves and 68 metabolites from both leaves and roots of xBrassicoraphanus, Chinese cabbage, and radish. The metabolic profiles in this study revealed intermediate-level production of most metabolites from different parts of Baemuchae compared with that from different parts of Chinese cabbage and radishes. This was supported by the results of principal component analyses for the detected metabolites, which indicated that the Baemuchae group was located between the Chinese cabbage and radish groups. In particular, several amino acids (phenylalanine, tryptophan, and methionine) played the main role in phenylpropanoid and glucosinolate biosynthesis and were positively correlated with phenolic compounds, indolic glucosinolates, and aliphatic glucosinolates, respectively, in different parts. Furthermore, analysis of different species revealed the presence of 10 different glucosinolates, 10 phenolics, and 7 carotenoids, and their levels varied in the roots and leaves of the studied species. Among the leaves of the three species, Chinese cabbage had the highest total glucosinolate level, which was 3.14 times higher than the lowest level observed in radish. Baemuchae had the highest total phenolic compound level, which was 2.87 times higher than the lowest level found in Chinese cabbage, and radish had the highest carotenoid level, which was 12.41 times higher than the lowest one observed in Chinese cabbage. In the roots of Baemuchae, Chinese cabbage, and radish, glucosinolate levels did not vary significantly. Chinese cabbage contained the highest total phenolic compound level, which was 2.38 times higher than the lowest level found in radish, and the highest total carotenoid level, which was 2.49 times higher than the lowest level observed in Baemuchae. This metabolomic study provided chemical composition information that can be applied to future breeding strategies and comprehensively described the relationship among metabolites detected in the three plant species.


Asunto(s)
Brassica , Raphanus , China , Glucosinolatos , Fitomejoramiento
16.
J Exp Bot ; 71(4): 1249-1264, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31750924

RESUMEN

Fruit is important for human health, and applying deficit irrigation in fruit production is a strategy to regulate fruit quality and support environmental sustainability. Responses of different fruit quality variables to deficit irrigation have been widely documented, and much progress has been made in understanding the mechanisms of these responses. We review the effects of water shortage on fruit water accumulation considering water transport from the parent plant into the fruit determined by hydraulic properties of the pathway (including xylem water transport and transmembrane water transport regulated by aquaporins) and the driving force for water movement. We discuss water relations and solute metabolism that affect the main fruit quality variables (e.g. size, flavour, nutrition, and firmness) at the cellular level under water shortage. We also summarize the most recent advances in the understanding of responses of the main fruit quality variables to water shortage, considering the effects of variety, the severity of water deficit imposed, and the developmental stage of the fruit. We finally identify knowledge gaps and suggest avenues for future research. This review provides new insights into the stress physiology of fleshy fruit, which will be beneficial for the sustainable production of high-quality fruit under deficit irrigation.


Asunto(s)
Solanum lycopersicum , Frutas , Agua , Inseguridad Hídrica , Xilema
17.
Foods ; 8(11)2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31752320

RESUMEN

This study aimed to comprehensively examine the interface between primary and secondary metabolites in oval- and rectangular-shaped Chinese cabbage (Brassica rapa ssp. pekinensis) using gas chromatography coupled with time-of-flight mass spectrometry (GC-TOFMS) and high-performance liquid chromatography (HPLC). In addition to differences in shape, there was significant morphological variation between the two cultivars. The rectangular variety had greater height and deeper green color, whereas the oval variety had more leaves and greater width. A total of 42 primary metabolites identified by GC-TOFMS were subjected to partial least-squares discriminant, which indicated significant differences in the primary and secondary metabolisms of the two cultivars. Furthermore, total glucosinolate and phenolic contents were higher in the oval cultivar, whereas the rectangular cultivar contained a higher level of total carotenoids. This metabolome study comprehensively describes the relationship between primary and secondary metabolites in the oval and rectangular cultivars of Chinese cabbage and provides information useful for developing strategies to enhance the biosynthesis of glucosinolates, phenolics, and carotenoids in Chinese cabbage. Additionally, this work highlights that HPLC and GC-TOFMS-based metabolite profiling is suitable techniques to determine metabolic differences in Chinese cabbage.

18.
Biomolecules ; 9(9)2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31466413

RESUMEN

The commercial use of Panax ginseng berries is increasing as P. ginseng berries are known to contain large amounts of ginsenosides, and many pharmacological activities have been reported for the various ginsenosides. For the proper use of P.ginseng berries, it is necessary to study efficient and accurate quality control and the profiling of the overall composition of each cultivar. Ginseng berry samples from seven cultivars (Eumseung, Chung-buk Province, Republic of Korea) were analyzed using ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-QTOF/MS) for profiling of the ginsenosides, and high-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy for profiling of the primary metabolites. Comparing twenty-six ginsenoside profiles between the variant representatives and between the violet-stem variant, Kumpoong and Sunwon were classified. In the case of primary metabolites, the cultivars Kumpoong and Gopoong were classified. As a result of correlation analyses of the primary and secondary metabolites, in the Gopoong cultivar, the metabolism was found to lean toward energy metabolism rather than ginsenoside synthesis, and accumulation of osmolytes was low. The Gopoong cultivar had higher levels of most of the amino acids, such as arginine, phenylalanine, isoleucine, threonine, and valine, and it contained the highest level of choline and the lowest level of myo-inositol. Except for these, there were no significant differences of primary metabolites. In the Kumpoong cultivar, the protopanaxatriol (PPT)-type ginsenosides, ginsenoside Re and ginsenoside Rg2, were much lower than in the other cultivars, while the other PPT-type ginsenosides were inversely found in much higher amounts than in other cultivars. The Sunwon cultivar showed that variations of PPT-type ginsenosides were significantly different between samples. However, the median values of PPT-type ginsenosides of Sunwon showed similar levels to those of Kumpoong. The difference in primary metabolites used for metabolism for survival was found to be small in our results. Our data demonstrated the characteristics of each cultivar using profiling data of the primary and secondary metabolites, especially for Gopoong, Kumpoong, and Sunwon. These profiling data provided important information for further research and commercial use.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Frutas/química , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Panax/química , Ginsenósidos/análisis
19.
Int J Mol Sci ; 20(4)2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30813370

RESUMEN

The importance of magnesium (Mg) for plant growth is well-documented. Silicon (Si)-mediated alleviation of mineral deficiencies has been also reported in a number of plant species; however, there is no report on the relevance of Si nutrition in plants grown in Mg-deficient condition. Therefore, in the present work, an attempt was undertaken to study the role of Si nutrition in maize plants exposed to Mg deficiency. Plants were grown either under low (0.02 mM) or normal (0.5 mM) levels of Mg, with or without Si supplement. We have shown that Mg-deficient plants treated with Si maintained their growth and increased significantly the levels of chlorophyll and soluble sugars compared to those plants which did not receive Si. In addition, the concentrations of hexose-P, and glycolytic intermediate metabolites-mainly organic acids (isocitric and glutamic acids)-were increased in response to Si nutrition, which was associated with an increase in the levels of stress amino acids such as gamma-aminobutyric-acid (GABA), serine and glycine, as well as polyamines putrescine, which overall contributed to Mg stress tolerance. In addition, Si enhanced the levels of phytohormones cytokinin iso-pentenyladenine (IP), iso-pentenyladenine riboside (IPR), jasmonic acid (JA) and its derivate l-isoleucine (JA-ILE). The increase in cytokinin maintained the growth of Mg-deficient plants, while JA and JA-IEA were induced in response to carbohydrates accumulation. Altogether, our study reveals the vital role of Si under Mg deficiency by regulating plant primary metabolite and hormonal changes.


Asunto(s)
Magnesio/farmacología , Silicio/farmacología , Zea mays/crecimiento & desarrollo , Aminoácidos/metabolismo , Biomasa , Vías Biosintéticas/efectos de los fármacos , Clorofila/metabolismo , Ciclopentanos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metaboloma/efectos de los fármacos , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Transcripción Genética/efectos de los fármacos , Zea mays/efectos de los fármacos , Zea mays/genética , Zea mays/metabolismo
20.
Phytomedicine ; 58: 152826, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30836217

RESUMEN

BACKGROUND: The florets of Carthamus tinctorius L. (safflower) serve as the source of a reputable herbal medicine targeting gynecological diseases. Conventional investigations regarding the quality control of safflower, however, mainly focused on the secondary metabolites with primary metabolites ignored. PURPOSE: To holistically evaluate the quality difference of safflower samples collected from five different producing regions by multiple chemical and biological approaches with both the primary and secondary metabolites considered. METHODS: A precursor ions list-triggered data-dependent MS2 approach was established by ultra-high performance liquid chromatography/Q-Orbitrap mass spectrometry (UHPLC/Q-Orbitrap MS) to comprehensively identify the secondary metabolites from safflower. Primary metabolites were identified by various 1D and 2D nuclear magnetic resonance (NMR) experiments. Similarity evaluation and quantitative assays of all the characterized primary metabolites and a quinochalcone C-glycoside (QCG) marker, hydroxysafflor yellow A (HSYA), were performed by quantitative 1H NMR (qNMR) using an external standard method. Multiple in vitro models with respect to the antioxidant, anti-platelet aggregation, and antioxidant stress injury effects, were assayed to determine the efficacy differences. RESULTS: Totally thirteen primary metabolites (including one nucleoside, two sugars, five organic alkali/acids, and five amino acids) and 135 secondary metabolites (97 QCGs and 38 flavonoids) could be identified or tentatively characterized from safflower. Good chemical consistency was observed between the commercial safflower samples and a standard safflower sample, with similarity varying in the range of 0.95‒0.99. The results from qNMR-oriented quantitative experiments (thirteen primary metabolites and HSYA) and biological assays indicated the quality of safflower samples from Xinjiang (XJ-2 and XJ-4), Hunan (HuN-1 and HuN-2), and Sichuan (SC), was comparable to the standard safflower sample. CONCLUSION: The integration of multiple chemical (using two analytical platforms, UHPLC/Q-Orbitrap MS and NMR) and biological (four in vitro models) approaches by determining both the primary and secondary metabolites demonstrated a powerful strategy that could facilitate the holistic quality evaluation of traditional Chinese medicine.


Asunto(s)
Carthamus tinctorius/química , Medicamentos Herbarios Chinos/química , Flavonoides/análisis , Glicósidos/análisis , Medicina Tradicional China , Antioxidantes/metabolismo , Carthamus tinctorius/metabolismo , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Plantas Medicinales , Agregación Plaquetaria/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA