Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999971

RESUMEN

Major burdens for patients suffering from stroke are cognitive co-morbidities and epileptogenesis. Neural network disinhibition and deficient inhibitive pulses for fast network activities may result from impaired presynaptic release of the inhibitory neurotransmitter GABA. To test this hypothesis, a cortical photothrombotic stroke was induced in Sprague Dawley rats, and inhibitory currents were recorded seven days later in the peri-infarct blood-brain barrier disrupted (BBBd) hippocampus via patch-clamp electrophysiology in CA1 pyramidal cells (PC). Miniature inhibitory postsynaptic current (mIPSC) frequency was reduced to about half, and mIPSCs decayed faster in the BBBd hippocampus. Furthermore, the paired-pulse ratio of evoked GABA release was increased at 100 Hz, and train stimulations with 100 Hz revealed that the readily releasable pool (RRP), usually assumed to correspond to the number of tightly docked presynaptic vesicles, is reduced by about half in the BBBd hippocampus. These pathophysiologic changes are likely to contribute significantly to disturbed fast oscillatory activity, like cognition-associated gamma oscillations or sharp wave ripples and epileptogenesis in the BBBd hippocampus.


Asunto(s)
Barrera Hematoencefálica , Hipocampo , Potenciales Postsinápticos Inhibidores , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico , Animales , Barrera Hematoencefálica/metabolismo , Ratas , Ácido gamma-Aminobutírico/metabolismo , Hipocampo/metabolismo , Masculino , Células Piramidales/metabolismo , Vesículas Sinápticas/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología , Transmisión Sináptica
2.
Neuron ; 110(20): 3302-3317.e7, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36070750

RESUMEN

Homeostatic plasticity (HP) encompasses a suite of compensatory physiological processes that counteract neuronal perturbations, enabling brain resilience. Currently, we lack a complete description of the homeostatic processes that operate within the mammalian brain. Here, we demonstrate that acute, partial AMPAR-specific antagonism induces potentiation of presynaptic neurotransmitter release in adult hippocampus, a form of compensatory plasticity that is consistent with the expression of presynaptic homeostatic plasticity (PHP) documented at peripheral synapses. We show that this compensatory plasticity can be induced within minutes, requires postsynaptic NMDARs, and is expressed via correlated increases in dendritic spine volume, active zone area, and docked vesicle number. Further, simultaneous postsynaptic genetic reduction of GluA1, GluA2, and GluA3 in triple heterozygous knockouts induces potentiation of presynaptic release. Finally, induction of compensatory plasticity at excitatory synapses induces a parallel, NMDAR-dependent potentiation of inhibitory transmission, a cross-modal effect consistent with the anti-epileptic activity of AMPAR-specific antagonists used in humans.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Sinapsis , Humanos , Animales , Sinapsis/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/fisiología , Homeostasis/fisiología , Neurotransmisores/metabolismo , Plasticidad Neuronal/fisiología , Mamíferos/metabolismo
3.
Eur J Neurosci ; 55(2): 377-387, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34963191

RESUMEN

Animals can cope with isolated stressful situations without enduring long-term consequences. However, when exposure to stressors becomes recurrent, behavioural symptoms of anxiety and depression can emerge. Yet, the neuronal mechanisms governing responsivity to isolated stressor remain elusive. Here, we investigate synaptic adaptations following mild stress in the lateral habenula (LHb), a structure engaged in aversion encoding and dysfunctional in depression. We describe that neuronal depolarization in the LHb drives long-term depression of inhibitory, but not excitatory, synaptic transmission (GABA LTD). This plasticity requires nitric oxide and presynaptic GABAB receptors, leading to a decrease in probability of GABA release. Mild stressors such as brief social isolation, or exposure to novel environment in the company of littermates, do not alter GABA LTD. In contrast, GABA LTD is absent after mice experience a novel environment in social isolation. Altogether, our results suggest that LHb GABAergic plasticity is sensitive to stress accumulation, which could represent a threshold mechanism for long-term alterations of LHb function.


Asunto(s)
Habénula , Animales , Habénula/fisiología , Ratones , Plasticidad Neuronal/fisiología , Receptores de GABA-B/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico
4.
Psychopharmacology (Berl) ; 237(11): 3303-3314, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32705289

RESUMEN

RATIONALE: Ethanol can enhance GABA release in various brain regions via presynaptic mechanisms. However, the presynaptic action of ethanol on inhibitory GABA release is still not well understood. OBJECTIVES: Since calcium is required for neurotransmitter release from presynaptic terminals, the purpose of this study was to investigate the role of both internal and external calcium signaling in ethanol-induced enhancement of GABA release within the central amygdala nucleus (CeA) in acute brain slice preparations. METHODS: Whole-cell patch clamp electrophysiology was used to record miniature GABAA receptor-mediated inhibitory postsynaptic currents (mIPSCs) from CeA neurons. Ethanol-enhanced mIPSCs were recorded in the presence of antagonists that regulate internal and external calcium-mediated processes. RESULTS: Bath-applied ethanol dose-dependently increased the mean frequency of mIPSCs without altering mIPSC amplitude. Ethanol-induced increases in mIPSC frequency were antagonized by dantrolene, 2-APB, and the endoplasmic reticulum calcium pump (SERCA) antagonists thapsigargin and cyclopiazonic acid (CPA). Blocking calcium release from mitochondria or via exocytosis with ruthenium red also attenuated mIPSCs while frequency was not altered in the presence of a non-selective calcium channel blocker cadmium. The L-type calcium blocker nifedipine, but not its analogue nimodipine, blocked ethanol-induced enhancement in CeA neurons. CONCLUSIONS: These results demonstrate ethanol-induced presynaptic release of GABA is mediated by internal calcium stores and by disrupting neurotransmitter exocytosis within the CeA, a critical brain area involved in drugs of abuse and alcohol addiction.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Núcleo Amigdalino Central/metabolismo , Etanol/administración & dosificación , Terminales Presinápticos/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/fisiología , Núcleo Amigdalino Central/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Terminales Presinápticos/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología
5.
Neuron ; 107(1): 95-111.e6, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32380032

RESUMEN

Progressive synapse loss is an inevitable and insidious part of age-related neurodegenerative disease. Typically, synapse loss precedes symptoms of cognitive and motor decline. This suggests the existence of compensatory mechanisms that can temporarily counteract the effects of ongoing neurodegeneration. Here, we demonstrate that presynaptic homeostatic plasticity (PHP) is induced at degenerating neuromuscular junctions, mediated by an evolutionarily conserved activity of presynaptic ENaC channels in both Drosophila and mouse. To assess the consequence of eliminating PHP in a mouse model of ALS-like degeneration, we generated a motoneuron-specific deletion of Scnn1a, encoding the ENaC channel alpha subunit. We show that Scnn1a is essential for PHP without adversely affecting baseline neural function or lifespan. However, Scnn1a knockout in a degeneration-causing mutant background accelerated motoneuron loss and disease progression to twice the rate observed in littermate controls with intact PHP. We propose a model of neuroprotective homeostatic plasticity, extending organismal lifespan and health span.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Homeostasis/fisiología , Plasticidad Neuronal/fisiología , Neuroprotección/fisiología , Terminales Presinápticos/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Drosophila melanogaster , Ratones , Ratones Noqueados , Unión Neuromuscular/metabolismo
6.
J Neurosci ; 39(46): 9065-9082, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31578233

RESUMEN

Presynaptic α-neurexins are highly expressed and more frequently linked to neuropsychiatric and neurodevelopmental disorders than ß-neurexins. However, how extracellular sequences specific to α-neurexins enable synaptic transmission is poorly understood. We identified a mutation in an extracellular region of neurexin-3α (A687T), located in a region conserved among α-neurexins and throughout vertebrate evolution, in a patient diagnosed with profound intellectual disability and epilepsy. We systematically interrogated this mutation using a knockdown-replacement approach, and discovered that the A687T mutation enhanced presynaptic morphology and increased two critical presynaptic parameters: (1) presynaptic release probability, and (2) the size of the readily releasable pool exclusively at excitatory synapses in mixed sex primary mouse hippocampal cultures. Introduction of the mutation in vivo and subsequent analysis in ex vivo brain slices made from male and female mice revealed a significant increase in excitatory presynaptic neurotransmission that occluded presynaptic but not postsynaptic LTP. Mechanistically, neurexin-3αA687T enhanced binding to LRRTM2 without altering binding to postsynaptic neuroligin-1. Thus, neurexin-3αA687T unexpectedly produced the first neurexin presynaptic gain-of-function phenotype and revealed unanticipated novel insights into how α-neurexin extracellular sequences govern both transsynaptic adhesion and presynaptic neurotransmitter release.SIGNIFICANCE STATEMENT Despite decades of scientific scrutiny, how precise α-neurexin extracellular sequences control synapse function remains enigmatic. One largely unpursued avenue to identify the role of precise extracellular sequences is the interrogation of naturally occurring missense mutations. Here, we identified a neurexin-3α missense mutation in a compound heterozygous patient diagnosed with profound intellectual disability and epilepsy and systematically interrogated this mutation. Using in vitro and in vivo molecular replacement, electrophysiology, electron microscopy, and structure-function analyses, we reveal a novel role for neurexin-3α, unanticipated based on α-neurexin knock-out models, in controlling presynaptic morphology and neurotransmitter release at excitatory synapses. Our findings represent the first neurexin gain-of-function phenotype and provide new fundamentally important insight into the synaptic biology of α-neurexins.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Transmisión Sináptica/genética , Vesículas Sinápticas/genética , Animales , Epilepsia/complicaciones , Epilepsia/genética , Potenciales Postsinápticos Excitadores , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Hipocampo/fisiología , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Masculino , Ratones Endogámicos C57BL , Mutación Missense , Cultivo Primario de Células , Transporte de Proteínas/genética
7.
Neuron ; 100(5): 1163-1179.e4, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30344041

RESUMEN

We define a homeostatic function for innate immune signaling within neurons. A genetic analysis of the innate immune signaling genes IMD, IKKß, Tak1, and Relish demonstrates that each is essential for presynaptic homeostatic plasticity (PHP). Subsequent analyses define how the rapid induction of PHP (occurring in seconds) can be coordinated with the life-long maintenance of PHP, a time course that is conserved from invertebrates to mammals. We define a novel bifurcation of presynaptic innate immune signaling. Tak1 (Map3K) acts locally and is selective for rapid PHP induction. IMD, IKKß, and Relish are essential for long-term PHP maintenance. We then define how Tak1 controls vesicle release. Tak1 stabilizes the docked vesicle state, which is essential for the homeostatic expansion of the readily releasable vesicle pool. This represents a mechanism for the control of vesicle release, and an interface of innate immune signaling with the vesicle fusion apparatus and homeostatic plasticity.


Asunto(s)
Homeostasis , Inmunidad Innata , Plasticidad Neuronal/inmunología , Neuronas/inmunología , Terminales Presinápticos/inmunología , Vesículas Sinápticas/inmunología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/inmunología , Drosophila melanogaster , Femenino , Quinasa I-kappa B/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Masculino , Transducción de Señal , Factores de Transcripción/inmunología
8.
Proc Natl Acad Sci U S A ; 115(28): 7434-7439, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29946034

RESUMEN

Neuronal communication relies on action potential discharge, with the frequency and the temporal precision of action potentials encoding information. Hippocampal mossy fibers have long been recognized as conditional detonators owing to prominent short-term facilitation of glutamate release displayed during granule cell burst firing. However, the spiking patterns required to trigger action potential firing in CA3 pyramidal neurons remain poorly understood. Here, we show that glutamate release from mossy fiber terminals triggers action potential firing of the target CA3 pyramidal neurons independently of the average granule cell burst frequency, a phenomenon we term action potential counting. We find that action potential counting in mossy fibers gates glutamate release over a broad physiological range of frequencies and action potential numbers. Using rapid Ca2+ imaging we also show that the magnitude of evoked Ca2+ influx stays constant during action potential trains and that accumulated residual Ca2+ is gradually extruded on a time scale of several hundred milliseconds. Using experimentally constrained 3D model of presynaptic Ca2+ influx, buffering, and diffusion, and a Monte Carlo model of Ca2+-activated vesicle fusion, we argue that action potential counting at mossy fiber boutons can be explained by a unique interplay between Ca2+ dynamics and buffering at release sites. This is largely determined by the differential contribution of major endogenous Ca2+ buffers calbindin-D28K and calmodulin and by the loose coupling between presynaptic voltage-gated Ca2+ channels and release sensors and the relatively slow Ca2+ extrusion rate. Taken together, our results identify a previously unexplored information-coding mechanism in the brain.


Asunto(s)
Potenciales de Acción/fisiología , Región CA3 Hipocampal/fisiología , Señalización del Calcio/fisiología , Modelos Neurológicos , Fibras Musgosas del Hipocampo/fisiología , Células Piramidales/fisiología , Animales , Región CA3 Hipocampal/citología , Calcio/metabolismo , Masculino , Terminales Presinápticos/fisiología , Células Piramidales/citología , Ratas
9.
Neurophotonics ; 5(2): 025003, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29531964

RESUMEN

Region and cell-type restricted expression of light-activated ion channels is the indispensable tool to study properties of synapses in specific circuits and to monitor synaptic alterations by various stimuli including neuromodulators and behaviors, both ex vivo and in vivo. These analyses require the light-activated proteins or viral vectors for their delivery that do not interfere with the phenomenon under study. Here, we report a case of such interference in which the high-level expression of channelrhodopsin-2 introduced in the somatostatin-positive GABAergic neurons of the dorsomedial prefrontal cortex by an adeno-associated virus vector weakens the presynaptic GABAb receptor-mediated suppression of GABA release.

10.
Neuron ; 97(3): 611-625.e5, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29420933

RESUMEN

Sleep, waking, locomotion, and attention are associated with cell-type-specific changes in neocortical activity. The effect of brain state on circuit output requires understanding of how neuromodulators influence specific neuronal classes and their synapses, with normal patterns of neuromodulator release from endogenous sources. We investigated the state-dependent modulation of a ubiquitous feedforward inhibitory motif in mouse sensory cortex, local pyramidal (Pyr) inputs onto somatostatin (SST)-expressing interneurons. Paired whole-cell recordings in acute brain slices and in vivo showed that Pyr-to-SST synapses are remarkably weak, with failure rates approaching 80%. Pharmacological screening revealed that cholinergic agonists uniquely enhance synaptic efficacy. Brief, optogenetically gated acetylcholine release dramatically enhanced Pyr-to-SST input, via nicotinic receptors and presynaptic PKA signaling. Importantly, endogenous acetylcholine release preferentially activated nicotinic, not muscarinic, receptors, thus differentiating drug effects from endogenous neurotransmission. Brain state- and synapse-specific unmasking of synapses may be a powerful way to functionally rewire cortical circuits dependent on behavioral demands.


Asunto(s)
Acetilcolina/fisiología , Potenciales Postsinápticos Excitadores , Interneuronas/fisiología , Neocórtex/fisiología , Inhibición Neural , Células Piramidales/fisiología , Receptores Nicotínicos/fisiología , Animales , Prosencéfalo Basal/fisiología , Carbacol/administración & dosificación , Agonistas Colinérgicos/administración & dosificación , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Interneuronas/metabolismo , Masculino , Ratones Endogámicos C57BL , Transducción de Señal , Somatostatina/metabolismo
11.
Cell Rep ; 19(6): 1117-1129, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28494862

RESUMEN

Excitation-inhibition imbalance in neural networks is widely linked to neurological and neuropsychiatric disorders. However, how genetic factors alter neuronal activity, leading to excitation-inhibition imbalance, remains unclear. Here, using the C. elegans locomotor circuit, we examine how altering neuronal activity for varying time periods affects synaptic release pattern and animal behavior. We show that while short-duration activation of excitatory cholinergic neurons elicits a reversible enhancement of presynaptic strength, persistent activation results to asynchronous and reduced cholinergic drive, inducing imbalance between endogenous excitation and inhibition. We find that the neuronal calcium sensor protein NCS-2 is required for asynchronous cholinergic release in an activity-dependent manner and dampens excitability of inhibitory neurons non-cell autonomously. The function of NCS-2 requires its Ca2+ binding and membrane association domains. These results reveal a synaptic mechanism implicating asynchronous release in regulation of excitation-inhibition balance.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Proteínas Sensoras del Calcio Neuronal/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Calcio/metabolismo , Neuronas Colinérgicas/fisiología , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/genética , Unión Proteica
12.
Elife ; 62017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28485711

RESUMEN

Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission.


Asunto(s)
Calcio/metabolismo , Plasticidad Neuronal , Neuronas/fisiología , Transmisión Sináptica , Animales , Línea Celular , Drosophila
13.
Mol Pain ; 122016.
Artículo en Inglés | MEDLINE | ID: mdl-27178245

RESUMEN

The extracellular signal-regulated kinase is an important protein kinase for cortical plasticity. Long-term potentiation in the anterior cingulate cortex is believed to play important roles in chronic pain, fear, and anxiety. Previous studies of extracellular signal-regulated kinase are mainly focused on postsynaptic form of long-term potentiation (post-long-term potentiation). Little is known about the relationship between extracellular signal-regulated kinase and presynaptic long-term potentiation (pre-long-term potentiation) in cortical synapses. In this study, we examined whether pre-long-term potentiation in the anterior cingulate cortex requires the activation of presynaptic extracellular signal-regulated kinase. We found that p42/p44 mitogen-activated protein kinase inhibitors, PD98059 and U0126, suppressed the induction of pre-long-term potentiation. By contrast, these inhibitors did not affect the maintenance of pre-long-term potentiation. Using pharmacological inhibitors, we found that pre-long-term potentiation recorded for 1 h did not require transcriptional or translational processes. Our results strongly indicate that the activation of presynaptic extracellular signal-regulated kinase is required for the induction of pre-long-term potentiation, and this involvement may explain the contribution of extracellular signal-regulated kinase to mood disorders.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Giro del Cíngulo/enzimología , Giro del Cíngulo/fisiología , Potenciación a Largo Plazo , Animales , Butadienos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Flavonoides/farmacología , Ácido Glutámico/metabolismo , Giro del Cíngulo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Nitrilos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Sinapsis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA