Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37241307

RESUMEN

Fibre-reinforced composites (FRCs) are already well established in several industrial sectors such as aerospace, automotive, plant engineering, shipbuilding and construction. The technical advantages of FRCs over metallic materials are well researched and proven. The key factors for an even wider industrial application of FRCs are the maximisation of resource and cost efficiency in the production and processing of the textile reinforcement materials. Due to its technology, warp knitting is the most productive and therefore cost-effective textile manufacturing process. In order to produce resource-efficient textile structures with these technologies, a high degree of prefabrication is required. This reduces costs by reducing the number of ply stacks, and by reducing the number of extra operations through final path and geometric yarn orientation of the preforms. It also reduces waste in post-processing. Furthermore, a high degree of prefabrication through functionalisation offers the potential to extend the application range of textile structures as purely mechanical reinforcements by integrating additional functions. So far, there is a gap in terms of an overview of the current state-of-the-art of relevant textile processes and products, which this work aims to fill. The focus of this work is therefore to provide an overview of warp knitted 3D structures.

2.
Materials (Basel) ; 16(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37241364

RESUMEN

Based on the indirect hot-stamping test system, the effect of pre-forming on the microstructure evolution (grain size, dislocation density, martensite phase transformation) and mechanical properties of the blank in indirect hot stamping is systematically studied using ultra-high-strength steel 22MnB5. It is found that the average austenite grain size slightly decreases with the increase in pre-forming. After quenching, the martensite also becomes finer and more uniformly distributed. Although the dislocation density after quenching slightly decreases with the increase in pre-forming, the overall mechanical properties of the quenched blank are not greatly affected by pre-forming under the combined effect of the grain size and dislocation density. Then, this paper discusses the effect of the pre-forming volume on part formability in indirect hot stamping by manufacturing a typical beam part. According to the numerical simulations and experimental results, when the pre-forming volume increases from 30% to 90%, the maximum thickness thinning rate of the beam part decreases from 30.1% to 19.1%, and the final beam part has better formability and more uniform thickness distribution results when the pre-forming volume is 90%.

3.
Polymers (Basel) ; 15(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36679352

RESUMEN

The deformations that occur during composite forming processes are governed by the friction between the fabrics and tooling material on the mesoscopic level. The effect of normal load and multi-plies on the frictional behavior of the carbon plain weave is investigated by simulating the friction between the fabric and metal semi-cylinder tool by using the experimental method. The periodic wavy friction-displacement curve between the metal tool and fabric is caused by the interwoven structure of the fabric. Both the increase in the normal load and the number of layers cause an increase in the real contact area during friction, leading to an increase in the friction force. The real contact area is calculated based on the Hertzian contact model and the self-designed testing method. The friction force values obtained from multiplying the real contact area with shear strength are closely aligned with the measured results.

4.
Materials (Basel) ; 15(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35955366

RESUMEN

An advanced process of mandrel forging and necking (MFN) was proposed for a hollow shaft with an inner stepped hole. The conventional mandrel forging process with an equal-diameter mandrel was used to form the outer stepped preform, and then the preform was formed into the hollow shaft with an inner stepped hole using the MFN process. A numerical simulation model was established to study the effect of the pressing reduction and the rotation angle on the MFN process. A preforming design method based on the isometric radius difference was given according to the principle of the equal volume, and the parameter relationships between the outer and inner stepped shapes were clarified. The experimental deformation laws of the MFN process were consistent with those obtained by the simulation. The MFN process and its preforming design method provide a new free forging approach for large hollow forgings with inner stepped holes.

5.
Polymers (Basel) ; 14(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35808663

RESUMEN

The preforming quality of carbon fiber plain-woven thermoset prepreg (CFPWTP) is critical to the performance of composite aerospace parts. The deformation ability of the CFPWTP material during preforming is affected by both the fabric woven structure and the resin viscosity, which is different from the dry textile material. Incorrect temperature parameters can enlarge the resin's viscosity, and high viscosity can inhibit fiber deformation and cause defects. This study proposes an equivalent continuum mechanics model considering its temperature-force behavior. Picture frame tests and axial tensile tests at 15 °C, 30 °C, and 45 °C are conducted to obtain the temperature-stress-strain constitutional equations. By Taylor's expansion formula and surface fitting method, the constitutive modulus of the material is obtained. Consequently, a saddle-shaped forming simulation is carried out, which is later validated by experiments. Results show that the accuracy of the predicted model is high, with 0.9% of width error and 5.1% of length error separately. Besides, the predicted wrinkles are consistent with the test in fold position and in deformation trend under different temperatures.

6.
Materials (Basel) ; 15(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744260

RESUMEN

When thermoplastic resin-toughened carbon fiber (CF) composites are formed by liquid resin transfer molding (RTM), the conventional methods cannot be used to set the fabric preform, which affects the overall mechanical properties of the composites. To address this challenge, the benzoxazine-based tackifier BT5501A was designed, a preforming-toughening bifunctional CF fabric was fabricated by employing thermoplastic polyaryletherketone (PEK-C), and an aviation RTM-grade bismaleimide (BMI) resin was used as the matrix to study the effect of the benzoxazine-based tackifier on the thermal curing property and heat resistance of the resin matrix. Furthermore, the preforming and toughening effects on the bifunctional CF fabric reinforced the BMI resin composites. The tackifier BT5501A has good process operability. The application of this tackifier can advance the thermal curing temperature of the BMI resin matrix and decrease the glass transition temperature of the resin, compared to that of the pure BMI resin. Furthermore, when the tackifier was added into the CF/PEK-C/BMI composites, the obtained CF/BT5501A/PEK-C/BMI composites had comparable compression strength after impact, pit depth, and damage area, compared to the CF/PEK-C/BMI composites, while the tackifier endowed the fabric preform with an excellent preforming effect.

7.
Polymers (Basel) ; 13(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34883594

RESUMEN

Carbon-Kevlar hybrid reinforcement is increasingly used in the domains that have both strength and anti-impact requirements. However, the research on the preforming behaviors of hybrid reinforcement is very limited. This paper aims to investigate the mechanical and preforming behaviors of carbon-Kevlar hybrid reinforcement. The results show that carbon-Kevlar hybrid woven reinforcement presents a unique "double-peak" tensile behavior, which is significantly different from that of single fiber type reinforcement, and the in-plane shear deformation demonstrates its large in-plane shear deformability. Both the tensile and in-plane shear behaviors present insensitivity to loading rate. In the preforming process, yarn slippage and out-of-plane yarn buckling are the two primary types of defects. Locations of these defects are closely related to the punch shape and the initial yarn direction. These defects cannot be alleviated or removed by just increasing the blank holder pressure. In the multi-layer preforming, the compaction between the plies and the friction between yarns simultaneously affect the quality of final preforms. The defect location of multi-layer preforms is the same as that of single-layer, while its defect range is much wider. The results found in this paper could provide useful guidance for the engineering application and preforming modeling of hybrid woven reinforcement.

8.
Materials (Basel) ; 14(11)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067497

RESUMEN

Preforming pressure and the pressure holding time are important parameters of the molding process, which directly affect the mechanical properties of materials. In order to obtain the best molding parameters of Al-rich Al/PTFE/TiH2 composites, based on the quasi-static compression test, the influence of molding parameters on the mechanical properties of Al-rich Al/PTFE/TiH2 composites was analyzed, and the microstructure characteristics of Al-rich Al/PTFE/TiH2 specimens were analyzed by SEM. An X-ray diffractometer was used to analyze the phase of the residue after quasi-static compression experiment. The results show that: (1) With the increase in molding parameters (preforming pressure and the pressure holding time), the compressive strength, failure strain and toughness of Al-rich Al/PTFE/TiH2 specimens first increase and then decrease. The best molding process parameters of Al-rich Al/PTFE/TiH2 materials are preforming pressure 240 MPa and the pressure holding time 100 s. (2) For unsintering specimens, when the preforming pressure is less than 150 MPa, the porosity of the specimen increases slowly at first and then decreases. When the preforming pressure is greater than 150 MPa, the porosity of the specimen increases first and then decreases. When the pressure holding time is no more than 100 s, the porosity of the specimen decreases gradually. When the pressure holding time is more than 100 s, the porosity of the specimen increases first and then decreases. For sintered specimens, when the preforming pressure is less than 100 MPa, the porosity of the specimen decreases gradually. When the preforming pressure is greater than 100 MPa, the porosity of the specimen first increases and then decreases. With the increase in the pressure holding time, the porosity first increases and then decreases. For each preforming pressure specimen, compared with that before sintering, the porosity after sintering either decreases or increases. For each the pressure holding time specimen, the porosity increases after sintering compared with that before sintering. The microstructure of PTFE crystal inside the specimen is mainly planar PTFE crystal. The size and number of planar PTFE crystals are significantly affected by the molding parameters, which further affects the mechanical properties of Al-rich Al/PTFE/TiH2 specimens. When the preforming pressure is less than 100 MPa, the planar PTFE crystals are small and few, which results in the worst mechanical properties of the specimens. When the preforming pressure is more than 100 MPa and does not contain 240 Mpa, the planar PTFE crystals are small and there are more of them, which results in better mechanical properties of the specimens. When the preforming pressure is 240 MPa, the planar PTFE crystals are large and numerous, which results in the best mechanical properties of the specimen. When the pressure holding time is 100 s, the planar PTFE crystals are large and there are more of them, which results in the best mechanical properties of the specimen. (3) The reactivity of Al-rich Al/PTFE/TiH2 specimens with TiH2 the content of 10% under quasi-static compression is not significantly affected by the molding parameters.

9.
Materials (Basel) ; 12(7)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30925726

RESUMEN

When fiber-reinforced plastic (FRP) components are designed, it is very important to ensure that textiles are formed into complex 3D geometries without folds, and that the reinforcing structure is oriented appropriately. Most research in this context is focused on finite element (FE) forming simulations and the required characterization of textile reinforcements. However, the early stage of the design of FRPs, where kinematic draping simulations are used, is barely considered. In particular, the need for a critical shear angle for the execution and evaluation of kinematic draping simulations is often neglected. This paper presents an extended picture frame test stand with an optical device recording shear-induced deformations with the help of a laser line emitter. Associated hardware and software for detecting and quantifying the fold formation during a picture frame test were developed. With the additional recorded information, a material-specific critical shear angle can be determined, material behaviors can be compared, and FE-based simulation methods can be evaluated. This innovative test stand and the associated software tools will help engineers to decide on suitable materials and improve transparency in the early stages of the design process.

10.
J Craniomaxillofac Surg ; 46(7): 1159-1161, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29793778

RESUMEN

INTRODUCTION: Polydioxanone (PDS) sheets are commonly used in the treatment of orbital wall fractures. A potential drawback of PDS is that it may be difficult to adapt to the anatomy of the orbital walls. Therefore a study was conceived to test the feasibility of preforming PDS sheets. MATERIAL AND METHODS: PDS sheet material was water-heated and preformed using a template based on a statistical anatomical model. Then the deformed sheet was cooled, stored and compared to the original model to investigate post-deformation changes. RESULTS: PDS sheet material could easily be deformed using a mould. No significant post-cooling shape changes were noticed. CONCLUSIONS: PDS sheet material can be preformed into complex geometric shapes. This could be a benefit in the treatment of orbital wall fractures.


Asunto(s)
Implantes Absorbibles , Fijación Interna de Fracturas/instrumentación , Fracturas Orbitales/cirugía , Polidioxanona , Fijación Interna de Fracturas/métodos , Humanos , Modelos Anatómicos , Diseño de Prótesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA