Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37047210

RESUMEN

Sacbrood virus (SBV) is a significant problem that impedes brood development in both eastern and western honeybees. Whole-genome sequencing has become an important tool in researching population genetic variations. Numerous studies have been conducted using multiple techniques to suppress SBV infection in honeybees, but the genetic markers and molecular mechanisms underlying SBV resistance have not been identified. To explore single nucleotide polymorphisms (SNPs), insertions, deletions (Indels), and genes at the DNA level related to SBV resistance, we conducted whole-genome resequencing on 90 Apis cerana cerana larvae raised in vitro and challenged with SBV. After filtering, a total of 337.47 gigabytes of clean data and 31,000,613 high-quality SNP loci were detected in three populations. We used ten databases to annotate 9359 predicted genes. By combining population differentiation index (FST) and nucleotide polymorphisms (π), we examined genome variants between resistant (R) and susceptible (S) larvae, focusing on site integrity (INT < 0.5) and minor allele frequency (MAF < 0.05). A selective sweep analysis with the top 1% and top 5% was used to identify significant regions. Two SNPs on the 15th chromosome with GenBank KZ288474.1_322717 (Guanine > Cytosine) and KZ288479.1_95621 (Cytosine > Thiamine) were found to be significantly associated with SBV resistance based on their associated allele frequencies after SNP validation. Each SNP was authenticated in 926 and 1022 samples, respectively. The enrichment and functional annotation pathways from significantly predicted genes to SBV resistance revealed immune response processes, signal transduction mechanisms, endocytosis, peroxisomes, phagosomes, and regulation of autophagy, which may be significant in SBV resistance. This study presents novel and useful SNP molecular markers that can be utilized as assisted molecular markers to select honeybees resistant to SBV for breeding and that can be used as a biocontrol technique to protect honeybees from SBV.


Asunto(s)
Polimorfismo de Nucleótido Simple , Virus ARN , Abejas/genética , Animales , Larva/genética , Filogenia , Virus ARN/genética
2.
J Anim Breed Genet ; 139(2): 145-160, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34559415

RESUMEN

Vietnamese smallholder dairy cows (VDC) are the result of crossbreeding between different zebu (ZEB) and taurine dairy breeds through many undefined generations. Thus, the predominant breed composition of VDC is currently unknown. This study aimed to evaluate the level of genetic diversity and breed composition of VDC. The SNP data of 344 animals from 32 farms located across four dairy regions of Vietnam were collected and merged with genomic reference data, which included three ZEB breeds: Red Sindhi, Sahiwal and Brahman, three taurine breeds: Holstein (HOL), Jersey (JER) and Brown Swiss (BSW), and a composite breed: Chinese Yellow cattle. Diversity and admixture analyses were applied to the merged data set. The VDC were not excessively inbred, as indicated by very low inbreeding coefficients (Wright's FIS ranged from -0.017 to 0.003). The genetic fractions in the test herds suggested that the VDC are primarily composed of HOL (85.0%); however, JER (6.0%), BSW 5.3%) and ZEB (4.5%) had also contributed. Furthermore, major genotype groupings in the test herds were pure HOL (48%), B3:15/16HOL_1/16ZEB (22%) and B2:7/8HOL_1/8ZEB (12%). The genetic makeup of the VDC is mainly components of various dairy breeds but also has a small percentage of ZEB; thus, the VDC could be a good genetic base for selecting high milk-producing cows with some degree of adaptation to tropical conditions.


Asunto(s)
Bovinos , Genoma , Leche , Animales , Cruzamiento , Bovinos/genética , Femenino , Genómica , Genotipo , Vietnam
3.
BMC Genomics ; 19(1): 449, 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29890939

RESUMEN

BACKGROUND: Identification of genomic regions that have been targets of selection may shed light on the genetic history of livestock populations and help to identify variation controlling commercially important phenotypes. The Azeri and Kuzestani buffalos are the most common indigenous Iranian breeds which have been subjected to divergent selection and are well adapted to completely different regions. Examining the genetic structure of these populations may identify genomic regions associated with adaptation to the different environments and production goals. RESULTS: A set of 385 water buffalo samples from Azeri (N = 262) and Khuzestani (N = 123) breeds were genotyped using the Axiom® Buffalo Genotyping 90 K Array. The unbiased fixation index method (FST) was used to detect signatures of selection. In total, 13 regions with outlier FST values (0.1%) were identified. Annotation of these regions using the UMD3.1 Bos taurus Genome Assembly was performed to find putative candidate genes and QTLs within the selected regions. Putative candidate genes identified include FBXO9, NDFIP1, ACTR3, ARHGAP26, SERPINF2, BOLA-DRB3, BOLA-DQB, CLN8, and MYOM2. CONCLUSIONS: Candidate genes identified in regions potentially under selection were associated with physiological pathways including milk production, cytoskeleton organization, growth, metabolic function, apoptosis and domestication-related changes include immune and nervous system development. The QTL identified are involved in economically important traits in buffalo related to milk composition, udder structure, somatic cell count, meat quality, and carcass and body weight.


Asunto(s)
Búfalos/genética , Selección Genética , Animales , Genoma , Estudio de Asociación del Genoma Completo , Genotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA