Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39347620

RESUMEN

Background: Mounting evidence suggests that the phytocannabinoid cannabidiol (CBD) holds promise as an antidepressant agent in conditions underlined by inflammation. Full-spectrum CBD extracts might provide greater behavioral efficacy than CBD-only isolates and might require lower doses to achieve the same outcomes due to the presence of other cannabinoids, terpenes, and flavonoids. However, investigations in this area remain limited. Methods: We evaluated the behavioral response to the administration for 7 days of 15 and 30 mg/kg of a CBD isolate and a full-spectrum CBD product in a rat model of subchronic lipopolysaccharide (LPS, 0.5 mg/kg/day/7 days, intraperitoneal)-induced depressive-like and sickness behavior. The forced swim test was used to assess depressive-like behavior, the open field test (OFT) to assess locomotion, and the elevated plus maze to assess anxiety-like behavior. Results: The full-spectrum CBD extract at both doses, but not the CBD isolate, reversed the LPS-induced depressive-like behavior in the forced swim test. Moreover, the full-spectrum CBD extract at the higher dose but not the CBD isolate restored the subchronic LPS-induced hypolocomotion in the OFT. Repeated administration of both formulations elicited an anxiogenic-like trend in the elevated plus maze. Conclusion: Full-spectrum CBD products might have greater therapeutic efficacy in resolving inflammation-induced depressive and sickness behavior compared to a CBD-only isolate.

2.
Am J Drug Alcohol Abuse ; : 1-22, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023419

RESUMEN

Background: Ethanol consumption during pregnancy induces enduring detrimental effects in the offspring, manifesting as a spectrum of symptoms collectively termed as Fetal Alcohol Spectrum Disorders (FASD). Presently, there is a scarcity of treatments for FASD.Objectives: To analyze current literature, emphasizing evidence derived from preclinical models, that could potentially inform therapeutic interventions for FASD.Methods: A narrative review was conducted focusing on four prospective treatments: nutritional supplements, antioxidants, anti-inflammatory compounds and environmental enrichment. The review also highlights innovative therapeutic strategies applied during early (e.g. folate administration, postnatal days 4-9) or late (e.g. NOX2 inhibitors given after weaning) postnatal stages that resulted in significant improvements in behavioral responses during adolescence (a critical period marked by the emergence of mental health issues in humans).Results: Our findings underscore the value of treatments centered around nutritional supplementation or environmental enrichment, aimed at mitigating oxidative stress and inflammation, implying shared mechanisms in FASD pathogenesis. Moreover, the review spotlights emerging evidence pertaining to the involvement of novel molecular components with potential pharmacological targets (such as NOX2, MCP1/CCR2, PPARJ, and PDE1).Conclusions: Preclinical studies have identified oxidative imbalance and neuroinflammation as relevant pathological mechanisms induced by prenatal ethanol exposure. The relevance of these mechanisms, which exhibit positive feedback loop mechanisms, appear to peak during early development and decreases in adulthood. These findings provide a framework for the future development of therapeutic avenues in the development of specific clinical treatments for FASD.

3.
Genes (Basel) ; 15(4)2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38674359

RESUMEN

Rare sarcomas present significant treatment challenges compared to more prevalent soft tissue sarcomas due to limited treatment options and a poor understanding of their biology. This study investigates a unique case of penile sarcoma, providing a comprehensive morphological and molecular analysis. Through the creation of experimental patient-derived models-including patient-derived xenograft (PDX), 3D, and monolayer primary cultures-we successfully replicated crucial molecular traits observed in the patient's tumor, such as smooth muscle actin and CD99 expression, along with specific mutations in genes like TSC2 and FGFR4. These models are helpful in assessing the potential for an in-depth exploration of this tumor's biology. This comprehensive approach holds promise in identifying potential therapeutic avenues for managing this exceedingly rare soft tissue sarcoma.


Asunto(s)
Sarcoma , Animales , Humanos , Masculino , Ratones , Mutación , Neoplasias del Pene/genética , Neoplasias del Pene/patología , Sarcoma/genética , Sarcoma/patología , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Persona de Mediana Edad
4.
Clin Transl Oncol ; 26(9): 2227-2239, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38553659

RESUMEN

PURPOSE: In the pursuit of creating personalized and more effective treatment strategies for lung cancer patients, Patient-Derived Xenografts (PDXs) have been introduced as preclinical platforms that can recapitulate the specific patient's tumor in an in vivo model. We investigated how well PDX models can preserve the tumor's clinical and molecular characteristics across different generations. METHODS: A Non-Small Cell Lung Cancer (NSCLC) PDX model was established in NSG-SGM3 mice and clinical and preclinical factors were assessed throughout subsequent passages. Our cohort consisted of 40 NSCLC patients, which were used to create 20 patient-specific PDX models in NSG-SGM3 mice. Histopathological staining and Whole Exome Sequencing (WES) analysis were preformed to understand tumor heterogeneity throughout serial passages. RESULTS: The main factors that contributed to the growth of the engrafted PDX in mice were a higher grade or stage of disease, in contrast to the long duration of chemotherapy treatment, which was negatively correlated with PDX propagation. Successful PDX growth was also linked to poorer prognosis and overall survival, while growth pattern variability was affected by the tumor aggressiveness, primarily affecting the first passage. Pathology analysis showed preservation of the histological type and grade; however, WES analysis revealed genomic instability in advanced passages, leading to the inconsistencies in clinically relevant alterations between the PDXs and biopsies. CONCLUSIONS: Our study highlights the impact of multiple clinical and preclinical factors on the engraftment success, growth kinetics, and tumor stability of patient-specific NSCLC PDXs, and underscores the importance of considering these factors when guiding and evaluating prolonged personalized treatment studies for NSCLC patients in these models, as well as signaling the imperative for additional investigations to determine the full clinical potential of this technique.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Medicina de Precisión , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Animales , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Ratones , Medicina de Precisión/métodos , Femenino , Masculino , Persona de Mediana Edad , Anciano , Secuenciación del Exoma , Modelos Animales de Enfermedad
5.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36555823

RESUMEN

The use of Cannabis for medicinal purposes has been documented since ancient times, where one of its principal cannabinoids extracted from Cannabis sativa, cannabidiol (CBD), has emerged over the last few years as a promising molecule with anti-seizure potential. Here, we present an overview of recent literature pointing out CBD's pharmacological profile (solubility, metabolism, drug-drug interactions, etc.,), CBD's interactions with multiple molecular targets as well as advances in preclinical research concerning its anti-seizure effect on both acute seizure models and chronic models of epilepsy. We also highlight the recent attention that has been given to other natural cannabinoids and to synthetic derivatives of CBD as possible compounds with therapeutic anti-seizure potential. All the scientific research reviewed here encourages to continue to investigate the probable therapeutic efficacy of CBD and its related compounds not only in epilepsy but also and specially in drug-resistant epilepsy, since there is a dire need for new and effective drugs to treat this disease.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Epilepsia , Humanos , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Cannabidiol/metabolismo , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Cannabis/metabolismo
6.
Biomedicines ; 10(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36359269

RESUMEN

Vaccination is an excellent approach to stimulating the host immune response and reducing human morbidity and mortality against microbial infections, such as tuberculosis (TB). Bacillus Calmette-Guerin (BCG) is the most widely administered vaccine in the world and the only vaccine approved by the World Health Organization (WHO) to protect against TB. Although BCG confers "protective" immunity in children against the progression of Mycobacterium tuberculosis (Mtb) infection into active TB, this vaccine is ineffective in protecting adults with active TB manifestations, such as multiple-, extensive-, and total-drug-resistant (MDR/XDR/TDR) cases and the co-existence of TB with immune-compromising health conditions, such as HIV infection or diabetes. Moreover, BCG can cause disease in individuals with HIV infection or other immune compromises. Due to these limitations of BCG, novel strategies are urgently needed to improve global TB control measures. Since live vaccines elicit a broader immune response and do not require an adjuvant, developing recombinant BCG (rBCG) vaccine candidates have received significant attention as a potential replacement for the currently approved BCG vaccine for TB prevention. In this report, we aim to present the latest findings and outstanding questions that we consider worth investigating regarding novel mycobacteria-based live attenuated TB vaccine candidates. We also specifically discuss the important features of two key animal models, mice and rabbits, that are relevant to TB vaccine testing. Our review emphasizes that the development of vaccines that block the reactivation of latent Mtb infection (LTBI) into active TB would have a significant impact in reducing the spread and transmission of Mtb. The results and ideas discussed here are only based on reports from the last five years to keep the focus on recent developments.

7.
ADMET DMPK ; 9(2): 111-141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35299767

RESUMEN

Research on alternatives to the use of animal models and cell cultures has led to the creation of organ-on-a-chip systems, in which organs and their physiological reactions to the presence of external stimuli are simulated. These systems could even replace the use of human beings as subjects for the study of drugs in clinical phases and have an impact on personalized therapies. Organ-on-a-chip technology present higher potential than traditional cell cultures for an appropriate prediction of functional impairments, appearance of adverse effects, the pharmacokinetic and toxicological profile and the efficacy of a drug. This potential is given by the possibility of placing different cell lines in a three-dimensional-arranged polymer piece and simulating and controlling specific conditions. Thus, the normal functioning of an organ, tissue, barrier, or physiological phenomenon can be simulated, as well as the interrelation between different systems. Furthermore, this alternative allows the study of physiological and pathophysiological processes. Its design combines different disciplines such as materials engineering, cell cultures, microfluidics and physiology, among others. This work presents the main considerations of OoC systems, the materials, methods and cell lines used for their design, and the conditions required for their proper functioning. Examples of applications and main challenges for the development of more robust systems are shown. This non-systematic review is intended to be a reference framework that facilitates research focused on the development of new OoC systems, as well as their use as alternatives in pharmacological, pharmacokinetic and toxicological studies.

8.
Front Neurol ; 11: 389, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477252

RESUMEN

Immune-mediated inflammatory diseases of the central nervous system (CNS) are a group of neurological disorders in which inflammation and/or demyelination are induced by cellular and humoral immune responses specific to CNS antigens. They include diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), acute disseminated encephalomyelitis (ADEM) and anti-NMDA receptor encephalitis (NMDAR encephalitis). Over the years, many in vivo and in vitro models were used to study clinical, pathological, physiological and immunological features of these neuroimmunological disorders. Nevertheless, there are important aspects of human diseases that are not fully reproduced in the experimental models due to their technical limitations. In this review, we describe the preclinical models of neuroimmune disorders, and how they contributed to the understanding of these disorders and explore potential treatments. We also describe the purpose and limitation of each one, as well as the recent advances in this field.

9.
OMICS ; 24(6): 370-378, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32496969

RESUMEN

Regenerative medicine offers hope for patients with diseases of the central and peripheral nervous system. Urodele amphibians such as axolotl display an exceptional regenerative capacity and are considered as essential preclinical model organisms in neurology and regenerative medicine research. Earlier studies have suggested that the limb regeneration ability of this salamander notably decreases with induction of metamorphosis by thyroid hormones. Metamorphic axolotl requires further validation as a negative control in preclinical regenerative medicine research, not to mention the study of molecular substrates of its regenerative abilities. In this study, we report new observations on the effect of experimentally induced metamorphosis on spinal cord regeneration in axolotl. Surprisingly, we found that metamorphic animals were successful to functionally restore the spinal cord after an experimentally induced injury. To discern the molecular signatures of spinal cord regeneration, we performed transcriptomics analyses at 1- and 7-days postinjury (dpi) for both spinal cord injury (SCI)-induced (experimental) and laminectomy (sham) groups. We observed 119 and 989 differentially expressed genes at 1- and 7-dpi, respectively, while the corresponding mouse orthologous genes were enriched in junction-, immune system-, and extracellular matrix-related pathways. Taken together, our findings challenge the prior notions of limited regenerative ability of metamorphic axolotl which exhibited successful spinal cord regeneration in our experience. Moreover, we report on molecular signatures that can potentially explain the mechanistic substrates of the regenerative capacity of the metamorphic axolotl. To the best of our knowledge, this is the first report on molecular responses to SCI and functional restoration in metamorphic axolotls. These new findings advance our understanding of spinal cord regeneration, and may thus help optimize the future use of axolotl as a preclinical model in regenerative medicine and integrative biology fields.


Asunto(s)
Perfilación de la Expresión Génica , Regeneración Nerviosa , Medicina Regenerativa , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Transcriptoma , Ambystoma mexicanum , Animales , Biología Computacional/métodos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Regeneración Nerviosa/genética , Transducción de Señal , Traumatismos de la Médula Espinal/etiología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/rehabilitación
10.
J Cachexia Sarcopenia Muscle ; 10(6): 1183-1194, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31436396

RESUMEN

Cancer cachexia is a paraneoplastic syndrome characterized by lean mass wasting (with or without fat mass decrease), culminating in involuntary weight loss, which is the key clinical observation nowadays. There is a notable lack of studies involving animal models to mimic the clinical reality, which are mostly patients with cachexia and metastatic disease. This mismatch between the clinical reality and animal models could at least partly contribute to the poor translation observed in the field. In this paper, we retrieved and compared animal models used for cachexia research from 2017 and 10 years earlier (2007) and observed that very little has changed. Especially, clinically relevant models where cachexia is studied in an orthotopic or metastatic context were and still are very scarce. Finally, we described and supported the biological rationale behind why, despite technical challenges, these two phenomena-metastasis and cachexia-should be modelled in parallel, highlighting the overlapping pathways between them. To sum up, this review aims to contribute to rethinking and possibly switching the models currently used for cachexia research, to hopefully obtain better and more translational outcomes.


Asunto(s)
Caquexia/epidemiología , Modelos Animales de Enfermedad , Metástasis de la Neoplasia/patología , Animales , Caquexia/etiología , Humanos , Investigación Biomédica Traslacional
11.
Brain Topogr ; 32(4): 599-624, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-27026168

RESUMEN

The curtain of technical limitations impeding rat multichannel non-invasive electroencephalography (EEG) has risen. Given the importance of this preclinical model, development and validation of EEG source imaging (ESI) is essential. We investigate the validity of well-known human ESI methodologies in rats which individual tissue geometries have been approximated by those extracted from an MRI template, leading also to imprecision in electrode localizations. With the half and fifth sensitivity volumes we determine both the theoretical minimum electrode separation for non-redundant scalp EEG measurements and the electrode sensitivity resolution, which vary over the scalp because of the head geometry. According to our results, electrodes should be at least ~3 to 3.5 mm apart for an optimal configuration. The sensitivity resolution is generally worse for electrodes at the boundaries of the scalp measured region, though, by analogy with human montages, concentrates the sensitivity enough to localize sources. Cramér-Rao lower bounds of source localization errors indicate it is theoretically possible to achieve ESI accuracy at the level of anatomical structures, such as the stimulus-specific somatosensory areas, using the template. More validation for this approximation is provided through the comparison between the template and the individual lead field matrices, for several rats. Finally, using well-accepted inverse methods, we demonstrate that somatosensory ESI is not only expected but also allows exploring unknown phenomena related to global sensory integration. Inheriting the advantages and pitfalls of human ESI, rat ESI will boost the understanding of brain pathophysiological mechanisms and the evaluation of ESI methodologies, new pharmacological treatments and ESI-based biomarkers.


Asunto(s)
Mapeo Encefálico/métodos , Electroencefalografía/métodos , Animales , Encéfalo/fisiología , Encefalopatías , Electrodos , Humanos , Imagen por Resonancia Magnética , Masculino , Ratas , Cuero Cabelludo
12.
Crit Rev Oncol Hematol ; 128: 43-57, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29958630

RESUMEN

Glutathione (GSH) is one of the most important defenses against oxidative stress through the fine-tuned regulation of redox homeostasis. Glutathione is also involved in many metabolic processes and is important for the regulation of cell survival, proliferation, and death. Furthermore, GSH and the enzymes that are involved in its biosynthesis, catabolism, and detoxification (e.g., disulfide-oxidized glutathione, glutathione S-transferase, glutathione peroxidase, glutathione reductase, and γ-glutamyltranspetidase) play an important role in several diseases, including cancer. In cancer cells, these enzymes protect the tumor microenvironment against oxidative stress and cell death and are important for tumor growth and development. Thus, the GSH system is an important tool for investigating new pharmacological approaches for cancer treatment. Several preclinical models of solid tumors are available for this purpose. This review summarizes and discusses the regulation and dysregulation of GSH and its related enzymes in different models of solid tumors, and potential treatments that target the GSH system.


Asunto(s)
Antineoplásicos/farmacología , Modelos Animales de Enfermedad , Glutatión/metabolismo , Neoplasias/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Animales , Humanos , Neoplasias/metabolismo , Neoplasias/patología
13.
Data Brief ; 18: 1433-1440, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29904648

RESUMEN

This article contains data of Social Transmission of Food Preference in an animal model of autism and the evaluation of a set of microRNA analyzed in autistic patients and animal model of autism. The analyses of the absolute consumption of two flavored food by male rats prenatally exposed to valproic acid (VPA) and treated with resveratrol (RSV), showed that VPA animals show a trend to eat less of the flavored food presented by a demonstrator rat. We also identified 13 microRNA with similar levels among rodents' experimental groups, as well as 11 microRNA with no alterations between autistic and control subjects. Further evaluation of mechanisms of VPA and RSV actions on behavioral and molecular alterations can shed light in important biomarkers and etiological triggers of autistic spectrum disorders.

14.
Neurotox Res ; 34(4): 870-877, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29313219

RESUMEN

Translational medicine is one of the major concerns in this century. While significant advances have been made with scientific knowledge, the translation of their promising results has not led to any new therapies. In Parkinson's disease, a long list of clinical studies, based on preclinical models with exogenous neurotoxins, has failed. Therefore, the aim of this opinion paper is to open discussion about preclinical models for Parkinson's disease based on neurotoxins.


Asunto(s)
Neurotoxinas , Trastornos Parkinsonianos , Animales , Humanos
18.
Fundam Clin Pharmacol ; 30(3): 198-215, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26851117

RESUMEN

Anxiety and depression are complex heterogeneous psychiatric disorders and leading causes of disability worldwide. This review summarizes reports on the fundamentals, prevalence, diagnosis, neurobiology, advancement in treatment of these diseases and preclinical assessment of botanicals. This review was conducted through bibliographic investigation of scientific journals, books, electronic sources, unpublished theses and electronic medium such as ScienceDirect and PubMed. A number of the first-line drugs (benzodiazepine, azapirone, antidepressant tricyclics, monoamine oxidase inhibitors, serotonin selective reuptake inhibitors, noradrenaline reuptake inhibitors, serotonin and noradrenaline reuptake inhibitors, etc.) for the treatment of these psychiatric disorders are products of serendipitous discoveries. Inspite of the numerous classes of drugs that are available for the treatment of anxiety and depression, full remission has remained elusive. The emerging clinical cases have shown increasing interests among health practitioners and patients in phytomedicine. The development of anxiolytic and antidepressant drugs of plant origin takes advantage of multidisciplinary approach including but not limited to ethnopharmacological survey (careful investigation of folkloric application of medicinal plant), phytochemical and pharmacological studies. The selection of a suitable plant for a pharmacological study is a basic and very important step. Relevant clues to achieving this step include traditional use, chemical composition, toxicity, randomized selection or a combination of several criteria. Medicinal plants have been and continue to be a rich source of biomolecule with therapeutic values for the treatment of anxiety and depression.


Asunto(s)
Ansiolíticos/uso terapéutico , Antidepresivos/uso terapéutico , Ansiedad/tratamiento farmacológico , Depresión/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Plantas Medicinales , Animales , Ansiolíticos/aislamiento & purificación , Antidepresivos/aislamiento & purificación , Ansiedad/diagnóstico , Ansiedad/metabolismo , Depresión/diagnóstico , Depresión/metabolismo , Humanos , Extractos Vegetales/aislamiento & purificación , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA