RESUMEN
Beauty salons (BS) are places that deal with a wide range of cosmetics with potentially hazardous chemicals, and their effluent should be properly treated before going to the sewage system, once it represents characteristics of industrial wastewater. This work provides an extensive characterization of a BS effluent and its respective electrochemical treatment by comparing NaCl, Na2SO4, and Na2S2O8 as supporting electrolytes with a boron-doped diamond (BDD) as anode, applying 10 or 30 mA cm-2 of current density (j). The inclusion of UVC irradiation was also performed but the improvements achieved in removing the organic matter were null or lower. The analysis of chemical oxygen demand (COD) removal, energy consumption, and total current efficiency (TCE) was required to prove the efficacy of the processes and the comparative study of the performance of different technologies. Precipitate analysis was also done due to the high turbidity of the raw effluent and the appearance of a precipitate before and during the electrolysis, mainly with Na2S2O8. The precipitate confirmed the presence of silicates and small amounts of heavy metals. The results clearly showed that 6 h of treatment with Na2SO4 achieved 58% of COD removal with an energy consumption of about 0.52 kWh m-3, being the best electrolyte option for treating BS effluent by applying 10 mA cm-2. Under these experimental conditions, the final wastewater can be directly discharged into the sewage system with a lower amount of visible precipitate, and with 73% less turbidity. The treatment here proposed can be used as an alternative to decision-makers and governments once it can be a step further in the implementation of better and advanced politics of water sanitation.
Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Oxidación-Reducción , Aguas del Alcantarillado , Sulfatos/análisis , Contaminantes Químicos del Agua/análisis , Electrólitos , Diamante/química , ElectrodosRESUMEN
In this research, a set of CuNiCrSiCoTi (H-0Nb), CuNiCrSiCoTiNb0.5 (H-0.5Nb) and CuNiCrSiCoTiNb1 (H-1Nb) high-entropy alloys (HEAs) were melted in a vacuum induction furnace. The effects of Nb additions on the microstructure, hardness, and wear behavior of these HEAs (compared with a CuBe commercial alloy) in the as-cast (AC) condition, and after solution (SHT) and aging (AT) heat treatments, were investigated using X-ray diffraction, optical microscopy, and electron microscopy. A ball-on-disc configuration tribometer was used to study wear behavior. XRD and SEM results showed that an increase in Nb additions and modification by heat treatment (HT) favored the formation of BCC and FCC crystal structures (CS), dendritic regions, and the precipitation of phases that promoted microstructure refinement during solidification. Increases in hardness of HEA systems were recorded after heat treatment and Nb additions. Maximum hardness values were recorded for the H-1Nb alloy with measured increases from 107.53 HRB (AC) to 112.98 HRB, and from 1104 HV to 1230 HV (aged for 60 min). However, the increase in hardness caused by Nb additions did not contribute to wear resistance response. This can be attributed to a high distribution of precipitated phases rich in high-hardness NiSiTi and CrSi. Finally, the H-0Nb alloy exhibited the best wear resistance behavior in the aged condition of 30 min, with a material loss of 0.92 mm3.
RESUMEN
The Amarillo River in La Rioja, Argentina, is a natural acidic environment that is influenced by an abandoned mine. The river is characterized by extremely low pH and high concentrations of metals and metalloids. Fe(III)-bearing neoformed precipitated minerals are widespread along the hydrological basin. This work reports the presence of different species of iron-oxidizing bacteria and demonstrates that their action has a significant role in geochemical processes of the Amarillo River, mainly by catalyzing Fe2+ oxidation and intensifying the Fe(III)-bearing mineral precipitation. Various iron oxidizers (i.e. Acidithiobacillus ferrivorans, Leptospirillum ferrooxidans, Ferrimicrobium acidophilum, Alicyclobacillus cycloheptanicus) were detected in enrichment cultures at different temperatures. Moreover, this is the first report confirming that Acidithiobacillus ferrivorans is able to grow at 4 °C. Other acidophilic bacteria (i.e., Acidiphilium iwatensii) and fungi (e.g., Fodinomyces uranophilus, Coniochaeta fodinicola, Acidea extrema, Penicillium sp. and Cladosporium pseudocladosporioides) were also detected. In vitro laboratory studies recreating natural Fe(III)-bearing mineral formation showed that mineral precipitation rate was higher than 350 mg L-1 day-1 in the presence of microorganisms whereas it was about 15 mg L-1 day-1 under abiotic conditions. Jarosite was the only mineral detected in the precipitates generated by microbial action and it was also identified in the Amarillo River bed sediments. Biological Fe2+ oxidation rates depend on temperature which range from 8 to 32 mM day-1 at 4 and 30 °C, respectively. Finally, a conceptual model recognizing the significant microbial role is proposed to gain a better understanding of the biogeochemistry dynamics of the Amarillo River.
Asunto(s)
Compuestos Férricos , Ríos , Acidithiobacillus , Alicyclobacillus , Argentina , Ascomicetos , Bacterias , Cladosporium , Concentración de Iones de Hidrógeno , Oxidación-ReducciónRESUMEN
The interaction of H2O onto small CuS, Cu2S, and ZnS clusters was theoretically studied by Density Functional Theory computations to get insights into the aggregation characteristics of metal sulfides at aqueous solutions. The results show the charge-controlled interactions with polarized solvent molecules are favored on the ZnS clusters compared with CuS and Cu2S clusters. Moreover, the chemical adsorption of H2O molecules is energetically favored onto ZnS clusters with higher interaction energies of up to 35.4 kcal/mol compared with CuS and Cu2S clusters (up to 31.3 kcal/mol), where the stability of H2O adsorption decreases as the size of the clusters increases. However, thermochemical analysis shows that the adsorption of H2O on copper sulfides is not a spontaneous process at room temperature. Additionally, the electrostatic energy of H2O onto the Cu2S and CuS clusters is lower than that associated with the H2O-H2O interactions, suggesting that copper precipitates prefer to bind between them at early stages of the precipitation process due to an unfavorable solvent-solute interaction. Dispersion forces play a relative key role in the interaction of water on copper sulfides, while for zinc sulfide clusters, the adsorption energy is slightly influenced by dispersion contributions. Accordingly, the aggregation of zinc sulfides in a water environment is expected to be lower compared with copper sulfides, and where the aggregation characteristics are not determined by the binding energy of the sulfides, but of the ability to interact with the solvent molecules. These statements were confirmed by experimental optical microscopy analysis and settling tests during precipitation processes in water. Therefore, this work allows proposing a simple strategy to study the aggregation characteristics of metal sulfides, which turns useful for use in hydrometallurgical applications.
RESUMEN
The sulfide oxidation and precipitation of Al-Fe-secondary minerals associated with abandoned acid mine drainage (AMD) from the abandoned copper mine waste pile at Touro, Spain, has been studied by sequential extraction (SE) combined with several techniques with the intent of understanding the role of these processes play in the natural attenuation of hazardous element contaminants in the AMD. In addition, the fragile nature of nanominerals and ultrafine particle (UFP) assemblages from contaminated sediment systems from the abandoned copper mine required novel techniques and experimental approaches. The investigation of the geochemistry of complex nanominerals and UFP assemblages was a prerequisite to accurately assess the environmental and human health risks of contaminants and cost-effective chemical and biogeological remediation strategies. Particular emphasis was placed on the study and characterization of the complex mixed nanominerals and UFP containing potentially toxic elements. Nanometer-sized phases in sediments were characterized using energy-dispersive X-ray spectrometer (EDS), field-emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM) images. The identification of the geochemical and mineralogical composition of AMD in Touro, as well as the different formation mechanisms proposed, complement the existing literature on secondary mineral assemblages and provide new emphasis to increase the understanding of extreme environments. The results also demonstrated that variations in the geochemical fractionation of hazardous elements in AMD were more influenced by the secondary mineral proportion and by AMD pH.
Asunto(s)
Cobre/análisis , Monitoreo del Ambiente/métodos , Sustancias Peligrosas/análisis , Minerales/análisis , Minería , Nanopartículas/análisis , Contaminantes del Suelo/análisis , Adsorción , Precipitación Química , Cobre/química , Sustancias Peligrosas/química , Humanos , Metales Pesados/análisis , Metales Pesados/química , Minerales/química , Nanopartículas/química , Contaminantes del Suelo/química , EspañaRESUMEN
Precipitation-recrystallization interactions in ASTM F-1586 austenitic stainless steel were studied by means of hot torsion tests with multipass deformation under continuous cooling, simulating an industrial laminating process. Samples were deformed at 0.2 and 0.3 at a strain rate of 1.0s(-1), in a temperature range of 900 to 1200°C and interpass times varying from 5 to 80s. The tests indicate that the stress level depends on deformation temperature and the slope of the equivalent mean stress (EMS) vs. 1/T presents two distinct behaviors, with a transition at around 1100°C, the non-recrystallization temperature (Tnr). Below the Tnr, strain-induced precipitation of Z-phase (NbCrN) occurs in short interpass times (tpass<30s), inhibiting recrystallization and promoting stepwise stress build-up with strong recovery, which is responsible for increasing the Tnr. At interpass times longer than 30s, the coalescence and dissolution of precipitates promote a decrease in the Tnr and favor the formation of recrystallized grains. Based on this evidence, the physical simulation of controlled processing allows for a domain refined grain with better mechanical properties.
Asunto(s)
Materiales Biocompatibles/química , Modelos Químicos , Nitrógeno/química , Acero Inoxidable/química , Fuerza Compresiva , Simulación por Computador , Módulo de Elasticidad , Dureza , Transición de Fase , Estrés Mecánico , Temperatura , Resistencia a la TracciónRESUMEN
Delirium é uma apresentação comum de distúrbios agudos na população geriátrica. Tem sido associado a um pior prognóstico, aumento de permanência hospitalar e dos custos, bem como maiores taxas de morbidade e mortalidade entre os idosos. Os fatores predisponentes e precipitantes são hoje mais conhecidos e estão associados aos cuidados hospitalares.Estudos controlados demonstram que intervenções preventivas podem reduzir de 30% a 40% a incidência de delirium, essas intervenções estão essencialmente ligadas a melhor qualidade no cuidado hospitalar. Este artigo revisa recentes estudos sobre epidemiologia, diagnóstico, fisiopatologia, tratamento e prevenção do delirium na população idosa.