Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Front Immunol ; 15: 1404891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919611

RESUMEN

Background: Inflammatory cytokines play key pathogenic roles in liver fibrosis. IL-15 is a proinflammatory cytokine produced by myeloid cells. IL-15 promotes pathogenesis of several chronic inflammatory diseases. However, increased liver fibrosis has been reported in mice lacking IL-15 receptor alpha chain (IL-15Rα), suggesting an anti-fibrogenic role for IL-15. As myeloid cells are key players in liver fibrosis and IL-15 signaling can occur independently of IL-15Rα, we investigated the requirement of IL-15 and IL-15Rα in liver fibrosis. Methods: We induced liver fibrosis in Il15-/- , Il15ra-/- and wildtype C57BL/6 mice by the administration of carbon tetrachloride (CCl4). Liver fibrosis was evaluated by Sirius red and Mason's trichrome staining and α-smooth muscle acting immunostaining of myofibroblasts. Gene expression of collagens, matrix modifying enzymes, cytokines and chemokines was quantified by RT-qPCR. The phenotype and the numbers of intrahepatic lymphoid and myeloid cell subsets were evaluated by flow cytometry. Results: Both Il15-/- and Il15ra-/- mice developed markedly reduced liver fibrosis compared to wildtype control mice, as revealed by reduced collagen deposition and myofibroblast content. Il15ra-/- mice showed further reduction in collagen deposition compared to Il15-/- mice. However, Col1a1 and Col1a3 genes were similarly induced in the fibrotic livers of wildtype, Il15-/- and Il15ra-/- mice, although notable variations were observed in the expression of matrix remodeling enzymes and chemokines. As expected, Il15-/- and Il15ra-/- mice showed markedly reduced numbers of NK cells compared to wildtype mice. They also showed markedly less staining of CD45+ immune cells and CD68+ macrophages, and significantly reduced inflammatory cell infiltration into the liver, with fewer pro-inflammatory and anti-inflammatory monocyte subsets compared to wildtype mice. Conclusion: Our findings indicate that IL-15 exerts its profibrogenic role in the liver by promoting macrophage activation and that this requires trans-presentation of IL-15 by IL-15Rα.


Asunto(s)
Tetracloruro de Carbono , Modelos Animales de Enfermedad , Subunidad alfa del Receptor de Interleucina-15 , Interleucina-15 , Cirrosis Hepática , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Interleucina-15/metabolismo , Interleucina-15/genética , Ratones , Subunidad alfa del Receptor de Interleucina-15/genética , Subunidad alfa del Receptor de Interleucina-15/metabolismo , Cirrosis Hepática/inmunología , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/inducido químicamente , Masculino , Hígado/patología , Hígado/metabolismo , Hígado/inmunología , Citocinas/metabolismo , Receptores de Interleucina-15
2.
ISME Commun ; 4(1): ycae033, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38774131

RESUMEN

Iron fortification to prevent anemia in African infants increases colonic iron levels, favoring the growth of enteropathogens. The use of prebiotics may be an effective strategy to reduce these detrimental effects. Using the African infant PolyFermS gut model, we compared the effect of the prebiotics short-chain galacto- with long-chain fructo-oligosaccharides (scGOS/lcFOS) and native inulin, and the emerging prebiotic acacia gum, a branched-polysaccharide-protein complex consisting of arabinose and galactose, during iron supplementation on four Kenyan infant gut microbiota. Iron supplementation did not alter the microbiota but promoted Clostridioides difficile in one microbiota. The prebiotic effect of scGOS/lcFOS and inulin was confirmed during iron supplementation in all investigated Kenyan infant gut microbiota, leading to higher abundance of bifidobacteria, increased production of acetate, propionate, and butyrate, and a significant shift in microbiota composition compared to non-supplemented microbiota. The abundance of the pathogens Clostridium difficile and Clostridium perfringens was also inhibited upon addition of the prebiotic fibers. Acacia gum had no effect on any of the microbiota. In conclusion, scGOS/lcFOS and inulin, but not acacia gum, showed a donor-independent strong prebiotic potential in Kenyan infant gut microbiota. This study demonstrates the relevance of comparing fibers in vitro prior to clinical studies.

3.
Biol Res ; 57(1): 8, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475854

RESUMEN

The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.


Asunto(s)
Vaina de Mielina , Neuroglía , Neuroglía/fisiología , Vaina de Mielina/fisiología , Células Madre , Médula Espinal , Encéfalo
4.
Cancers (Basel) ; 16(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38473431

RESUMEN

In the rapidly evolving landscape of cancer cachexia research, the development and refinement of diagnostic and predictive biomarkers constitute an ongoing challenge. This study aims to introduce longitudinal muscle biopsies as a potential framework for disease monitoring and treatment. The initial feasibility and safety assessment was performed for healthy mice and rats that received two consecutive muscle biopsies. The assessment was performed by utilizing three different tools. Subsequently, the protocol was also applied in leiomyosarcoma tumor-bearing rats. Longitudinal muscle biopsies proved to be a safe and feasible technique, especially in rat models. The application of this protocol to tumor-bearing rats further affirmed its tolerability and feasibility, while microscopic evaluation of the biopsies demonstrated varying levels of muscle atrophy with or without leukocyte infiltration. In this tumor model, sequential muscle biopsies confirmed the variability of the cancer cachexia evolution among subjects and at different time-points. Despite the abundance of promising cancer cachexia data during the past decade, the full potential of muscle biopsies is not being leveraged. Sequential muscle biopsies throughout the disease course represent a feasible and safe tool that can be utilized to guide precision treatment and monitor the response in cancer cachexia research.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38498789

RESUMEN

PURPOSE: The aim of the present animal study was to examine the impact of two implant designs that promote different insertion torque values on implant stability and evaluate, histomorphometrically, the bone healing for immediate implant placement in fresh sockets. MATERIALS AND METHODS: Twelve female sheep (35.0±5.0kg) and 48 conical Morse-taper dental implants divided into two groups (n = 24 per group): G1 group, where the implants present a design that can provide high insertion torque values; and G2 group, where the implants present a design that can provide low insertion torque values. Both had the same surface treatment, and dimensions (4.0 mm in diameter and 10 mm in length). The first two posterior teeth (both sides) were extracted carefully. Sequentially, there were osteotomies in the mesial socket of each molar tooth. The final implant position was 2 mm below the buccal bone crest level. On the right side, implants of the G1 were placed anteriorly, followed by implants of the G2; and, on the left side, it was the reverse. A digital torquemeter was used to measure the maximum final insertion torque value (f-IT). The initial implant stability quotient (ISQ) was measured immediately after the implant insertion (T0) and immediately after the euthanasia and removing the mandibles with the implants. The animals were euthanized (n=6 animals/ time) at 21 days (T1) and 35 days (T2). The t-test was used to compare statistical differences for each intragroup parameter analyzed. Pearson's correlation was used to analyze possible correlations: f-IT and BIC%, f-IT and ISQ, and ISQ and %BIC. RESULTS: Regarding the insertion torque, the G1 presented higher values than the G2, with a statistically significant difference (p<0.0001). The ISQ mean values were higher in the B-L direction than those obtained for M-D for both groups. %BIC measurements showed higher values in samples from G2 than G1 at both times and in both directions. New bone, medullary spaces, and collagen matrix had statistical differences between the groups at each evaluation time. CONCLUSION: Using implants with a modified macrogeometry plays a significant role in implant stability and the healing process of bone tissue around the implant. It is important for clinicians to carefully consider implant macrogeometry when planning dental implant surgery to achieve optimal implant stability and successful osseointegration, mainly in cases of immediate implant placement.

6.
Mol Imaging Biol ; 26(1): 61-80, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37673943

RESUMEN

The development of humanized monoclonal antibodies (MAbs) with Lutetium-177 ([177Lu]Lu3+) has brought a paradigm shift in the arena of targeted therapy of various cancers. [177Lu]Lu-DOTA-Rituximab and [177Lu]Lu-DOTA-Trastuzumab have gained prominence due to their improved therapeutic efficacy in the treatment of lymphoma and breast cancer. The clinical dose formulation of these radiolabeled MAbs, using low specific activity [177Lu]LuCl3, requires extensive optimization of the radiolabeling protocol. The present study merits the development of a single protocol which has been optimized for conjugation of Rituximab and Trastuzumab with p-NCS-benzyl-DOTA and further radiolabeling these immunoconjugates (ICs) with low specific activity [177Lu]LuCl3. Herein, we report a consistent and reproducible protocol for clinical dose formulations of [177Lu]Lu-DOTA-Rituximab and [177Lu]Lu-DOTA-Trastuzumab (~9.25 GBq each, equivalent to ~2 patient doses) with radiochemical yield (RCY) between 84 and 86% and radiochemical purities (RCP) >99%. The in vitro stabilities of both these radioimmunoconjugates (RICs) were retained up to 120 h post-radiolabeling, upon storage with L-ascorbic acid as stabilizer (concentration: ~ 220-240 µg/37MBq) at -20 °C. The ready-to-use formulation of clinical doses[177Lu]Lu-DOTA-Rituximab and [177Lu]Lu-DOTA-Trastuzumab has been successfully achieved by employing a single optimized protocol. While [177Lu]Lu-DOTA-Rituximab has exhibited a high degree of localization in retroperitoneal nodal mass of refractory lymphoma patient, high uptake of [177Lu]Lu-DOTA-Trastuzumab has been observed in metastatic breast carcinoma patient with multiple skeletal metastases.


Asunto(s)
Neoplasias de la Mama , Inmunoconjugados , Linfoma , Humanos , Femenino , Rituximab/uso terapéutico , Trastuzumab/uso terapéutico , Radiofármacos/uso terapéutico , Inmunoconjugados/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico
7.
Biol. Res ; 572024.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1564023

RESUMEN

The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.

8.
Cells ; 12(21)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37947643

RESUMEN

Parkinson's disease (PD) is the most common movement disorder, characterized by the progressive loss of dopaminergic neurons from the nigrostriatal system. Currently, there is no treatment that retards disease progression or reverses damage prior to the time of clinical diagnosis. Mesenchymal stem cells (MSCs) are one of the most extensively studied cell sources for regenerative medicine applications, particularly due to the release of soluble factors and vesicles, known as secretome. The main goal of this work was to address the therapeutic potential of the secretome collected from bone-marrow-derived MSCs (BM-MSCs) using different models of the disease. Firstly, we took advantage of an optimized human midbrain-specific organoid system to model PD in vitro using a neurotoxin-induced model through 6-hydroxydopamine (6-OHDA) exposure. In vivo, we evaluated the effects of BM-MSC secretome comparing two different routes of secretome administration: intracerebral injections (a two-site single administration) against multiple systemic administration. The secretome of BM-MSCs was able to protect from dopaminergic neuronal loss, these effects being more evident in vivo. The BM-MSC secretome led to motor function recovery and dopaminergic loss protection; however, multiple systemic administrations resulted in larger therapeutic effects, making this result extremely relevant for potential future clinical applications.


Asunto(s)
Células Madre Mesenquimatosas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Secretoma , Encéfalo , Oxidopamina , Organoides
9.
Phys Med Biol ; 68(9)2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37011626

RESUMEN

Objective. Proton therapy experiments in small animals are useful not only for pre-clinical and translational studies, but also for the development of advanced technologies for high-precision proton therapy. While treatment planning for proton therapy is currently based on the stopping power of protons relative to water (i.e. the relative stopping power (RSP)), estimated by converting the CT number into RSP (Hounsfield unit (HU)-RSP conversion) in reconstructed x-ray computed tomography (XCT) images, the HU-RSP conversion causes uncertainties in RSP, which affect the accuracy of dose simulation in patients. Proton computed tomography (pCT) has attracted a great deal of attention due to its potential to reduce RSP uncertainties in clinical treatment planning. However, as the proton energies for irradiating small animals are much lower than those used clinically, the energy dependence of RSP may negatively affect pCT-based RSP evaluation. Here, we explored whether the low-energy pCT approach provided more accurate RSPs when planning proton therapy treatment for small animals.Approach.We evaluated the RSPs of 10 water- and tissue-equivalent materials with known constituent elements based on pCT measurements conducted at 73.6 MeV, then compared them with XCT-based and calculated RSPs to investigate energy dependence and achieve more accurate RSPs for treatment planning in small animals.Main results. Despite the low proton energy, the pCT approach for RSP evaluation yields a smaller root mean square deviation (1.9%) of RSP from the theoretical prediction, compared to conventional HU-RSP conversion with XCT (6.1%).Significance.Low-energy pCT is expected to improve the accuracy of proton therapy treatment planning in pre-clinical studies of small animals if the RSP variation that can be attributed to energy dependence is identical to the variation in the clinical proton energy region.


Asunto(s)
Terapia de Protones , Protones , Animales , Rayos X , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/veterinaria , Tomografía Computarizada por Rayos X/métodos , Terapia de Protones/métodos , Agua
12.
Front Pharmacol ; 13: 999300, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386185

RESUMEN

Malaria is caused by the protozoan Plasmodium sp and affects millions of people worldwide. Its clinical form ranges from asymptomatic to potentially fatal and severe. Current treatments include single drugs such as chloroquine, lumefantrine, primaquine, or in combination with artemisinin or its derivatives. Resistance to antimalarial drugs has increased; therefore, there is an urgent need to diversify therapeutic approaches. The disease cycle is influenced by biological, social, and anthropological factors. This longevity and complexity contributes to the records of drug resistance, where further studies and proposals for new therapeutic formulations are needed for successful treatment of malaria. Nanotechnology is promising for drug development. Preclinical formulations with antimalarial agents have shown positive results, but only a few have progressed to clinical phase. Therefore, studies focusing on the development and evaluation of antimalarial formulations should be encouraged because of their enormous therapeutic potential.

13.
Polymers (Basel) ; 14(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36235978

RESUMEN

Background: Bioceramic nanometer coatings have been regarded as potential substitutes for plasma-sprayed hydroxyapatite coatings, and the association with bone morphogenetic protein (BMP) is an attempt to achieve faster osseointegration to hasten oral rehabilitation. Objective: This study aimed to investigate the effect of recombinant human bone morphogenetic protein-7 (rhBMP-7) on the osseointegration of titanium implants coated with a thin film surface of hydroxyapatite (HA). Methods: Two implants (n = 24) were placed in each white New Zealand rabbits' femur (n = 6). Implants were placed in the right femur after standard instrumentation (A and B) and in the left femur after an over-instrumentation (C and D), preventing bone-implant contact. The distal implants were installed associated with rhBMP-7 (groups B [regular instrumentation] and D [over-instrumentation]) and, also, in the absence of without BMP (control groups A [regular instrumentation] and C [over-instrumentation]). After 4 weeks, the animals were euthanized. The bone blocks containing the implants were embedded in methyl methacrylate and sectioned parallel to the long axis of the implant, which were analyzed by image segmentation. The data were analyzed using a nonparametric statistical method. Results: We observed that Group A had a mean bone formation of 35.6% compared to Group B, which had 48.6% (p > 0.05). Moreover, this group showed 28.3% of connective tissue compared to Group A, with 39.3%. In the over-instrumented groups, rhBMP-7 (Group D) showed an enhanced and significant increase in bone formation when compared with the group without rhBMP-7 (Group C). Conclusion: We concluded that the association of rhBMP-7 to thin nanostructure HA-coated implants promoted greater new bone area than the same implants in the absence of rhBMP-7, mainly in cases of over-instrumented implant sites.

14.
Acta Cardiol Sin ; 38(4): 435-442, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35873130

RESUMEN

Since the discovery of three major pathophysiological mechanisms of pulmonary arterial hypertension (PAH), including prostacyclin, endothelin and nitric oxide pathways, the therapeutic options for PAH have increased. Nevertheless, despite these advances, the prognosis remains unsatisfactory for many patients with PAH. With the progress of both pre-clinical and clinical research on PAH, several novel therapeutic targets have been identified for the treatment of PAH. In this study, we review updated information of novel pathophysiological pathways of pulmonary hypertension, mainly focusing on WHO Group I PAH. Drugs based on these pathways are currently under clinical or pre-clinical investigation, however they have been approved for clinical use. Large clinical trials are required to validate the clinical safety and effects of these novel therapies.

15.
Mol Ther Nucleic Acids ; 28: 558-570, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35592494

RESUMEN

A large hexanucleotide (G4C2) repeat expansion in the first intronic region of C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Several mechanisms have been proposed to explain how the repeat expansion drives disease, and we hypothesize that a variant-selective approach, in which transcripts affected by the repeat expansion are preferentially decreased, has the potential to address most of them. We report a stereopure antisense oligonucleotide, WVE-004, that executes this variant-selective mechanism of action. WVE-004 dose-dependently and selectively reduces repeat-containing transcripts in patient-derived motor neurons carrying a C9orf72-repeat expansion, as well as in the spinal cord and cortex of C9 BAC transgenic mice. In mice, selective transcript knockdown was accompanied by substantial decreases in dipeptide-repeat proteins, which are pathological biomarkers associated with the repeat expansion, and by preservation of healthy C9orf72 protein expression. These in vivo effects were durable, persisting for at least 6 months. These data support the advancement of WVE-004 as an investigational stereopure antisense oligonucleotide targeting C9orf72 for the treatment of C9orf72-associated ALS or FTD.

16.
Lasers Med Sci ; 37(7): 2805-2815, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35635648

RESUMEN

This review aims to providing essential information and the current knowledge about the potential role of macrophages, especially their M2 subtypes in different diabetic wounds both in clinical and pre-clinical models under the influence of photobiomodulation (PBM). The long-term goal is to advance the macrophage-based therapies to accelerate healing of diabetic foot ulcers. We reviewed all databases provided by PubMed, Google Scholar, Scopus, Web of Science, and Cochrane precisely from their dates of inception to 25/10/2021. The keywords of Diabetes mellitus diseases, wound healing, macrophage, and photobiomodulation or low-level laser therapy were used in this systematic review.A total of 438 articles were initially identified in pubmed.ncbi.nlm.nih.gov (15 articles), Google scholar (398 articles), Scopus (18 articles), and Web of Science (7 articles). Four hundred sixteen articles that remained after duplicate studies (22 articles) were excluded. After screening abstracts and full texts, 14 articles were included in our analysis. Among them, 4 articles were about the effect of PBM on macrophages in type 2 diabetes and also found 10 articles about the impact of PBM on macrophages in type 1 diabetes. The obtained data from most of the reviewed studies affirmed that the PBM alone or combined with other agents (e.g., stem cells) could moderate the inflammatory response and accelerate the wound healing process in pre-clinical diabetic wound models. However, only very few studies conducted the detailed functions of polarized macrophages and M2 subtypes in wound healing of diabetic models under the influence of PBM. Further pre-clinical and clinical investigations are still needed to investigate the role of M2 macrophages, especially its M2c subtype, in the healing processes of diabetic foot ulcers in clinical and preclinical settings.


Asunto(s)
Diabetes Mellitus Tipo 2 , Pie Diabético , Terapia por Luz de Baja Intensidad , Pie Diabético/radioterapia , Humanos , Macrófagos , Cicatrización de Heridas
17.
Oncol Lett ; 23(2): 64, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35069873

RESUMEN

Desmoplastic malignant pleural mesothelioma (DMM) is a rare histological variant of malignant pleural mesothelioma, which is a highly aggressive neoplasm of the mesothelium. DMM is associated with distant metastases and short survival. Effective treatments for DMM are not established and the development of histotype-tailored treatments is difficult due to the rarity of the disease. Although patient-derived cancer models are crucial tools for the development of novel therapeutics, they are difficult to obtain for DMM; no DMM cell lines or xenografts are available from public biobanks and only two cell lines have been reported. Thus, the present study aimed to establish a novel cell line of DMM as a resource for drug screening. A cell line of DMM was established, designated as NCC-DMM1-C1, using surgically resected tumor tissues from a 73-year-old male patient with DMM. Characteristics of NCC-DMM1-C1 cells were examined, such as growth, spheroid formation and invasion capability. Drug targets and anti-cancer drugs with anti-proliferative efficacy were examined using a comprehensive kinase activity assay and drug screening of 213 anti-cancer agents, respectively. NCC-DMM1-C1 exhibited fast growth, spheroid formation and invasion capability, suggesting that the NCC-DMM1-C1 cells retained the aggressive features of DMM. NCC-DMM1-C1 cells and the tumor tissue shared common activity profiles of kinases, which included FES, Wee1, platelet-derived growth factor receptor-ß and Src. The drug screening revealed that bortezomib, fostamatinib, gemcitabine, homoharringtonine and vinorelbine had anti-proliferative effects, which have not been previously reported for DMM. It was concluded that NCC-DMM1-C1 cells may be a useful tool for the study of DMM.

18.
Odontology ; 110(3): 467-475, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35041107

RESUMEN

The aim of this study was to evaluate the effect of strontium ranelate (Sr) on post-extraction socket healing in rats submitted to the administration of bisphosphonates. Sixty rats were submitted to the tooth extraction of the first lower molar after 60 days of the daily administration of saline solution (SS) or alendronate (ALN). Then, the animals were allocated into six groups namely CTR: administration of SS during the whole experiment, ALN: administration of ALN during the whole experiment, ALN/SS: application of SS for 30 days after extraction in animals previously treated with ALN, ALN/Sr: application of Sr for 30 days after extraction in animals previously treated with ALN, ALN/S60: ALN therapy interruption 30 days before the extraction followed by the application of SS for 60 days, and ALN/Sr60: ALN therapy interruption 30 days before the tooth extraction followed by the application of Sr for 60 days. The healing of the post-extraction sockets was evaluated by microCT and histomorphometry. The use of ALN induced partial bone necrosis, inflammatory infiltration, and a delay in soft tissue healing; the use of Sr improved the connective tissue organization. Sr has subtle positive effects on the post-extraction healing in animals submitted to the administration of bisphosphonate.


Asunto(s)
Conservadores de la Densidad Ósea , Difosfonatos , Alendronato/farmacología , Animales , Conservadores de la Densidad Ósea/farmacología , Ratas , Tiofenos/farmacología , Extracción Dental
19.
Front Cardiovasc Med ; 8: 739560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722673

RESUMEN

Background: The association between the treatment efficacy and safety of high-intensity focused ultrasound (HIFU)-based renal sympathetic denervation (RDN) and the acoustic energy dose applied has not been fully studied and may provide important understanding of the mechanism that led to failure of the WAVE IV trial. The objective of this study was to externally deliver different HIFU doses to canines for RDN treatment and to investigate the optimal energy dose for HIFU-based RDN. Methods: Thirty canines were divided into five RDN groups according to dose of acoustic energy applied, and a sham control group that consisted of four canines was used for comparisons. All animals in the RDN groups underwent the RDN procedure with different acoustic energy doses, while in the sham control group, renal arteries were harvested without being subjected to acoustic energy delivery and were imaged using color Doppler flow imaging (CDFI). Blood pressure (BP) was recorded, and blood samples were collected before the RDN procedure and at 28 days after the RDN procedure. Histological examinations and measurement of renal tissue norepinephrine concentration were performed in all retrieved samples. Results: Suppression of BP was significant in the 300 W (15.17/8.33 ± 1.47/1.21 mmHg), 250 W (14.67/9.33 ± 1.21/1.37 mmHg), and 200 W (13.17/9.17 ± 2.32/1.84 mmHg) groups. Semiquantitative histological assessment of periarterial nerves around the kidney revealed that target nerves in the 300 W (9.77 ± 0.63), 250 W (9.42 ± 0.67), and 200 W (9.58 ± 0.54) groups had the highest nerve injury scores, followed by the 150 W group (5.29 ± 0.62). Furthermore, decreased renal tissue norepinephrine concentration, together with decreased expression of tyrosine hydroxylase in the 300, 250, and 200 W groups demonstrated effective sympathetic depression following sufficient acoustic energy deposition. However, the renal artery injury score in the 300 W group (0.93 ± 0.13) was significantly higher than in the other groups (p < 0.001). Conclusion: This study provides evidence that RDN effectiveness is based on the energy dose delivered and that 200-250 W is effective and safe in normal-sized canines.

20.
Viruses ; 13(10)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34696533

RESUMEN

The Zika virus (ZIKV) has shown a promising oncolytic effect against embryonal CNS tumors. However, studies on the effect of different administration routes and the ideal viral load in preclinical models are highly relevant aiming for treatment safety and efficiency. Here, we investigated the effect and effectiveness of different routes of administration, and the number of ZIKVBR injections on tumor tropism, destruction, and side effects. Furthermore, we designed an early-stage human brain organoid co-cultured with embryonal CNS tumors to analyze the ZIKVBR oncolytic effect. We showed that in the mice bearing subcutaneous tumors, the ZIKVBR systemically presented a tropism to the brain. When the tumor was located in the mice's brain, serial systemic injections presented efficient tumor destruction, with no neurological or other organ injury and increased mice survival. In the human cerebral organoid model co-cultured with embryonal CNS tumor cells, ZIKVBR impaired tumor progression. The gene expression of cytokines and chemokines in both models suggested an enhancement of immune cells recruitment and tumor inflammation after the treatment. These results open new perspectives for virotherapy using the ZIKVBR systemic administration route and multiple doses of low virus load for safe and effective treatment of embryonal CNS tumors, an orphan disease that urges new effective therapies.


Asunto(s)
Neoplasias Encefálicas/terapia , Viroterapia Oncolítica/métodos , Virus Zika/metabolismo , Animales , Encéfalo/virología , Neoplasias Encefálicas/patología , Línea Celular , Sistema Nervioso Central/efectos de los fármacos , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Humanos , Inmunoterapia/métodos , Inyecciones Intralesiones/métodos , Ratones , Ratones Endogámicos BALB C , Modelos Biológicos , Virus Oncolíticos/metabolismo , Organoides , Virus Zika/inmunología , Infección por el Virus Zika/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA