Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2407116, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148184

RESUMEN

Pressure-sensitive adhesives are widely utilized due to their instant and reversible adhesion to various dry substrates. Though offering intuitive and robust attachment of medical devices on skin, currently available clinical pressure-sensitive adhesives do not attach to internal organs, mainly due to the presence of interfacial water on the tissue surface that acts as a barrier to adhesion. In this work, a pressure-sensitive, repositionable bioadhesive (PSB) that adheres to internal organs by synergistically combining the characteristic viscoelastic properties of pressure-sensitive adhesives and the interfacial behavior of hydrogel bioadhesives, is introduced. Composed of a viscoelastic copolymer, the PSB absorbs interfacial water to enable instant adhesion on wet internal organs, such as the heart and lungs, and removal after use without causing any tissue damage. The PSB's capabilities in diverse on-demand surgical and analytical scenarios including tissue stabilization of soft organs and the integration of bioelectronic devices in rat and porcine models, are demonstrated.

2.
Polymers (Basel) ; 16(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125149

RESUMEN

This study emphasizes the influential role of rheology in decoding the viscoelastic properties of pressure-sensitive adhesives (PSAs) vital to predicting key application features such as shear, tack, and peel, depending on the flow characteristics of PSAs during bonding and debonding processes. By applying the principle of time-temperature superposition (TTS), we extend the scope of our frequency analysis, surpassing the technical constraints of the available apparatus. Our exploration aims to uncover the general correlations between PSAs' viscoelastic properties and their performance in end-use applications. Initially, the adhesive performance and viscoelastic properties of a UV-crosslinkable styrene-butadiene-styrene (SBS) model adhesive prior and subsequent to UV irradiation were examined. The subsequent crosslinking reaction increased cohesive strength and heat resistance, although tack and peel strength observed a substantial decline. We successfully demonstrated these effects by logging the viscoelastic properties, specifically the storage modulus G' at lower frequencies, which mirrors the shear strength at higher temperatures and the shift in the tan δ peak to represent each PSA's tack. These correlations were partially reflected in three commercial UV crosslinkable acrylic PSA products, although the effect of UV irradiation was less distinctive. This study also revealed the challenges in predicting tack and peel strength, which result from a complex interplay of bonding and debonding processes. Our findings reinforce the necessity for more sophisticated analysis techniques and models that can accurately predict the end-use performance of PSAs across different physical structures and chemical compositions. Further research is needed to develop these predictive models, which may reduce the need for labor-intensive testing under real-life conditions.

3.
Polymers (Basel) ; 16(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125203

RESUMEN

A new type of UV-curable pressure-sensitive adhesive containing Si atoms (Si-PSAs) was prepared by a solution-free UV-initiated telomerization process of n-butyl acrylate, acrylic acid, methyl methacrylate, and 4-acrylooxybenzophenone using triethylsilane (TES) as a telogen and an acylphosphine oxide (APO) as a radical photoinitiator. Selected commercial adhesion promoters were tested as additives in the formulation of adhesive compositions, i.e., (i) an organic copolymer with polar groups (carboxyl and hydroxyl); (ii) a hydroxymetal-organic compound; and (iii) a quaternary ammonium salt and (iv) a chlorinated polyolefin. No fillers, crosslinking agents, or photoinitiators were used in the adhesive compositions. NMR techniques confirmed the incorporation of silicon atoms into the polyacrylate structure. The influence of adhesion promoters on the kinetics of the UV-crosslinking process of Si-PSAs was investigated by a photo-DSC technique. The obtained Si-PSAs were characterized by adhesion (to steel, glass, PMMA, and PE), tack, and cohesion at 20 °C. Finally, the wetting angle of Si-PSAs with water was checked and their thermal stability was proved (TGA). Unexpectedly, the quaternary ammonium salt had the most favorable effect on improving the thermal stability of Si-PSAs (302 °C) and adhesion to glass and PMMA. In contrast, Si-PSAs containing the hydroxymetal-organic compound showed excellent adhesion to steel.

4.
ACS Appl Mater Interfaces ; 16(31): 41461-41474, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39049199

RESUMEN

The demand for underwater pressure sensitive adhesives (PSAs) is rapidly increasing in fields such as underwater engineering and biomedicine. However, the achievement of underwater adhesion of PSAs remains a challenge because of the hydration layer that hinders the interaction between the adhesive and the substrate. Herein, a new type of underwater PSA was synthesized by the copolymerization of hydrophobic unsaturated poly(1,2-butylene oxide) (UPBO) and hydrophilic itaconic acid monomers using solvent-free ultraviolet curing. The PSA has demonstrated substrate-independent underwater adhesion strengths ranging from 108 to 141 kPa on both hydrophilic (glass, wood, steel) and hydrophobic (PET, PMMA, PTFE) substrates. The underwater adhesion performance of PSA remains stable during 30 adhesion-detachment cycles and incubation in water for 20 days. Notably, PSA shows cytocompatibility, antimicrobial, and degradable properties and can be used for rapid hemostasis of skin wounds. Experimental characterizations confirm that the process of underwater adhesion is achieved by hydrophobic alkyl side chains of the PBO chain segments, which repel water at the adhesive-substrate interface. This study should provide both practical and facile design strategies for multifunctional underwater PSAs that can be used in a variety of applications.

5.
Curr Mol Med ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38847251

RESUMEN

Pregabalin and diclofenac diethylamine are anti-inflammatory molecules that are effective in relieving inflammation and pain associated with musculoskeletal disorders, arthritis, and post-traumatic pain, among others. Intravenous and oral delivery of these two molecules has their limitations. However, the transdermal route is believed to be an alternate viable option for the delivery of therapeutic molecules with desired physicochemical properties. To this end, it is vital to understand the physicochemical properties of these drugs, dosage, and strategies to enhance permeation, thereby surmounting the associated constraints and concurrently attaining a sustained release of these therapeutic molecules when administered in combination. The present work hypothesizes the enhanced permeation and sustained release of Pregabalin and diclofenac diethylamine across the skin, entrapped in the adhesive nano-organogel formulation, including permeation enhancers. The solubility studies of Pregabalin and diclofenac diethylamine in combination were performed in different permeation enhancers. Oleic acid was optimized as the best permeation enhancer based on in vitro studies. Pluronic organogel containing Pregabalin and diclofenac diethylamine with oleic acid was fabricated. Duro-Tak® (87-2196) was added to the organogel formulation as a pressure-sensitive adhesive to sustain the release profile of these two therapeutic molecules. The adhesive organogel was characterized for particle size, scanning electron microscopy, and contact angle measurement. The HPLC method developed for the quantification of the dual drug showed a retention time of 3.84 minutes and 9.69 minutes for pregabalin and diclofenac, respectively. The fabricated nanogel adhesive formulation showed the desired results with particle size and contact angle of 282 ± 57 nm and ≥120°, respectively. In vitro studies showed the percentage cumulative release of 24.90 ± 4.65% and 33.29 ± 4.81% for pregabalin and diclofenac, respectively. In order to accomplish transdermal permeation, the suggested hypothesis of fabricating PG and DEE nano-organogel in combination with permeation enhancers will be a viable drug delivery method. In comparison to a traditional gel formulation, oleic acid as a permeation enhancer increased the penetration of both PG and DEE from the organogel formulation. Notably, the studies showed that the use of pressure-sensitive adhesives enabled the sustained release of both PG and DEE.Therefore, the results anticipated the hypothesis that the transdermal delivery of adhesive PG and DEE-based nanogel across the human skin can be achieved to inhibit inflammation and pain.

6.
Materials (Basel) ; 17(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591580

RESUMEN

The article describes new silicone self-adhesive adhesives modified with the addition of talc. The obtained self-adhesive materials were characterized to determine their adhesive properties (adhesion, cohesion, and adhesion) and functional properties (pot life of the composition, shrinkage, and thermal properties of adhesives). Novel materials exhibited high thermal resistance above 225 °C while maintaining or slightly reducing other values (adhesion, cohesion, shrinkage, and tack). Selected composition: T 0.1 was used to prepare self-adhesives in industrial-scale production. Moreover, conducted test results revealed that the addition of talc delayed the thermal decomposition of the adhesive and provided reduced intensity of smoke emissions during combustion as well as the flammability of the adhesive layer.

7.
Acta Biomater ; 179: 130-148, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460932

RESUMEN

Poor skin adhesion and mechanical properties are common problems of pressure-sensitive adhesive (PSA) in transdermal drug delivery system (TDDS). Its poor water compatibility also causes the patch to fall off after sweating or soaking in the application site. To solve this problem, poly (2-Ethylhexyl acrylate-co-N-Vinyl-2-pyrrolidone-co-N-(2-Hydroxyethyl)acrylamide) (PENH), a cross-linked pyrrolidone polyacrylate PSA, was designed to improve the adhesion and water resistance of PSA through electrostatic force and hydrogen bonding system. The structure of PENH was characterized by 1H NMR, FTIR, DSC, and other methods. The mechanism was studied by FTIR, rheological test, and molecular simulation. The results showed that the PENH patch could adhere to human skin for more than 10 days without cold flow, and it could still adhere after sweating or water contact. In contrast, the commercial PSA Duro-Tak® 87-4098 and Duro-Tak® 87-2852 fell off completely on the 3rd and 6th day, respectively, and Duro-Tak® 87-2510 showed a significant dark ring on the second day. Mechanism studies have shown that the hydrogen bond formed by 2-ethylhexyl acrylate (2-EHA), N-vinyl-2-pyrrolidinone (NVP), and N-(2-Hydroxyethyl)acrylamide (HEAA) enhances cohesion, the interaction with skin improves skin adhesion, and the electrostatic interaction with water or drug molecules enhances the ability of water absorption and drug loading. Due to the synergistic effect of hydrogen bonds and electrostatic force, PENH can maintain high cohesion after drug loading or water absorption. PENH provides a choice for the development of water-compatible patches with long-lasting adhesion. STATEMENT OF SIGNIFICANCE: Based on the synergistic effect of hydrogen bonding and electrostatic force, a hydrogen-bonded, cross-linked pyrrolidone acrylate pressure-sensitive adhesive for transdermal drug delivery was designed and synthesized, which has high adhesion and cohesive strength and is non-irritating to the skin. The patch can be applied on the skin surface continuously for more than 10 days without the phenomenon of "dark ring", and the patch can remain adherent after the patient sweats or bathes. This provides a good strategy for choosing a matrix for patches that require prolonged administration.


Asunto(s)
Adhesivos , Administración Cutánea , Enlace de Hidrógeno , Pirrolidinonas , Electricidad Estática , Agua , Adhesivos/química , Adhesivos/farmacología , Agua/química , Humanos , Pirrolidinonas/química , Presión , Animales , Acrilatos/química , Sistemas de Liberación de Medicamentos , Piel/efectos de los fármacos , Piel/metabolismo , Reactivos de Enlaces Cruzados/química
8.
Int J Biol Macromol ; 263(Pt 1): 130153, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367778

RESUMEN

Vegetable oils-based pressure sensitive adhesives (PSAs) are green and sustainable but face unsatisfactory adhesion strengths and are prone to aging during storage and application due to the existence of residual double bonds and massive ester bonds. Nine common antioxidants (tea polyphenol palmitate (TPP), caffeic acid, ferulic acid, gallic acid, butylated hydroxytoluene, tertiary butylhydroquinone, butylated hydroxyanisole, propyl gallate, and tea polyphenols) were grafted into epoxidized soybean oils-PSA (ESO-PSA) system to enhance antiaging properties and adhesion strengths. Results showed ESO-PSAs grafted with caffeic acid, tertiary butylhydroquinone, butylated hydroxyanisole, propyl gallate, tea polyphenols, or TPP didn't occur failure with TPP having best performance. The optimal conditions were ESO reacted with 0.9 % TPP, 70 % rosin ester, and 7.0 % phosphoric acid at 50 °C for 5 min, under which peel strength and loop tack increased to 2.460 N/cm and 1.66 N, respectively, but peel strength residue reduced to 138.09 %, compared with control (0.407 N/cm, 0.43 N, and 1669.99 %). Differential scanning calorimetry and thermogravimetric results showed TPP grafting increased the glass transition temperature of ESO-PSA slightly but improved its thermal stability significantly. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance results showed TPP, phosphoric acid, and rosin ester all partially participated in the covalently crosslinking polymerization of ESO-PSAs and the rest existed in the network structures in the free form.


Asunto(s)
Hidroxianisol Butilado , Ácidos Cafeicos , Ácidos Fosfóricos , Aceite de Soja , Humanos , Masculino , Aceite de Soja/química , Hidroxianisol Butilado/análisis , Galato de Propilo , Polifenoles , Adhesivos/química , Antígeno Prostático Específico , Ésteres ,
9.
Chempluschem ; 89(6): e202400034, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38380972

RESUMEN

With the increasing use of pressure-sensitive adhesives (PSAs) in various industries, there is a need for greater sustainability, particularly in developing polymer materials from renewable resources, as well as the reuse and recycling of materials to reduce environmental impact, reduce waste, or extend their life. Here, we outlined the required properties of PSAs which are governed by the molecular parameters (molecular weights, dispersities, molecular weight between entanglement, molecular weight between cross-links and gel content) of polymer materials which subsequently define the physical properties (storage and loss moduli, glass transition temperature) that are required for good performance in peel, tack and shear tests. The sustainable approach discussed here is the development of degradable polymer materials featuring selectively degradable linkages in the backbone. This provides a viable alternative for the design of PSAs that could overcome the 'stickies' problem and make the recycling of glass and cardboard more efficient.

10.
ACS Appl Mater Interfaces ; 16(5): 6394-6402, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266384

RESUMEN

Pressure-sensitive adhesives (PSAs) are widely employed in consumer goods, health care, and commercial industry. Anisotropic adhesion of PSAs is often desirable to enable high force capacity coupled with facile release and has typically been realized through the introduction of complex surface and/or bulk microstructures while also maintaining high surface conformability. Although effective, microstructure fabrication can add cost and complexity to adhesive fabrication. Here, we explore aligned liquid crystalline elastomers (LCEs) as directional adhesives. Aligned LCEs exhibit direction-dependent stiffness, dissipation, and nonlinear deformation under load. By varying the cross-link content, we study how the bulk mechanical properties of LCEs correlate to their peel strength and peel anisotropy. We demonstrate up to a 9-fold difference in peel force measured when the LCE is peeled parallel vs perpendicular to the alignment axis. Opportunities to spatially localize adhesion are presented in a monolithic LCE patterned with different director orientations.

11.
Small ; 20(25): e2310839, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38225689

RESUMEN

Adhesive materials have played an essential role in the history of humanity. Natural adhesives composed of low-molecular-weight monomers have been overshadowed by modern petroleum-based glues. With the development of green economy, the demand for eco-friendly materials has increased. Herein, two natural biocompatible compounds, namely thioctic acid (TA) and malic acid (MA), are selected to prepare a high-performance pressure-sensitive adhesive poly[TA-MA]. This adhesive can be quantitatively obtained via a simple mixing and heating process. Poly[TA-MA] shows interesting and useful properties, including reversible flexibility, high elongation, and good self-healing, owing to its dynamic polymerization pattern and reversible cross-linking behavior. Poly[TA-MA] exhibits excellent adhesion performance under various extreme conditions, such as at low temperatures and in hot water. High values of shear strength (3.86 MPa), peel strength (7.90 N cm-1), loop tack (10.60 N cm-1), tensile strength (1.02 MPa), and shear resistance (1628 h) demonstrate the strong adhesive effect of poly[TA-MA]. Additionally, TA can be regenerated in the monomer forms from poly[TA-MA] with high recovery rate (>90%). Meanwhile, strong anti-bacterial behavior of poly[TA-MA] is recorded. This study not only reported a new pressure-sensitive adhesive but also fully displayed the feasibility of using natural small molecules to achieve robust surface adhesion.

12.
Int J Pharm ; 649: 123575, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37926177

RESUMEN

Hydrogen bonding, ionic interactions, and dipole-dipole interactions have been extensively studied to control drug release from patches. However, metal coordination bonding has not been fully explored for the control of transdermal drug release. In this study, metal coordination-based acrylic pressure-sensitive adhesives (PSAs) were designed and synthesized in order to systemically elucidate the effect of metal coordination on drug release from acrylic PSAs. Ketoprofen (KET) and donepezil (DNP) were selected as model drugs. Results showed that the burst release rate of KET was controlled by N-[tris(hydroxymethyl)methyl]acrylamide (NAT) and Fe3+, while the DNP release rate had no significant changes. It was found that the PSA-drug interaction, rather than the molecular mobility of PSA, played a dominant role in the controlled release process of KET. The hydrogen bond interaction between NAT and KET controlled the release process, while the coordination bond interaction between Fe3+ and KET further slowed down the release of KET. In conclusion, it was found that the controlled release of KET was achieved by the synergistic effect of coordination bonding and hydrogen bonding, which opens up a facile but powerful avenue for the design of brand-new controlled release systems and new opportunities for their application in transdermal drug delivery.


Asunto(s)
Adhesivos , Cetoprofeno , Ratas , Masculino , Humanos , Animales , Adhesivos/química , Absorción Cutánea , Preparaciones de Acción Retardada/química , Enlace de Hidrógeno , Liberación de Fármacos , Antígeno Prostático Específico , Ratas Wistar , Administración Cutánea
13.
ACS Appl Mater Interfaces ; 15(50): 58905-58916, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38062761

RESUMEN

A versatile and simplified synthesis scheme for intensively entangled acrylic pressure-sensitive adhesives (PSAs) was developed in this study by leveraging visible-light-driven controlled radical polymerization (photoiniferter/reversible addition-fragmentation chain-transfer polymerization) of acrylic copolymers under a controlled manner; the approach was differentiated by a single factor; molecular weight (Mw up to 2.8 MDa) with identical compositions. By manipulating Mw up to ultra-high ranges, PSAs with diversified viscoelastic properties were prepared and then assessed with a focus on realizing PSAs with a maximized degree of entanglement per chain through domination of high Mw contents, to help achieve excellent cohesiveness without a reinforcing cross-linking network. Moreover, fully linear solvent-soluble poly(acrylate)s were synthesized to facilitate reprocessing and reuse, highlighting the sustainability of the devised method and, consequently, its potential to be applied for effectively reducing industrial or daily waste.

14.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37958615

RESUMEN

This study investigated the impact of various enhancers on permeation through the skin and accumulation in the skin from acrylic pressure-sensitive adhesive-based drug-in-adhesives matrix-type transdermal patches. Eleven patches, each containing a 5% enhancer of permeation, encompassing compounds such as salicylic acid, menthol, urea, glycolic acid, allantoin, oleic acid, Tween 80, linolenic acid, camphor, N-dodecylcaprolactam, and glycerin, were developed. Ibuprofen (IBU) was the model active substance, a widely-used non-steroidal anti-inflammatory drug. The results were compared to patches without enhancers and commercial preparations. The study aimed to assess the effect of enhancers on IBU permeability. The adhesive properties of the patches were characterised, and active substance permeability was tested. The findings revealed that patches with 5% allantoin exhibited the highest IBU permeability, approximately 2.8 times greater than patches without enhancers after 24 h. These patches present a potential alternative to commercial preparations, highlighting the significant impact of enhancers on transdermal drug delivery efficiency.


Asunto(s)
Alantoína , Ibuprofeno , Ibuprofeno/farmacología , Alantoína/metabolismo , Administración Cutánea , Piel/metabolismo , Absorción Cutánea , Adhesivos/metabolismo
15.
Polymers (Basel) ; 15(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38006080

RESUMEN

Polyacrylates and polysiloxanes are polymers used in pressure-sensitive adhesive (PSA) patches. Liquid additives are co-solvents of the active substances or permeation enhancers, and their compatibility with the polymeric matrix and the effect on adhesive properties should be considered. The patches were prepared from commercial polyacrylates (three types of Duro-Tak®) and siloxanes (Bio-PSA® and Soft Skin Adhesive®). Propylene glycol, polyoxyethylene glycol, isopropyl myristate, triacetin, triethyl citrate and silicone oil were added (10% w/w). Formulations were evaluated microscopically and with a texture analyzer in terms of in vitro adhesiveness and hardness. Only silicone oil was compatible with the silicone matrices. The best compatibility of acrylic PSA was observed with triethyl citrate; one out of three Duro-Tak matrices was incompatible with every additive. In all compositions, the adhesiveness was impaired by the liquid additives. A significant drop in adhesiveness was noted after immersion of the patches in buffer and drying. The probe tack test was considered as the most useful for evaluation of the effect of the liquid additive on adhesiveness, but the results obtained with a spherical and cylindrical probe were contradictory. The structural changes caused by the additives were also demonstrated by a 90° peel test, considered as complementary to the tack test.

16.
ACS Appl Mater Interfaces ; 15(37): 44186-44193, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37676916

RESUMEN

Superabsorbers based on crosslinked sodium polyacrylate polymers cannot be easily recycled, resulting in 2 million tons of superabsorbers being landfilled or burned every year. A fast and efficient strategy to recycle superabsorbers would significantly alleviate environmental pollution and promote a sustainable use of these polymers. Herein, the rapid recycling of crosslinked sodium polyacrylate hydrogels based on their inherent UV degradation is demonstrated without the need for chemicals besides water. A quantitative conversion of crosslinked sodium polyacrylate into soluble sodium polyacrylate is achieved in minutes, almost 200 times faster than a previous approach based on de-esterification. The obtained soluble sodium polyacrylate can be used, for example, as a thickener for aqueous dyes or can be esterified with n-butanol or 2-ethylhexanol to serve as a pressure-sensitive adhesive. The UV photodegradation and esterification of superabsorbers is fast, scalable, safe, and economical and yields polymers with controllable molecular weight in the range of 100-400 kg/mol. It thus offers distinct advantages over the chemical de-crosslinking strategies presented previously.

17.
Polymers (Basel) ; 15(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37765696

RESUMEN

The adhesion of pressure-sensitive adhesives (PSAs) is a complex phenomenon that can be understood through the characterization of different properties, including viscoelastic, mechanical, and fracture properties. The aim of the present paper is to determine the viscoelastic behaviour of an acrylic PSA and place it in the viscoelastic window, as well as to determine the tensile strength of the material. Additionally, different numbers of stacked adhesive layers and two crosshead speeds were applied to characterize the tensile strength of the adhesive in the different conditions. Adding a new interface between layers showed a negative influence in the tensile strength, while a higher crosshead speed implied a considerable increase in the same value. Finally, double cantilever beam (DCB) fracture tests were performed, and the J-integral approach was used to evaluate the fracture energy throughout the tests. The substrate roughness, the number of stacked layers, and the thickness of the PSA proved to decrease the performance of the PSA in fracture tests. While tensile bulk tests in viscoelastic materials are not easily found in the literature, as well as DCB tests, for fracture characterization, the obtained results allowed for the characterization of those properties in an acrylic PSA.

18.
ACS Appl Mater Interfaces ; 15(35): 41870-41879, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37625250

RESUMEN

Hot-melt pressure-sensitive adhesives (HMPSAs) are used in applications from office supplies to biomedical adhesives. The major component in HMPSA formulations is thermoplastic elastomers, such as styrene-based block copolymers, that provide both mechanical integrity and moldability. Since neat polymer networks are unable to establish an adhesive bond, large quantities of plasticizers and tackifiers are added. These additives enhance the adhesive performance but complicate the phase behavior and property stability of the pressure-sensitive adhesive. Herein, we introduce an alternative additive-free approach to HMPSA design based on self-assembly of bottlebrush graft-copolymers, where side chains behave as softness, strength, and viscoelasticity mediators. These systems maintain moldability of conventional thermoplastic elastomers, while architecturally disentangled bottlebrush network strands empower several benefits such as extreme softness for substrate wetting, low melt viscosity for molding and 3D-printing, and a broad frequency range of viscoelastic responses for adhesion regulation within almost four orders of magnitude. The brush graft-copolymers implement five independently controlled architectural parameters to regulate the Rouse time, work of adhesion, and debonding mechanisms.

19.
Polymers (Basel) ; 15(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37376355

RESUMEN

Vegetable-oils-based pressure-sensitive adhesives (PSAs) are being developed as a substitute for petrochemical-based PSAs for application in daily life. However, vegetable-oils-based PSAs face the problems of unsatisfactory binding strengths and easy aging. In this work, the grafting of antioxidants (tea polyphenol palmitates, caffeic acid, ferulic acid, gallic acid, butylated hydroxytoluene, tertiary butylhydroquinone, butylated hydroxyanisole, propyl gallate (PG), tea polyphenols) was introduced into an epoxidized soybean oils (ESO)/di-hydroxylated soybean oils (DSO)-based PSA system to improve the binding strengths and aging-resistant properties. PG was screened out as the most suitable antioxidant in the ESO/DSO-based PSA system. Under optimal conditions (ESO/DSO mass ratio of 9/3, 0.8% PG, 55% rosin ester (RE), 8% phosphoric acid (PA), 50 °C, and 5 min), the peel adhesion, tack, and shear adhesion of the PG-grafted ESO/DSO-based PSA increased to 1.718 N/cm, 4.62 N, and >99 h, respectively, in comparison with the control (0.879 N/cm, 3.59 N, and 13.88 h), while peel adhesion residue reduced to 12.16% in comparison with the control (484.07%). The thermal stability of the ESO/DSO-based PSA was enhanced after PG grafting. PG, RE, PA, and DSO were partially crosslinked in the PSA system, with the rest being free in the network structures. Thus, antioxidant grafting is a feasible method for improving the binding strengths and aging-resistant properties of vegetable-oils-based PSAs.

20.
Dent Mater ; 39(8): 682, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37357047

RESUMEN

OBJECTIVES: Undoubtedly, adhesion is one of the broadest terms in science and technology used to describe several bulk and interface related phenomena. While the thermodynamic work of adhesion is determined by contacting surfaces and their intrinsic surface energetics, it is important to understand how adhesive properties of materials are additionally governed and amplified by their dissipative rate processes in the bulk or near the interface as they go through large strains and deformation. METHODS: Systematic review of the literature showed that the involved interfacial mechanisms were grouped into several categories ranging from micromechanical interlocking to molecular interdiffusion of surface constituents, a characteristic of most polymeric systems. RESULTS: This paper addressed the static and dynamic contributions to the adhesion energy and discussed its relation to microstructure and surface architecture in pressure sensitive and fracture in structural adhesives. While the focus was on industrial view of adhesion, parallels in adhesive dentistry were given where connections between adhesion, boundary geometry/compliance, shrinkage stress, material model, joint design, retention, and interfacial curing were made. CONCLUSIONS: Adhesion science and mechanics are complex multi-disciplinary fields involving surfaces, substrates, and loading system involving a broad range of mechanisms applicable to dentistry.


Asunto(s)
Cementos Dentales , Propiedades de Superficie , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA