Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Agric Food Chem ; 72(36): 19618-19628, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39193844

RESUMEN

Sophora flavescens, a traditional Chinese herb, produces a wide range of secondary metabolites with a broad spectrum of biological activities. In this study, we isolated six isopentenyl flavonoids (1-6) from the roots of S. flavescens and evaluated their activities against phytopathogenic fungi. In vitro activities showed that kurarinone and sophoraflavanone G displayed broad spectrum and superior activities, among which sophoraflavanone G displayed excellent activity against tested fungi, with EC50 values ranging from 4.76 to 13.94 µg/mL. Notably, kurarinone was easily purified and showed potential activity against Rhizoctonia solani, Botrytis cinerea, and Fusarium graminearum with EC50 values of 16.12, 16.55, and 16.99 µg/mL, respectively. Consequently, we initially investigated the mechanism of kurarinone against B. cinerea. It was found that kurarinone disrupted cell wall components, impaired cell membrane integrity, increased cell membrane permeability, and affected cellular energy metabolism, thereby exerting its effect against B. cinerea. Therefore, kurarinone is expected to be a potential candidate for the development of plant fungicides.


Asunto(s)
Botrytis , Flavonoides , Fungicidas Industriales , Fusarium , Enfermedades de las Plantas , Raíces de Plantas , Rhizoctonia , Sophora , Botrytis/efectos de los fármacos , Botrytis/crecimiento & desarrollo , Sophora/química , Flavonoides/farmacología , Flavonoides/química , Flavonoides/aislamiento & purificación , Fusarium/efectos de los fármacos , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Raíces de Plantas/química , Enfermedades de las Plantas/microbiología , Rhizoctonia/efectos de los fármacos , Rhizoctonia/crecimiento & desarrollo , Prenilación , Extractos Vegetales/farmacología , Extractos Vegetales/química , Sophora flavescens
2.
Am J Chin Med ; 52(4): 1087-1135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38864547

RESUMEN

Sophora flavescens has been widely used in traditional Chinese medicine for over 1700 years. This plant is known for its heat-clearing, damp-drying, insecticidal, and diuretic properties. Phytochemical research has identified prenylated flavonoids as a unique class of bioactive compounds in S. flavescens. Recent pharmacological studies reveal that the prenylated flavonoids from S. flavescens (PFS) exhibit potent antitumor, anti-inflammatory, and glycolipid metabolism-regulating activities, offering significant therapeutic benefits for various diseases. However, the pharmacokinetics and toxicological profiles of PFS have not been systematically studied. Despite the diverse biological effects of prenylated flavonoid compounds against similar diseases, their structure-activity relationship is not yet fully understood. This review aims to summarize the latest findings regarding the chemical composition, drug metabolism, pharmacological properties, toxicity, and structure-activity relationship of prenylated flavonoids from S. flavescens. It seeks to highlight their potential for clinical use and suggest directions for future related studies.


Asunto(s)
Flavonoides , Prenilación , Sophora , Sophora/química , Flavonoides/química , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Humanos , Relación Estructura-Actividad , Antiinflamatorios/química , Antiinflamatorios/farmacología , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Animales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Fitoterapia , Sophora flavescens
3.
J Agric Food Chem ; 72(26): 14684-14700, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38905352

RESUMEN

The overuse of antibiotics in animal farming and aquaculture has led to multidrug-resistant methicillin-sensitive Staphylococcus aureus (MR-MSSA) becoming a common pathogen in foodborne diseases. Sophora flavescens Ait. serves as a traditional plant antibacterial agent and functional food ingredient. A total of 30 compounds (1-30) were isolated from the root bark of S. flavescens, consisting of 20 new compounds (1-20). In the biological activity assay, compound 1 demonstrated a remarkable inhibitory effect on MR-MSSA, with an MIC of 2 µg/mL. Furthermore, 1 was found to rapidly eliminate bacteria, inhibit biofilm growth, and exhibit exceptionally low cytotoxicity. Mechanistic studies have revealed that 1 possesses an enhanced membrane-targeting ability, binding to the bacterial cell membrane components phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and cardiolipin (CL). This disruption of bacterial cell membrane integrity increases intracellular reactive oxygen species, protein and DNA leakage, reduced bacterial metabolism, and ultimately bacterial death. In summary, these findings suggest that compound 1 holds promise as a lead compound against MR-MSSA.


Asunto(s)
Antibacterianos , Permeabilidad de la Membrana Celular , Flavonoides , Pruebas de Sensibilidad Microbiana , Corteza de la Planta , Extractos Vegetales , Raíces de Plantas , Sophora , Sophora/química , Antibacterianos/farmacología , Antibacterianos/química , Raíces de Plantas/química , Corteza de la Planta/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Biopelículas/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Sophora flavescens
4.
Chem Biodivers ; 21(6): e202400399, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38634752

RESUMEN

Four undescribed prenylated flavonoids, sophoratones A-D (1-4), and 17 known flavonoids, were obtained from the aerial parts of Sophora tonkinensis. Their structures with absolute configurations were elucidated by detailed interpretation of NMR spectroscopy, mass spectrometry, and ECD calculations. Meanwhile, the ability of these compounds to inhibit the release of nitric oxide (NO) by a lipopolysaccharide induced mouse in RAW 264.7 cells was assayed. The results indicated that some compounds exhibited clear inhibitory effects, with IC50 ranging from 19.91±1.08 to 35.72±2.92 µM. These results suggest that prenylated flavonoids from the aerial parts of S. tonkinensis could potentially be used as a latent source of anti-inflammatory agents.


Asunto(s)
Flavonoides , Lipopolisacáridos , Óxido Nítrico , Componentes Aéreos de las Plantas , Sophora , Sophora/química , Animales , Ratones , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/química , Células RAW 264.7 , Componentes Aéreos de las Plantas/química , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Óxido Nítrico/biosíntesis , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Relación Estructura-Actividad , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Estructura Molecular , Relación Dosis-Respuesta a Droga , Supervivencia Celular/efectos de los fármacos
5.
Bioorg Chem ; 145: 107183, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340474

RESUMEN

Prenyltransferases catalyze the synthesis of prenylated flavonoids, providing these with greater lipid solubility, biological activity, and availability. In this study, a thermostable prenyltransferase (AfPT) from Aspergillus fumigatiaffinis was cloned and expressed in Escherichia coli. By optimizing induction conditions, the expression level of AfPT reached 39.3 mU/mL, which was approximately 200 % of that before optimization. Additionally, we determined the enzymatic properties of AfPT. Subsequently, AfPT was immobilized on carboxymethyl cellulose magnetic nanoparticles (CMN) at a maximum load of 0.6 mg/mg. Optimal activity of CMN-AfPT was achieved at pH 8.0 and 55 °C. Thermostability assays showed that the residual activity of CMN-AfPT was greater than 50 % after incubation at 55 °C for 4 h. Km and Vmax of CMN-AfPT for naringenin were 0.082 mM and 5.57 nmol/min/mg, respectively. The Kcat/Km ratio of CMN-AfPT was higher than that of AfPT. Residual prenyltransferase activity of CMN-AfPT remained higher than 70 % even after 30 days of storage. Further, CMN-AfPT retained 68 % of its original activity after 10 cycles of reuse. Compared with free AfPT, CMN-AfPT showed higher catalytic efficiency, thermostability, metal ion tolerance, substrate affinity, storage stability, and reusability. Our study presents a thermostable prenyltransferase and its immobilized form for the production of prenylated flavonoids in vitro.


Asunto(s)
Aspergillus , Dimetilaliltranstransferasa , Flavanonas , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Flavanonas/farmacología , Flavonoides/química , Concentración de Iones de Hidrógeno , Enzimas Inmovilizadas/química , Estabilidad de Enzimas , Temperatura
6.
Nat Prod Res ; : 1-8, 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38043103

RESUMEN

Pterocaulon genus comprises 26 species, half of them have been phytochemical investigations regarding the chemical composition, and coumarins have been considered the chemotaxonomic markers in the genus. Herein Pterocaulon angustifolium DC (Asteraceae), a native plant from Brazil, is investigated for the first time. Twenty-six compounds were isolated from aerial parts of P. angustifolium DC., being 5 triterpenes, 4 phytosterols, 9 flavonoids, 3 phenolic acids, and 5 coumarins. Moreover, a total of 177 compounds were putatively identified using the dereplication technique by UHPLC-HRMS/MS, more than 50% correspond to flavonoids and coumarins. Although 41 different coumarins have already been reported in Pterocaulon genus, 16 were identified for the first time in this study. Crude ethanolic extract and fractions of P. angustifolium were also biologically investigates, and dichloromethane fraction was the most active fraction in the evaluation of antiproliferative, antioxidant, antimicrobial and cholinesterase inhibitory activities.

7.
Curr Top Med Chem ; 23(28): 2640-2698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818581

RESUMEN

Species of genus Morus (family Moraceae) have been used as traditional medicinal and edible resources since ancient times. Genus Morus has been acknowledged as a promising resource for the exploration of novel compounds with various bioactivities. Phytochemical investigations of the genus have led to the discovery of more than approximately 453 natural products from 2011 to 2023, mainly including flavonoids, Diels-Alder adducts, 2-arylbenzfuran, alkaloids and stilbenes. Bioactive constituents and extracts of this genus displayed a wide range of impressive biological properties including antidiabetic, anti-inflammatory, antioxidant, anti-cancer, hepatoprotective, renoprotective, and some other activities. Herein, the research progress of this genus Morus from 2011 to 2023 on phytochemistry and pharmacology are systematically presented and discussed for the first time. This current review provides the easiest access to the information on genus Morus for readers and researchers in view of enhancing the continuity on research done on this genus.


Asunto(s)
Productos Biológicos , Morus , Plantas Medicinales , Morus/química , Productos Biológicos/farmacología , Plantas Medicinales/química , Extractos Vegetales/química , Flavonoides/farmacología , Fitoquímicos/farmacología , Etnofarmacología , Fitoterapia
8.
Food Chem Toxicol ; 176: 113785, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37080529

RESUMEN

Epimedii Folium (EF), a commonly used herbal medicine to treat osteoporosis, has caused serious concern due to potential hepatotoxicity. Until now, its intrinsic hepatotoxic mechanism and hepatotoxic ingredients remain unclear. Here, a novel high-throughput approach was designed to investigate the intrinsic hepatotoxic of EF. High-content screen imaging (HCS) and biochemical tests were first performed to obtain the cytotoxicity parameter matrix of 17 batch EF samples. EF-treated alpha mouse liver 12 (AML12) cells showed increased reactive oxygen species (ROS), reduced glutathione (GSH) and mitochondrial membrane potential (MMP), and apoptosis and cholestasis were further observed. Network toxicology predicted that EF-triggered hepatotoxiciy was involved in transcription factor (TF) activity. The FXR expression, screened by a TF PCR array, exhibited down-regulation following EF extract administration. Moreover, EF inhibited bile acid (BA) metabolism pathway in an FXR-dependent manner. Pearson correlation between the cytotoxicity parameter matrix and quantification feature table obtained from UHPLC-QTOF data of EF suggested 7 prenylated flavonoids possessed potent hepatotoxicities and their cytotoxicity order was further summarized. The transcriptional repression effects of them on FXR were also verified. Collectively, our findings indicate that FXR is probably responsible for EF-induced hepatotoxicity and prenylated flavonoids may be a major class of hepatotoxic constituents in EF.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Plantas Medicinales , Ratones , Animales , Medicamentos Herbarios Chinos/química , Flavonoides/toxicidad
9.
Geroscience ; 45(2): 949-964, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36462128

RESUMEN

Compounds with lifespan extension activity are rare, although increasing research efforts have been invested in this field to find ways to extend healthy lifespan. By applying a yeast-based high-throughput assay to identify the chronological lifespan extension activity of mulberry extracts rapidly, we demonstrated that a group of prenylated flavones, particularly morusin and mulberrin, could extend the chronological lifespan of budding yeast via a nutrient-dependent regime by at least partially targeting SCH9. Their antiaging activity could be extended to C. elegans by promoting its longevity, dependent on the full functions of genes akt-1 or akt-2. Moreover, additional benefits were observed from morusin- and mulberrin-treated worms, including increased reproduction without the influence of worm health (pumping rate, pumping decline, and reproduction span). In the human HeLa cell model, morusin and mulberrin inhibited the phosphorylation of p70S6K1, promoted autophagy, and slowed cell senescence. The molecular docking study showed that mulberrin and morusin bind to the same pocket of p70S6K1. Collectively, our findings open up a potential class of prenylated flavones performing their antiaging activity via nutrient-sensing pathways.


Asunto(s)
Flavonas , Longevidad , Animales , Humanos , Caenorhabditis elegans , Saccharomyces cerevisiae , Proteínas Proto-Oncogénicas c-akt , Células HeLa , Simulación del Acoplamiento Molecular , Flavonas/farmacología
10.
Front Plant Sci ; 13: 1034943, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452098

RESUMEN

Epimedium pubescens is a species of the family Berberidaceae in the basal eudicot lineage, and a main plant source for the traditional Chinese medicine "Herba Epimedii". The current study achieved a chromosome-level genome assembly of E. pubescens with the genome size of 3.34 Gb, and the genome guided discovery of a key prenyltransferase (PT) in E. pubescens. Our comparative genomic analyses confirmed the absence of Whole Genome Triplication (WGT-γ) event shared in core eudicots and further revealed the occurrence of an ancient Whole Genome Duplication (WGD) event approximately between 66 and 81 Million Years Ago (MYA). In addition, whole genome search approach was successfully applied to identify 19 potential flavonoid PT genes and an important flavonoid PT (EpPT8) was proven to be an enzyme for the biosynthesis of medicinal compounds, icaritin and its derivatives in E. pubescens. Therefore, our results not only provide a good reference genome to conduct further molecular biological studies in Epimedium genus, but also give important clues for synthetic biology and industrial production of related prenylated flavonoids in future.

11.
Molecules ; 27(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557952

RESUMEN

Medicinal plants are known as sources of potential antimicrobial compounds belonging to different classes. The aim of the present work was to evaluate the antimicrobial potential of the crude extract, fractions, and some isolated secondary metabolites from the leaves of Macaranga occidentalis, a Cameroonian medicinal plant traditionally used for the treatment of microbial infections. Repeated column chromatography of the ethyl acetate and n-butanol fractions led to the isolation of seventeen previously known compounds (1-17), among which three steroids (1-3), one triterpene (4), four flavonoids (5-8), two stilbenoids (9 and 10) four ellagic acid derivatives (11-14), one geraniinic acid derivative (15), one coumarine (16), and one glyceride (17). Their structures were elucidated mainly by means of extensive spectroscopic and spectrometric (1D and 2D NMR and, MS) analysis and comparison with the published data. The crude extract, fractions, and isolated compounds were all screened for their antimicrobial activity. None of the natural compounds was active against Candida strains. However, the crude extract, fractions, and compounds showed varying levels of antibacterial properties against at least one of the tested bacterial strains, with minimal inhibitory concentrations (MICs) ranging from 250 to 1000 µg/mL. The n-butanol (n-BuOH) fraction was the most active against Escherichia coli ATCC 25922, with an MIC value of 250 µg/mL. Among the isolated compounds, schweinfurthin B (10) exhibited the best activity against Staphylococcus aureus NR 46003 with a MIC value of 62.5 µg/mL. In addition, schweinfurthin O (9) and isomacarangin (6) also exhibited moderate activity against the same strain with a MIC value of 125 µg/mL. Therefore, pharmacomodulation was performed on compound 6 and three new semisynthetic derivatives (6a-c) were prepared by allylation and acetylation reactions and screened for their in vitro antimicrobial activity. None of the semisynthetic derivatives showed antimicrobial activity against the same tested strains. The chemophenetic significance of the isolated compounds is also discussed in this paper.


Asunto(s)
Antiinfecciosos , Euphorbiaceae , 1-Butanol , Extractos Vegetales/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
12.
Molecules ; 27(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36296544

RESUMEN

With the abuse of antibiotics, bacterial antibiotic resistance is becoming a major public healthcare issue. Natural plants, especially traditional Chinese herbal medicines, which have antibacterial activity, are important sources for discovering potential bacteriostatic agents. This study aimed to develop a fast and reliable method for screening out antimicrobial compounds targeting the MRSA membrane from Psoralea corylifolia Linn. seed. A UPLC-MS/MS method was applied to identify the prenylated flavonoids in major fractions from the extracts of Psoralea corylifolia Linn. seed. The broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of different fractions and compounds. The morphological and ultrastructural changes of MRSA were determined by scanning electron microscopy (SEM). The membrane-targeting mechanism of the active ingredients was explored by membrane integrity assays, membrane fluidity assays, membrane potential assays, ATP, and ROS determination. We identified eight prenylated flavonoids in Psoralea corylifolia Linn. seed. The antibacterial activity and mechanism studies showed that this type of compound has a unique destructive effect on MRSA cell membranes and does not result in drug resistance. The results revealed that prenylated flavonoids in Psoralea corylifolia Linn. seeds are promising candidates for the development of novel antibiotic agents to combat MRSA-associated infections.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Psoralea , Psoralea/química , Cromatografía Liquida , Especies Reactivas de Oxígeno/análisis , Extractos Vegetales/química , Espectrometría de Masas en Tándem , Antibacterianos/farmacología , Antibacterianos/análisis , Semillas/química , Antiinfecciosos/farmacología , Flavonoides/química , Adenosina Trifosfato/farmacología
13.
Fitoterapia ; 162: 105302, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36116613

RESUMEN

Ten new prenylated flavonoids, named denticulains A-J (1-10), together with seven known prenylated flavonoids (11-17) were isolated from Macaranga denticulata. Their structures were elucidated on the basis of detailed spectroscopic analysis and by comparison with literature data. In addition, compounds 1 and 14 inhibited the proliferation of SW620 and HCT-116 cell lines with an IC50 value of 46.08 µM and 56.83 µM, respectively.


Asunto(s)
Antineoplásicos Fitogénicos , Euphorbiaceae , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Euphorbiaceae/química , Flavonoides/química , Flavonoides/farmacología , Estructura Molecular
14.
Chin J Nat Med ; 20(9): 712-720, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36162956

RESUMEN

Six new prenylated flavonoid glycosides, including four new furan-flavonoid glycosides wushepimedoside A-D (1-4) and two new prenyl flavonoid derivatives wushepimedoside E-F (5-6), and one know analog epimedkoreside B (7) were isolated from biotransformation products of the aerial parts of Epimedium wushanense. Their structures were elucidated according to comprehensive analysis of HR-MS and NMR spectroscopic data, and the absolute configurations were assigned using experimental and calculated electronic circular dichroism (ECD) data. The regulatory activity of compounds 1-7 on the production of testosterone in primary rat Leydig cells were investigated, and 4 and 5 exhibited testosterone production-promoting activities. Molecular docking analysis suggested that bioactive compounds 4 and 5 showed the stable binding with 3ß-HSD and 4 also had good affinity with Cyp17A1, which suggested that these compounds may regulate testosterone production through stimulating the expression of the above two key proteins.


Asunto(s)
Epimedium , Animales , Epimedium/química , Flavonoides/química , Furanos , Glicósidos/química , Hidrólisis , Masculino , Simulación del Acoplamiento Molecular , Estructura Molecular , Ratas , Testosterona , beta-Glucosidasa/metabolismo
15.
Arch Pharm (Weinheim) ; 355(12): e2200360, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36029269

RESUMEN

Bacterial resistance is spreading in an alarming manner, outpacing the rate of development of new antibacterial agents and surging the need for effective alternatives. Prenylated flavonoids are a promising class of natural antibiotics with reported activity against a wide range of resistant pathogens. Here, a large library of natural flavonoids (1718 structures) was virtually screened for potential candidates inhibiting the B-subunit of gyrase (Gyr-B). Twenty-eight candidates, predominated by prenylated flavonoids, appeared as promising hits. Six of them were selected for further in vitro antibacterial and Gyr-B enzyme inhibitory activities. Auriculasin is presented as the most potent antibacterial candidate, with a MIC ranging from 2 to 4 µg/ml against two clinically isolated multidrug-resistant Escherichia coli strains. Mechanistic antibacterial analysis revealed auriculasin inhibitory activity towards the Gyr-B enzyme on the micromolar scale (IC50 = 0.38 ± 0.15 µM). Gyr-B interaction was further detailed by conducting an isothermal titration calorimetric experiment, which revealed a competitive inhibition with a high affinity for the Gyr-B active site, achieved mostly through enthalpic interactions (ΔGbinding = -10.69 kcal/mol). Molecular modeling and physics-based simulations demonstrated the molecule's manner of fitting inside the Gyr-B active site, indicating a very potential nucleus for the future generation of more potent derivatives. To conclude, prenylated flavonoids are interesting antibacterial candidates with anti-Gyr-B mechanism of action that can be obtained from a plant-derived flavonoid.


Asunto(s)
Escherichia coli , Flavonoides , Flavonoides/farmacología , Flavonoides/química , Relación Estructura-Actividad , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
16.
Phytochemistry ; 203: 113398, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36041499

RESUMEN

Six undescribed prenylated flavonoids, nigragenons H-M, and four known compounds, were isolated from Morus nigra L. Their structures were elucidated through extensive analysis of spectroscopic data, and their absolute configurations were established by time-dependent density functional theory electronic circular dichroism (TDDFT ECD) calculation. The insulin sensitizing activities of all compounds were investigated using insulin-resistant 3T3-L1 adipocytes. At a high concentration (30 µM), all compounds except nigragenon I enhanced insulin-stimulated glucose uptake in insulin-resistant 3T3-L1 adipocytes. Furthermore, nigragenons J-L and the promoted adiponectin secretion in the model cells. Among them, nigragenon L showed the most potent effect at a low concentration of 10 µM, which was comparable to that of rosiglitazone at a concentration of 1 µM. Furthermore, using the Lantha Screen™ TR-FRET assay, nigragenon L was confirmed to be the ligand of PPARγ, showing potent binding affinity toward PPARγ with an IC50 value of 2.8 µM.


Asunto(s)
Morus , Adiponectina/metabolismo , Flavonoides/química , Flavonoides/farmacología , Glucosa/metabolismo , Insulina/metabolismo , Ligandos , Morus/química , PPAR gamma/metabolismo , Rosiglitazona
17.
Antioxidants (Basel) ; 11(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35883889

RESUMEN

The slow pace of discovery of bioactive natural products can be attributed to the difficulty in rapidly identifying them in complex mixtures such as plant extracts. To overcome these hurdles, we explored the utility of two machine learning techniques, i.e., Elastic Net and Random Forests, for identifying the individual anti-inflammatory principle(s) of an extract of the inflorescences of the hops (Humulus lupulus) containing hundreds of natural products. We fractionated a hop extract by column chromatography to obtain 40 impure fractions, determined their anti-inflammatory activity using a macrophage-based bioassay that measures inhibition of iNOS-mediated formation of nitric oxide, and characterized the chemical composition of the fractions by flow-injection HRAM mass spectrometry and LC-MS/MS. Among the top 10 predictors of bioactivity were prenylated flavonoids and humulones. The top Random Forests predictor of bioactivity, xanthohumol, was tested in pure form in the same bioassay to validate the predicted result (IC50 7 µM). Other predictors of bioactivity were identified by spectral similarity with known hop natural products using the Global Natural Products Social Networking (GNPS) algorithm. Our machine learning approach demonstrated that individual bioactive natural products can be identified without the need for extensive and repetitive bioassay-guided fractionation of a plant extract.

18.
Phytochemistry ; 202: 113314, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35810878

RESUMEN

Epimesatines A-I, nine undescribed prenylated flavonoids, along with ten known analogues, were isolated from the aerial parts of Epimedium sagittatum Maxim. The structures and absolute configurations of epimesatines A-I were determined using a combination of spectroscopic data, Rh2(OCOCF3)4-induced electronic circular dichroism (ECD) experiments, ECD comparisons, and X-ray crystallography analysis. Epimesatines A and I displayed notable activities on the viabilities of human non-small cell lung cancer (NSCLC) A549 cells with IC50 values of 1.77 and 9.97 µM, respectively. Furthermore, epimesatines A and I significantly inhibited the expression of sphingosine kinase 1 (SPHK1) in A549 cells. In addition, none of these compounds showed obvious toxicity on normal human lung bronchial epithelial BEAS-2B cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Epimedium , Neoplasias Pulmonares , Epimedium/química , Epimedium/metabolismo , Flavonoides/química , Humanos , Fosfotransferasas (Aceptor de Grupo Alcohol)
19.
Molecules ; 27(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35889363

RESUMEN

The review presents prenylated flavonoids as potential therapeutic agents for the treatment of topical skin infections and wounds, as they can restore the balance in the wound microenvironment. A thorough two-stage search of scientific papers published between 2000 and 2022 was conducted, with independent assessment of results by two reviewers. The main criteria were an MIC (minimum inhibitory concentration) of up to 32 µg/mL, a microdilution/macrodilution broth method according to CLSI (Clinical and Laboratory Standards Institute) or EUCAST (European Committee on Antimicrobial Susceptibility Testing), pathogens responsible for skin infections, and additional antioxidant, anti-inflammatory, and low cytotoxic effects. A total of 127 structurally diverse flavonoids showed promising antimicrobial activity against pathogens affecting wound healing, predominantly Staphylococcus aureus strains, but only artocarpin, diplacone, isobavachalcone, licochalcone A, sophoraflavanone G, and xanthohumol showed multiple activity, including antimicrobial, antioxidant, and anti-inflammatory along with low cytotoxicity important for wound healing. Although prenylated flavonoids appear to be promising in wound therapy of humans, and also animals, their activity was measured only in vitro and in vivo. Future studies are, therefore, needed to establish rational dosing according to MIC and MBC (minimum bactericidal concentration) values, test potential toxicity to human cells, measure healing kinetics, and consider formulation in smart drug release systems and/or delivery technologies to increase their bioavailability.


Asunto(s)
Antiinfecciosos , Antioxidantes , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Flavonoides/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Cicatrización de Heridas
20.
Phytochemistry ; 200: 113241, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35597313

RESUMEN

Phytochemical investigations of dichloromethane and methanol extracts of roots and rhizomes of Scirpoides holoschoenus afforded 21 stilbenes, six flavonoids, six ferulic acid derivatives and four diterpenes. Among these constituents, six stilbenes, one flavonoid, one diterpene and two ferulic acid derivatives, represent previously unreported natural products. Structure elucidation was performed by HRESI-MS, NMR, GC-MS, and ECD data evaluation. The monoprenylated flavonoid (sophoraflavanone B) and all isolated stilbene oligomers (trans-scirpusin B, scirpusin A, cassigarol E, cyperusphenol B, cyperusphenol D, passiflorinol A, cyperusphenol A and mesocyperusphenol A) showed strong inhibitory activities on spore germination of two Botrytis cinerea strains isolated from field-infected grape berries and apple fruits compared to the reference controls resveratrol, piceid, and fenhexamid at a test concentration of 2.0 mM. For sophoraflavanone B and cyperusphenol A, the EC50 values were determined by concentration response curves and resulted in values of 0.35 mM and 0.53 mM, respectively. The data suggest that stilbene oligomers but also prenylated flavonoids should be examined further to gain more information on their antimicrobial activity and might be a suitable addition to chemical fungicides on the market to combat gray mold.


Asunto(s)
Cyperaceae , Diterpenos , Estilbenos , Vitis , Botrytis , Flavonoides/química , Resveratrol , Estilbenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA