Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Biol (Weinh) ; : e2300629, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123297

RESUMEN

In this study, the dynamic behavior of fractional order co-infection model with human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type I (HTLV-I) is analyzed using operational matrix of Hermite wavelet collocation method. Also, the uniqueness and existence of solutions are calculated based on the fixed point hypothesis. For the fractional order co-infection model, its positivity and boundedness are demonstrated. Furthermore, different types of Ulam-Hyres stability are also discussed. The numerical solution of the model are obtained by using the operational matrix of the Hermite wavelet approach. This scheme is used to solve the system of nonlinear equations that are very fruitful and easy to implement. Additionally, the stability analysis of the numerical scheme is explained. The mathematical model taken in this work incorporates the biological characteristics of both HIV-1 and HTLV-I. After that all the equilibrium points of the fractional order co-infection model are found and their existence conditions are explored with the help of the Caputo derivative. The global stability of all equilibrium points of this model are determined with the help of Lyapunov functions and the LaSalle invariance principle. Convergence analysis is also discussed. Hermite wavelet operational matrix methods are more accurate and convergent than other numerical methods. Lastly, variations in model dynamics are found when examining different fractional order values. These findings will be valuable to biologists in the treatment of HIV-1/HTLV-I.

2.
F1000Res ; 10: 936, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987771

RESUMEN

Despite the intervention of WHO on vaccination for reducing the spread of Hepatitis B Virus (HBV), there are records of the high prevalence of HBV in some regions. In this paper, a mathematical model was formulated to analyze the acquisition and transmission process of the virus with the view of identifying the possible way of reducing the menace and mitigating the risk of the virus. The models' positivity and boundedness were demonstrated using well-known theorems. Equating the differential equations to zero demonstrates the equilibria of the solutions i.e., the disease-free and endemic equilibrium. The next Generation Matrix method was used to compute the basic reproduction number for the models. Local and global stabilities of the models were shown via linearization and Lyapunov function methods respectively. The importance of testing and treatment on the dynamics of HBV were fully discussed in this paper. It was discovered that testing at the acute stage of the virus and chronic unaware state helps in better management of the virus.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Hepatitis B/diagnóstico , Hepatitis B/epidemiología , Humanos , Modelos Teóricos , Prevalencia , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA