Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124386

RESUMEN

Biomass fly ash is a sustainable, eco-friendly cement substitute with economic and performance benefits, being renewable compared to coal fly ash. This study examines using biomass fly ash (BFA) as a sustainable cement substitute, comparing it with Class F fly ash (CFA). With a water-binder ratio of 0.5 and replacement rates of 10%, 15%, 20%, 25%, and 30% (by mass), the research highlights BFA's promising applications. BFA and CFA were mixed into cement paste/mortar to analyze their reactivity and properties, with hydration products CH and C-S-H evaluated at 7, 28, and 91 days. Compressive strength, micro-pore structure, and drying shrinkage (assessed from 7 to 182 days) were tested. Results showed BFA had similar pozzolanic reactions to CFA at later stages. While compressive strength decreased with higher BFA replacement rates, early-stage performance matched CFA; growth was CFA-10 (18 MPa) and BFA-10 (17.6 MPa). BFA mortars exhibited slightly better deformation properties. BFA-30 cement had superior performance, with a lower drying shrinkage rate of 65.7% from 14 to 56 days compared to CFA-10's 73.4% and a more stable shrinkage growth rate decrease to 8.4% versus CFA-10's 6.4% after 56 days. This study concluded that BFA, usable without preprocessing, performed best at a 10-15% replacement rate.

2.
Sci Prog ; 107(3): 368504241266559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39043384

RESUMEN

Ceramic-added air lime mortars have been used since ancient times owing to the pozzolanic effect provided by crushed ceramic particles that impart hydraulic properties. This work reviews the historical use, composition, reaction mechanisms, characterization techniques, and performance properties of ceramic-added air lime mortars. The fine ceramic powder composed of silica and alumina phases reacts with calcium hydroxide released during lime hydration to form calcium silicate hydrates (CSH) and calcium aluminate hydrates (CAH) via pozzolanic reaction. This provides hydraulicity and reduces setting time compared to pure air lime mortars. The coarser ceramic particles also serve as aggregate and refine the microstructure as filler. The reactivity depends on the ceramic composition, amorphous phase content, particle size distribution, and firing temperature. Optimal proportioning of the fine ceramic powder and coarse ceramic aggregate is necessary to achieve desired properties. Ceramic addition enhances the durability of air lime mortars against weathering while maintaining compatibility with lime-based masonry structures. Key novelties of this review include: (i) in-depth analysis of the influence of ceramic characteristics (mineralogy, particle size, pozzolanicity) and processing on reaction kinetics and phase evolution; (ii) systematic assessment of mechanical, physical and durability properties in comparison to conventional air lime mortars and cement-based grouts; (iii) elucidation of microstructural mechanisms governing performance using advanced characterization techniques; (iv) critical appraisal of test methods and standards for evaluation; and (v) rigorous discussion on potential applications in construction, conservation and repair, with case studies.

3.
Materials (Basel) ; 17(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793296

RESUMEN

Ceramisite lightweight concrete has excellent performance and relatively light self-weight characteristics. At the same time, the recent development of green high-performance concrete and prefabricated components has also brought the abundant utilization of these mineral mixture. An interfacial transition zone exists between the hardened cement paste and the aggregate, which is the weakest part of the concrete, characterized by high porosity and low strength. In order to study the effect of slag content on the interfacial transition zone in lightweight high-strength concrete, experiments were designed to replace cement with slag at different contents (0%, 5%, 10%, 15%). A series of studies was conducted on its macro-strength, microstructure, and composition. The results indicated that the addition of slag improved the porosity and width of the interfacial transition zone. Adding slag did not reduce the thickness of the concrete interfacial transition zone significantly at 3 d, but it led to significant improvement in the thickness of the interfacial transition zone at 28 d, and the thickness of the interfacial zone at 28 d was reduced from 19 µm to 8.5 µm, a reduction of 55%. The minimum value of microhardness in the slurry region of the interfacial specimens also increased from 19 MPa to 26 MPa, an increase of 36%. In addition, the structural density of the interfacial region was further increased, resulting in varying degrees of improvement in the macroscopic anti-splitting strength. One of the important reasons for this phenomenon is that the addition of slag optimizes the chemical composition of the interface and promotes the continuation of the pozzolanic reactivity, which further enhances the hydration at the interface edge.

4.
Sci Rep ; 14(1): 6966, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521864

RESUMEN

To reveal the mechanism of the influence of the curing temperature on the strength of lime activated fly ash-GGBS cured silt soil, the curing of dredged silt was carried out by using fly ash and GGBS as the curing agent and lime as the activator. Unconfined compressive strength (UCS) experiments were carried out, and the micro-analysis of the cured silt was carried out by experimental methods including scanning electron microscope (SEM) tests, X-ray diffraction (XRD), etc. to reveal the mechanism of the curing temperature on the dredged silt. According to the test results, the hydration reaction and pozzolanic reaction between lime-fly ash-GGBS and silt soil were promoted with the increase of the curing temperature. when the curing temperature of the sample reached 40 â„ƒ, a large amount of gel products such as hydrated calcium aluminate (C-A-H) and hydrated calcium silicate (C-S-H) were generated, which enhanced the bonding force between soil particles and filled up the inter-particle pore space, thereby improving the UCS of the sample. The results of SEM confirmed that C-A-H and C-S-H were the main substances for the construction of cured silt skeleton. C-S-H and C-A-H were detected by XRD. The results of the study fill the gap in the effect of curing temperature on the direction of lime-activated fly ash-GGBS cured silt soil.

5.
Materials (Basel) ; 16(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005053

RESUMEN

Surface electrical resistivity is a non-destructive technique that is sensitive to the microstructure of hydrated cement paste and the chemical composition of the pore solution in cement-based materials. In this study, a Wenner array was used to measure changes in mortar resistivity due to chloride ion diffusion as a function of electrode separation. Specimens were made from four mortar mixtures: 100% Ordinary Portland cement and 60% cement + 40% fly ash at two water/binder ratios of 0.55 and 0.40. The specimens were subjected to unidirectional chloride ion diffusion in a 2.8 M NaCl solution for 175 days. To determine the chloride penetration depth, three methods were used: silver nitrate spraying, chloride concentration profiles via potentiometric titration, and chloride concentration profiles via inversion of the resistivity data using the RES1D software (version 1.00.09 Beta). The results showed a linear relationship between the chloride ion penetration depth obtained via inversion of the surface electrical resistivity data versus the penetration depth from colorimetry and from chloride concentration profiling (both with R2 = 0.8612). Chloride penetration changed the conductivity of the pore solution; therefore, the resistivity decreased when increasing both the chloride concentration and the penetration depth. Inversion of surface resistivity data obtained with a Wenner array permitted non-destructive determination of chloride penetration. However, these results were obtained under laboratory environmental conditions and other scenarios must be addressed for wider applications.

6.
Materials (Basel) ; 16(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37959606

RESUMEN

The objective of this study is to determine the influence of recycled glass powder (GP) on the physico-mechanical behavior and durability of a ternary cementitious binder containing calcined clay_metakaolin (MK) or rice husk ash (RHA). Different mortars were produced and characterized in fresh and hardened states. Reference mortars were produced using 100% cement CEM II/B-L 42.5R and 70% CEM + 30% MK or RHA. Test mortars were produced with the substitution of the MK or RHA with the GP and keeping the rate of the substitution at 30%; i.e., in ratios of 20:10, 15:15, and 20:10 of MK/RHA:GP. The water/binder weight ratio was maintained at 0.5, and the consistency of all mortars was adjusted using an admixture (superplasticizer/binder weight ratio of 0.75%). The substitution of MK and RHA with GP reduces the water demand to achieve the normal consistency of pastes and therefore increases the workability of mortars containing both binders CEM+MK+GP and CEM+RHA+GP. The substitution of MK and RHA with GP slightly reduces the compressive strength for both binders. The water-accessible porosity slightly increases for the substitution of MK and reduces for the substitution of RHA with GP. The mass losses after acid attack slightly increase with the substitution with GP, lower for the MK than the RHA up to 15% GP, but it remained far below that of 100% CEM. The results show that the substitution of MK and RHA with GP can improve the physical properties and durability of the mortars compared with that of 100% CEM, but it slightly decreases the mechanical properties due to the low rate of the pozzolanic reactivity of the GP. Further studies should seek to understand the reactivity behavior of the GP at the microstructure scale and therefore improve the mechanical performance of GP based mortar.

7.
Materials (Basel) ; 16(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37895652

RESUMEN

This paper deals with the optimization of reactive powder concrete mixtures with respect to the addition of silica fume and the type of polycarboxylate superplasticizer used. First, the properties of reactive powder concrete with eight different commercial polycarboxylate superplasticizers were tested in terms of workability, specific weight, and mechanical properties. It was found that different commercially available superplasticizers had significant effects on the slump flow, specific weight, and compressive and flexural strengths. The optimal superplasticizer (BASF ACE430) was selected for further experiments in order to evaluate the influences of silica fume and superplasticizer content on the same material properties. The results showed that the silica fume and superplasticizer content had considerable effects on the mini-cone slump flow value, specific weight, flexural and compressive strengths, and microstructure. There were clearly visible trends and local minima and maxima of the measured properties. The optimal reactive powder concrete mixture had a composition of 3.5-4.0% superplasticizer and 15-25% silica fume.

8.
Nanomaterials (Basel) ; 13(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37110968

RESUMEN

Portland cement (PC) is a material that is indispensable for satisfying recent urban requirements, which demands infrastructure with adequate mechanical and durable properties. In this context, building construction has employed nanomaterials (e.g., oxide metals, carbon, and industrial/agro-industrial waste) as partial replacements for PC to obtain construction materials with better performance than those manufactured using only PC. Therefore, in this study, the properties of fresh and hardened states of nanomaterial-reinforced PC-based materials are reviewed and analyzed in detail. The partial replacement of PC by nanomaterials increases their mechanical properties at early ages and significantly improves their durability against several adverse agents and conditions. Owing to the advantages of nanomaterials as a partial replacement for PC, studies on the mechanical and durability properties for a long-term period are highly necessary.

9.
Materials (Basel) ; 16(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36837046

RESUMEN

This article investigates the relationships between different chemical compositions of simulated cement concrete pore solutions and changes on the surface of zeolite rock with potassium clinoptilolite as its main component. The changes were studied using X-ray diffraction (XRD), thermal analysis (DTA-TG) and scanning electron microscopy (SEM). Zeolite powder samples and a ground section of 16-64 mm grain were tested. The simulated pore solutions were based on Ca, Na, K hydroxides and K2SO4. It was found that 100% of Ca(OH)2 in the systems could react between 7 and 180 days of hydration due to pozzolanic and side reactions. As the degree of clinoptilolite conversion increased, it became more difficult to detect it in X-ray patterns. At the same time, various microstructural changes could be observed. As a result of the reactions that occurred, hydrated calcium silicates, sulfate and carbonate compounds were formed. Potassium hydroxide had a more substantial effect on clinoptilolite reactivity than sodium hydroxide. This effect can be enhanced by the presence of SO23- ions in the solution.

10.
Materials (Basel) ; 16(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36836956

RESUMEN

Steam curing, a common way of curing precast concrete, can greatly improve its 1-day strength. However, the thermal effect of prolonged high-temperature curing can negatively impact the concrete's performance, thus compromising production of precast products in cold regions. Fly ash (FA) is used as a supplementary cementitious material to improve part of the properties of concrete. In this paper, we investigated the effect of FA (10~30%) on the compressive strength and microstructure of manufactured sand concrete at the steam curing and later stages. Specifically, we analyzed the behavior of FA in the constant temperature phase under steam curing. Results indicated that the pozzolanic reaction of FA started to occur at 24 h of constant temperature curing. Early hydration under steam curing produces a large amount of Ca(OH)2, causing the pozzolanic reaction of FA to occur significantly earlier, and the high pH value of the solution and the fibrous mesh structure of the FA surface promote the pozzolanic reaction. The addition of 30% FA to manufactured sand concrete causes a significant reduction in early strength under steam curing, which is not beneficial to the formwork removal and tensioning of precast members. Notably, manufactured sand concrete with 20% FA under steam curing had the highest late strength. The filling effect of FA and the additional gel produced by the pozzolanic reaction would result in the reduction in large pore content, refinement of pore size, improvement of microstructural compactness, and increase in gel system strength. Therefore, the addition of 20% FA to the manufactured sand concrete can improve the long-term strength, which is beneficial to the production of precast beams in cold regions.

11.
Materials (Basel) ; 16(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36676454

RESUMEN

To better understand the pozzolanic activity in fly ash used as a supplementary cementitious material in cement or concrete, calcium silicate hydrate (C-S-H) has been synthesized by adding silica fume to a supersaturated calcium hydroxide solution prepared by mixing calcium oxide and ultrapure water. Thermogravimetric analysis results have revealed the variation in the weight loss due to C-S-H in the samples and the conversion ratio of calcium oxide (the µCaO value), which represents the proportion of calcium oxide in the initial reaction mixture used to produce C-S-H, with curing time. The weight loss due to C-S-H and the µCaO value were both maximized (13.5% and 90.4%, respectively) when the initial C/S molar ratio was 1.0 and the curing time was 90 d. X-ray diffraction (XRD) analysis has indicated that C-S-H in the samples after curing for 7 d had the composition Ca1.5SiO3.5·xH2O. 29Si magic angle spinning (MAS) nuclear magnetic resonance (NMR) analysis has revealed that the degree of polymerization of C-S-H increased with an increase in curing time for samples with an initial C/S molar ratio of 1.0. The ratio of internal to terminal tetrahedra (Q2/Q1) increased from 2.29 to 4.28 with the increase in curing time from 7 d to 90 d. At curing times ≥ 28 d, a leaf-like C-S-H structure was observed by scanning electron microscopy (SEM). An ectopic nucleation-polymerization reaction process is proposed for the formation mechanism of C-S-H.

12.
J Environ Manage ; 326(Pt A): 116690, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36372035

RESUMEN

In this research, an economical and eco-friendly ultra-high performance concrete (UHPC) with compressive strength of more than 120 MPa was prepared with the dosage of sewage sludge ash (SSA) at 8 wt%. The results indicate that the addition of SSA has an adverse influence on the workability of UHPC samples due to its special morphology. Furthermore, the microstructure and phase assemblage of SSA-based UHPC were determined and the results show that SSA inhibits the early hydration of cement clinker, while promotes the precipitation of additional hydration products at later curing ages due to its pozzolanic reaction. The pore structure analysis of SSA-based UHPC determined by mercury intrusion porosimetry indicates that the addition of SSA increases the cumulative pore volume, while decreases the large pore volume of UHPC. Economic and environmental analysis indicates that using SSA-based UHPC greatly reduces the unit cost and the impacts on the environment.


Asunto(s)
Materiales de Construcción , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Materiales de Construcción/análisis , Fuerza Compresiva
13.
Environ Sci Pollut Res Int ; 30(3): 6612-6626, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36001266

RESUMEN

Clays are often envisaged as an alternative to activated carbon for wastewater pollutant adsorption. However, conclusive results have only been obtained for clays heavily chemically modified. In this study, a greener approach is proposed to improve the retention capacity of clays. It consists in mixing clay (C) with eggshell (ES) and calcine, and then exposing to gliding arc plasma (ESC-800/PL). The resulting materials were characterized by nitrogen physisorption, FTIR, XRD, TGA/DTG, and point of zero charge analyses. The preparation gives porous platelet agglomerates resulting from the kaolinite-metakaolinite transition, thereby increasing their internal specific surface area and capacity to retain pollutants. This granular distribution is kept stable by partial pozzolanic reactions avoiding deagglomeration. The specific surface area and total pore volume increased respectively from 14 m2 g-1 and 0.049 cm3 g-1 to 89 m2 g-1 and 0.061 cm3 g-1 leading to an enhanced removal efficiency of Fast Green and Orange G dyes from polluted water. The maximum adsorption capacity occurred at 298 K attaining values of 32.34 and 14.78 mg g-1 for OG and FG, respectively. The pH plays a crucial role in the maximum sorption of dyes, and the experimental data were successfully adjusted to pseudo-first-order kinetic and Liu isotherm model.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Arcilla/química , Porosidad , Caolín , Colorantes , Adsorción , Cinética , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno
14.
Materials (Basel) ; 15(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36499850

RESUMEN

Concrete structures are increasingly becoming exposed to organic acid attack conditions, such as those found in agriculture and food-related industries. This paper aims to experimentally verify the thermodynamic modeling of cement pastes under acetic acid attack. For this, a modeling approach implemented in IPHREEQC via Matlab is described, and results are compared with measured pH and compositions of equilibrated solutions (MP-AES) as well as unreacted/precipitated solids (XRF, XRD and STA) for a wide range of acid concentrations. The 11% replacement of cement by silica fume (SF) led to a 60 or 70% reduction (measured or modeled, respectively) of Portlandite content in the hardened cement paste due to the pozzolanic reaction resulting in higher content of CSH phases, which has effects on the progression of dissolution processes and a resulting pH with increased acid concentrations. Considering that no fitting parameter was used, the model predictions showed good agreement with measured values of pH, dissolved ion concentrations and composition of the remaining (degraded) solids overall. The discrepancies here were more pronounced at very high acid concentrations (equilibrium pH < ~4), i.e., after the full dissolution of hydrate phases due to limitations in the model used to describe Al-, Si- and Fe-gel phases and/or identified experimental challenges in precipitation of calcium and aluminum acetate hydrates.

15.
Materials (Basel) ; 15(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35009510

RESUMEN

This study aims to increase the pozzolanic reactivity of metakaolin (MK) in Portland cement (PC) blends by adding additional calcium hydroxide (CH_add) to the initial mixture. Cement paste samples were prepared with PC, MK and water with a water-to-binder ratio of 0.6. Cement replacement ratios were chosen from 5 to 40 wt.% MK. For higher replacement ratios, i.e., 20, 30 and 40 wt.% MK, CH_add was included in the mixture. CH_add-to-MK ratios of 0.1, 0.25 and 0.5 were investigated. Thermogravimetric analysis (TGA) was carried out to study the pozzolanic reactivity after 1, 7, 28 and 56 days of hydration. A modified mass balance approach was used to normalize thermogravimetric data and to calculate the calcium hydroxide (CH) consumption of samples with CH_add. Results showed that, without CH_add, a replacement ratio of 30 wt.% or higher results in the complete consumption of CH after 28 days at the latest. In these samples, the pozzolanic reaction of MK turned out to be restricted by the amount of CH available from the cement hydration. The increased amount of CH in the samples with CH_add resulted in an enhanced pozzolanic reaction of MK as confirmed by CH consumption measurements from TGA.

16.
Environ Sci Pollut Res Int ; 29(15): 21232-21243, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34751883

RESUMEN

Air pollution control (APC) residues, which are known to be the byproducts of incineration treatment, exhibit a high leaching potential of toxic metals. Calcium silicate hydrate (C-S-H), which is a major hydration product of hardened cement and immobilizes toxic metal, can be formed by the reaction of Ca with pozzolanic Si in a highly alkaline environment. Toxic metals might be immobilized by the addition of pozzolanic material to APC residues (instead of using cement), which is a Ca source and provides an alkaline condition. In this study, diatomite, which mainly comprises amorphous silica (SiO2·nH2O), was investigated as a pozzolanic material for Pb immobilization in APC residues obtained from a municipal solid waste incinerator. APC residues were cured with and without the addition of diatomite at different temperatures. When diatomite was added to APC residues, pozzolanic phases such as C-S-H gel were formed via the consumption of Ca(OH)2 and CaClOH. Compared to APC residues cured without diatomite, the leaching of Pb decreased by 99% for APC residues cured for 14 days with 10% diatomite at 70 °C. The results of sequential chemical extraction showed that water-soluble Pb in APC residues was reduced from 10.3% to nearly zero by the pozzolanic reaction. Consequently, the leaching amount of Pb dropped below 0.3 mg/L (Japanese criteria for landfill disposal). Overall, these experiments provide promising results regarding the possibility of using diatomite for pretreating APC residues.


Asunto(s)
Contaminación del Aire , Metales Pesados , Eliminación de Residuos , Tierra de Diatomeas , Incineración , Plomo , Metales Pesados/análisis , Eliminación de Residuos/métodos , Dióxido de Silicio , Residuos Sólidos
17.
Materials (Basel) ; 14(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34947168

RESUMEN

This study investigated the air aging converter (Basic Oxygen Furnace, BOF) slag aggregate mortar with pulverized fly ash (PFA) and ferronickel slag (FNS). The chemical composition and mineralogical constituents of BOF incorporated mortar were analyzed. Setting time, flowability, compressive strength, and length change were measured to evaluate the fundamental properties of BOF mortar. The X-ray CT analysis was employed to observe the effect of converter slag in the cement matrix visually. The results showed that the hydration of BOF generated a pore at the vicinity of the aggregate, which decreased the compressive strength and increased the length change of mortar. However, the PFA or FNS incorporation of PFA or FNS can decrease the alkalinity of pore solution and subsequently reduce the reactivity of BOF aggregate. Thus, the incorporation of PFA and FNS can be a way to eliminate the disadvantage of BOF, such as volume expansion.

18.
Materials (Basel) ; 14(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34832358

RESUMEN

Calcium carbide residue (CCR) is the end-product of production of acetylene gas for the applications such as welding, lighting, ripening of fruits, and cutting of metals. Due to its high pH value, disposing of CCR as a landfill increases the alkalinity of the environment. Therefore, due to its high calcium content, CCR is mostly blended with other pozzolanic materials, together with activators as binders in the cement matrix. In this study, cement was partially substituted using CCR at 0%, 7.5%, 15%, 22.5% and 30% by weight replacement, and nano silica (NS) was utilized as an additive by weight of binder materials at 0%, 1%, 2%, 3% and 4%. The properties considered were the slump, the compressive strength, the flexural strength, the splitting tensile strength, the modulus of elasticity, and the water absorption capacity. The microstructural properties of the concrete were also examined through FESEM and XRD analysis. The results showed that both CCR and NS increase the concrete's water demand, hence reducing its workability. Mixes containing up to 15% CCR only showed improved mechanical properties. The combination of CCR and NS significantly improved the mechanical properties and decreased the concrete's water absorption through improved pozzolanic reactivity as verified by the FESEM and XRD results. Furthermore, the microstructure of the concrete was explored, and the pores were refined by the pozzolanic reaction products. The optimum mix combination was obtained by replacing 15% cement using CCR and the addition of 2% NS by weight of cementitious materials. Therefore, using a hybrid of CCR and NS in concrete will result in reduction of cement utilization in concrete, leading to improved environmental sustainability and economy.

19.
Materials (Basel) ; 14(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070028

RESUMEN

In this paper, properties of concretes incorporating recycling waste and corrosion susceptibility of reinforcing steel bars were studied. It was established that fineness of ground granulated blast furnace slag (GGBFS) and fly ash (FA) and their simultaneous combination have an influence on the kinetics of strength development of Portland cements and concretes. The compressive strength of concrete containing 10% by mass of GGBFS and 10% by mass of FA even exceeds the compressive strength of control concrete by 6.5% and concrete containing 20% by mass of GGBFS by 8.8% after 56 days of hardening. The formation of the extra amount of ettringite, calcium hydrosilicates as well as hydroaluminosilicates causes tightening of a cement matrix of concrete, reducing its water absorption, and improving its resistance to freezing and thawing damage.

20.
Materials (Basel) ; 14(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672665

RESUMEN

A sustainable use of locally available wastes from agriculture as supplementary cementitious materials (SCMs) is an alternative solution for the prevention of excessive raw material usage, reduction of CO2 emission and cost-effective concrete production. This paper studies the reactivity of non-traditional waste SCMs: Wheat straw ash (WSA), mixture of wheat and soybean straw ash (WSSA) and soybean straw ash (SSA), which are abundant as agricultural by-products in Serbia. The chemical evaluation using XRF technique, thermal analysis (TGA/DSC), XRD and FTIR methods were performed along with physical properties tests to investigate the feasibility of utilizing biomass ashes as cement substitutes. The obtained results demonstrate a high pozzolanic activity of WSA, which is attributed to a high reactive silica content of the ash and its satisfactory level of fineness. A wider hump in XRD pattern of WSA compared to WSSA and SSA confirmed that it abounds in amorphous (reactive) phase. The insufficient activity index of soybean-based biomass ashes, characterized with a low silica content, was improved by additional grinding and/or blending with amorphous silica-rich material. This points out the mechanical activation, i.e., grinding procedure, and chemical activation, i.e., modification of the chemical composition, as techniques efficient at producing pozzolanic materials from biomass wastes. Tested biomass ashes are characterized with negligible leaching values of heavy metals, thereby satisfying eco-friendly principles of SCM utilization. The application of biomass ashes as SCMs leads to substantial cost savings, as well as benefits to the environment, such as lower consumption of cement, reduction of CO2 emissions during the production of cement and sustainable waste management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA