Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
J Colloid Interface Sci ; 678(Pt B): 497-505, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39260298

RESUMEN

Aqueous zinc-ion batteries are attracting extensive attention due to the long-term service life and credible safety as well as the superior price performance between the low cost of manufacture and high energy density. The fabrication of inexpensive, high-performance flexible solid-state zinc-ion batteries, thus, are urgently need for the blooming wearable electronics. Herein, as a proof-of-concept study of waste into wealth, cellulose flakes derived from waste pomelo peel are utilized as the substrate for electrodes and hydrogel electrolytes into a flexible rocking-chair zinc-ion battery. The unique sandwich-type structure holding the flake-like cellulose substrate and linear carbon nanotubes endows the flexible cathode and anode with fast ion and electron transportation. The obtained cellulose-based hydrogel electrolytes on account of special affinity with aqueous ZnSO4 electrolyte output an excellent ionic conductivity. The assembled flexible rocking-chair zinc-ion battery benefitting from the synergistic effect of sandwich-type electrodes and cellulose-based hydrogel electrolytes demonstrates outstanding electrochemical performance and mechanical properties. This work not only puts up an effective roadmap for flexible battery devices, but also reveals the great potential of waste biomass materials in energy storage applications.

2.
Int J Biol Macromol ; 279(Pt 2): 135249, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226981

RESUMEN

Pomelo peel is a valuable source of pectin, but research on its cell wall polysaccharides is limited. This study compared the cell wall polysaccharides of pomelo peel, enzyme-extracted polysaccharides of pomelo peel, and enzyme-extracted polysaccharides of whole pomelo fruit. Cell wall polysaccharides, including water-soluble pectin (WSP), chelator-soluble pectin (CSP), sodium carbonate-soluble pectin (NSP), 1 mol/L KOH soluble hemicellulose (KSH-1), and 4 mol/L KOH soluble hemicellulose (KSH-2), were obtained by sequence-extraction method. Total polysaccharides from whole pomelo fruit (TP) and peel-polysaccharides from pomelo pericarps (PP) were obtained using enzyme-extraction method. The structural, thermal, rheological, antioxidant properties, and wound healing effect in vitro were described for each polysaccharide. WSP had a uniform molecular weight distribution and high uronic acid (UA) content, suitable for commercial pectin. NSP had the highest Rhamnose (Rha)/UA ratio and a rich side chain with highest viscosity and water retention. PP displayed the highest DPPH radical scavenging activity and reducing capacity at 0.1 to 2.0 mg/mL concentration range, with an IC50 of 1.05 mg/mL for DPPH free radicals. NSP also demonstrated the highest hydroxyl radical scavenging activity and promoted Human dermal keratinocyte proliferation and migration at 10 µg/mL, suggesting potential applications in daily chemical and pharmaceutical industries.

3.
Talanta ; 281: 126871, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39276572

RESUMEN

Both rhoifolin and diosmin belong to flavonoids, which are widely present in citrus. Diosmin is not only used in the medical field in the world, but also used as a dietary supplement in the United States. Rhoifolin has a similar structure to diosmin and also exhibits antioxidant and anti-inflammatory properties. In this study, an anti-rhoifolin monoclonal antibody was prepared and an indirect competitive enzyme-linked immunosorbent assay (icELISA) method was established. The half-maximal inhibitory concentration (IC50) of icELISA was determined to be 4.83 ng/mL, and the detection range was 0.97-33.87 ng/mL. The results of UPLC-MS/MS and icELISA generally demonstrate consistency. Moreover, by exploiting the cross-reactivity of the antibody, diosmin in tablets can be detected by icELISA. The results demonstrate that the developed method has good accuracy, reproducibility, and broad application prospects.

4.
Food Sci Biotechnol ; 33(13): 3093-3104, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39220308

RESUMEN

Minimally processed products are highly convenient, and fresh-cut fruits coated with the synbiotic film have many advantages. This study investigated the film-forming components and preservation ability of Da Xanh pomelo and Thai jackfruit fresh-cut by synbiotic pectin film. The results showed that PA70 film combined with 1.5% FOS (fructooligosaccharides) had the highest number of viable cells of L. plantarum after 30 days of storage at 5 °C. The number of probiotic cells existing on fresh-cut products of Da Xanh pomelo and Thai jackfruit was always high (> 8 log CFU/g) and stable during 10 days of storage. In addition, jackfruit and pomelo fresh-cut preserved with probiotic film also showed probiotic activity in simulated stomach and small intestine medium with the number of probiotic cells (> 6 log CFU/g) and survival cell ratio after 4 h in small intestine medium reached 81.20 ± 0.92% (pomelo) and 82.16 ± 0.94% (Thai jackfruit).

5.
Int J Biol Macromol ; 278(Pt 1): 134469, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102911

RESUMEN

In this study, pectin extracted from pomelo peel was investigated using three different combination methods of pulsed electric field (PEF) and cellulase. Three action sequences were performed, including PEF treatment followed by enzymatic hydrolysis, enzymatic hydrolysis followed by PEF treatment, and enzymatic hydrolysis simultaneously treated by PEF. The three corresponding pectins were namely PEP, EPP and SP. The physiochemical, molecular structural and functional properties of the three pectins were determined. The results showed that PEP had excellent physiochemical properties, with the highest yield (12.08 %), total sugar (80.17 %) and total phenol content (38.20 %). The monosaccharide composition and FT-IR analysis indicated that the three pectins were similar. The molecular weights of PEP, EPP and SP were 51.13, 88.51 and 40.00 kDa, respectively. PEP showed the best gel properties, emulsification stability and antioxidant capacity among the three products, due to its high galacturonic acid and total phenol content, appropriate protein and low molecular weight. The mechanism of PEF-assisted cellulase hydrolysis of pomelo peel was also revealed by SEM analysis. These results suggested that PEF pretreatment was the best method, which not only improved the efficiency of enzymatic extraction, but also reduced resource waste and increased financial benefits.


Asunto(s)
Celulasa , Citrus , Peso Molecular , Pectinas , Hidrólisis , Celulasa/metabolismo , Celulasa/química , Pectinas/química , Citrus/química , Antioxidantes/química , Antioxidantes/farmacología , Electricidad , Fenómenos Químicos , Fenoles/química , Frutas/química , Espectroscopía Infrarroja por Transformada de Fourier , Monosacáridos/análisis
6.
Front Plant Sci ; 15: 1432166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135650

RESUMEN

Parthenocarpy is an important way for seedless fruit production in citrus. However, the molecular mechanism(s) of parthenocarpy in pomelo is still unknown. Our initial study found significantly different parthenocarpic abilities in Guanximiyou (G) and Shatianyou (S) pomelo following emasculation, and an endogenous hormone content assay revealed that indole-3-acetic acid (IAA), gibberellic acid (GA3) and zeatin (ZT) jointly promoted fruit expansion and cell division in parthenocarpic pomelo (G pomelo). To unravel the underlying molecular mechanism(s), we conducted the first transcriptome analysis on the two pomelo accessions at these two critical stages: the fruit initiation stage and the rapid expansion stage, in order to identify genes associated with parthenocarpy. This analysis yielded approximately 7.86 Gb of high-quality reads, and the subsequent de novo assembly resulted in the identification of 5,792 DEGs (Differentially Expressed Genes). Among these, a range of transcription factor families such as CgERF, CgC2H2, CgbHLH, CgNAC and CgMYB, along with genes like CgLAX2, CgGH3.6 and CgGH3, emerged as potential candidates contributing to pomelo parthenocarpy, as confirmed by qRT-PCR analysis. The present study provides comprehensive transcriptomic profiles of both parthenocarpic and non-parthenocarpic pomelos, reveals several metabolic pathways linked to parthenocarpy, and highlights the significant role of plant hormones in its regulation. These findings deepen our understanding of the molecular mechanisms underlying parthenocarpy in pomelo.

7.
Foods ; 13(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39123570

RESUMEN

Pomelo fruit pulp mainly is consumed fresh and with very little processing, and its peels are discarded as biological waste, which can cause the environmental problems. The peels contain several bioactive chemical compounds, especially essential oils (EOs). The content of a specific EO is important for the extraction process in industry and in research units such as breeding research. The explanation of the biosynthesis pathway for EO generation and change was included. The chemical bond vibration affected the prediction of EO constituents was comprehensively explained by regression coefficient plots and x-loading plots. Visible and near-infrared spectroscopy (VIS/NIRS) is a prominent rapid technique used for fruit quality assessment. This research work was focused on evaluating the use of VIS/NIRS to predict the composition of EOs found in the peel of the pomelo fruit (Citrus maxima (J. Burm.) Merr. cv Kao Nam Pueng) following storage. The composition of the peel oil was analyzed by gas chromatography-mass spectrometry (GC-MS) at storage durations of 0, 15, 30, 45, 60, 75, 90, 105 and 120 days (at 10 °C and 70% relative humidity). The relationship between the NIR spectral data and the major EO components found in the peel, including nootkatone, geranial, ß-phellandrene and limonene, were established using the raw spectral data in conjunction with partial least squares (PLS) regression. Preprocessing of the raw spectra was performed using multiplicative scatter correction (MSC) or second derivative preprocessing. The PLS model of nootkatone with full MSC had the highest correlation coefficient between the predicted and reference values (r = 0.82), with a standard error of prediction (SEP) of 0.11% and bias of 0.01%, while the models of geranial, ß-phellandrene and limonene provided too low r values of 0.75, 0.75 and 0.67, respectively. The nootkatone model is only appropriate for use in screening and some other approximate calibrations, though this is the first report of the use of NIR spectroscopy on intact fruit measurement for its peel EO constituents during cold storage.

8.
Food Chem ; 455: 139937, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850973

RESUMEN

Debittering of pomelo juice was conducted using 3.7 g of activated resin, resulting in a 36.8% reduction in bitterness without affecting the bioactive properties of juice. The debittered juice was then encapsulated with Moringa oleifera exudate at various ratios (1-5%), yielding a powder with a slightly rough surface. Total phenol content (TPC) increased by 46-56% compared to the debittered juice. Functional yoghurt containing encapsulates at concentrations of 1% and 2% demonstrated that the 2% concentration led to longer storage duration, resulting in increased acidity and syneresis compared to the control. TPC of the yoghurt (161.89-198.22 µg Gallic acid equivalent (GAE)/g) remained significantly higher (p < 0.05) than that of the control (47.15 µg GAE/g) and acacia gum-based yoghurt (141.89-171.37 µg GAE/g), decreasing with storage duration. Addition of encapsulates significantly altered the yoghurt's texture, resulting in lower firmness (0.57 to 0.64 N) compared to the control, while adhesiveness values remained comparable (6.33 to 6.25 g.s). The highest values of G' and G" were observed in samples containing 2% encapsulates with moringa compared to those with acacia gum. This study suggests potential avenues for further exploration in functional foods with enhanced health benefits.


Asunto(s)
Jugos de Frutas y Vegetales , Moringa oleifera , Yogur , Moringa oleifera/química , Yogur/análisis , Jugos de Frutas y Vegetales/análisis , Granada (Fruta)/química , Fenoles/química , Gusto , Exudados de Plantas/química , Extractos Vegetales/química , Manipulación de Alimentos
9.
Int J Biol Macromol ; 273(Pt 1): 132875, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852718

RESUMEN

To achieve the objective of "waste control by waste", in this study, a green aerogel adsorbent comprised of pomelo-peel cellulose and sodium alginate (PCC/SA) was prepared through dual-network crosslinking. The resulting 3D hierarchical porous structured PCC/SA aerogel exhibited good structural stability, and kept the morphological integrity during 10 days in a wide pH range (2-10), suggesting its potential for recycling in diverse complex environments. Besides, the superior adsorption capacities for methylene blue (MB) and Cu(II) were observed, with the qm values and adsorption equilibrium times were recorded to be 1299.59 mg/g (300 min) and 287.55 mg/g (120 min), correspondingly. Furthermore, the favorable reusability of the PCC/SA aerogel was also demonstrated, with the removal efficiency for MB remaining almost unchanged (about 94 %) after 10 adsorption-desorption cycles, while there was a slight reduction for Cu(II) from 85.28 % to 72.47 %. XPS and FTIR analysis revealed that electrostatic attraction, hydrogen bonding, cation exchange and coordination were the major adsorption mechanisms. Importantly, the PCC/SA aerogel can be naturally degraded in soil within 10 weeks. Therefore, the as-prepared aerogel bead derived from pomelo peel shows great promise as an adsorbent for wastewater treatment containing dye and heavy metal ions.


Asunto(s)
Celulosa , Colorantes , Geles , Metales Pesados , Celulosa/química , Adsorción , Colorantes/química , Geles/química , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Alginatos/química , Concentración de Iones de Hidrógeno , Azul de Metileno/química , Citrus/química , Porosidad , Purificación del Agua/métodos , Cobre/química , Cinética
10.
Heliyon ; 10(11): e31786, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845880

RESUMEN

Pomelo (Citrus maxima), the largest citrus fruit, provides a variety of nutrients that have several health benefits, including antioxidant and antidiabetic functions. Antioxidants help combat oxidative stress by neutralizing reactive oxygen species (ROS) and reducing cellular damage. On the other hand, antidiabetic properties involve mechanisms such as enhancing insulin secretion, improving insulin sensitivity, inhibiting carbohydrate digestion and absorption, and regulating glucose metabolism. However, there is a lack of data on the comparative analysis of the physicochemical composition, bioactive properties, and antidiabetic effects of pomelo fruits grown in Bangladesh. To address this issue, the most common and popular high-yielding five cultivars of pomelo fruits grown in Bangladesh including LOCAL, BARI-2 (BARI: Bangladesh Agricultural Research Institute, Batabi Lebu-2), BARI-3, BARI-4, and BARI-6 were evaluated concerning proximate, minerals, and physicochemical properties with their antidiabetic and antioxidant properties. Research has revealed that all pomelo varieties contained a significant amount of proximate compositions and major minerals (Ca, Mg, K, Na, and Fe). The highest juice yield (75.37 ± 0.33 %), vitamin C content (79.56 ± 2.26 mg/100 mL of fresh juice), and carotenoid content (919.33 ± 0.62 µM ß-Carotene Equivalent/g DM) were found in BARI-3 pomelo fruit and adhered to the sequence (p < 0.05): BARI-3 > LOCAL > BARI-4 > BARI-6 > BARI-2; BARI-3 > LOCAL > BARI-2 > BARI-4 > BARI-6, and BARI-3 > BARI-2 > BARI-6 > LOCAL > BARI-4, respectively. The anthocyanin content and inhibitory activity of α-glucosidase were found to be at their peak in the BARI-2 pomelo variety and the values were 50.65 ± 2.27 µg cyanidin 3-glucoside equivalents/100 g DM and 85.57 ± 0.00 µM acarbose equivalents/g DM, respectively. BARI-3 pomelo variety showed highest DPPH antioxidant capacity (170.47 ± 0.01 µM Trolox equivalents/g DM), while the BARI-6 pomelo variety exhibited the highest total phenolic content (6712.30 ± 1.84 µg gallic acid equivalents/g DM), and ferric-reducing antioxidant power activity (183.16 ± 0.01 µM Fe(II) equivalents/g DM). Therefore, this study explores the nutritional value and bioactivity of five popular pomelo varieties in Bangladesh, offering valuable insights for utilizing high-value citrus resources and understanding their health-promoting functions.

11.
BMC Plant Biol ; 24(1): 390, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38730367

RESUMEN

Granulation of juice sacs is a physiological disorder, which affects pomelo fruit quality. Here, the transcriptome and ubiquitinome of the granulated juice sacs were analyzed in Guanxi pomelo. We found that lignin accumulation in the granulated juice sacs was regulated at transcription and protein modification levels. In transcriptome data, we found that the genes in lignin biosynthesis pathway and antioxidant enzyme system of the granulated juice sacs were significantly upregulated. However, in ubiquitinome data, we found that ubiquitinated antioxidant enzymes increased in abundance but the enzyme activities decreased after the modification, which gave rise to reactive oxygen species (ROS) contents in granulated juice sacs. This finding suggests that ubiquitination level of the antioxidant enzymes is negatively correlated with the enzyme activities. Increased H2O2 is considered to be a signaling molecule to activate the key gene expressions in lignin biosynthesis pathway, which leads to the lignification in granulated juice sacs of pomelo. This regulatory mechanism in juice sac granulation of pomelo was further confirmed through the verification experiment using tissue culture by adding H2O2 or dimethylthiourea (DMTU). Our findings suggest that scavenging H2O2 and other ROS are important for reducing lignin accumulation, alleviating juice sac granulation and improving pomelo fruit quality.


Asunto(s)
Citrus , Lignina , Lignina/metabolismo , Citrus/metabolismo , Citrus/genética , Jugos de Frutas y Vegetales/análisis , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma , Peróxido de Hidrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Frutas/metabolismo , Frutas/genética , Antioxidantes/metabolismo
12.
J Colloid Interface Sci ; 670: 50-60, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754331

RESUMEN

The advanced oxidation process (AOPs) is playing an important role in the elimination of hazardous organic pollutants, but the development of inexpensive and highly active advanced catalysts is facing challenges. In this study, a low-cost and readily available agricultural waste resource pomelo peel-flesh (PPF) biomass was used as the basic raw material, and the uniformly dispersed small cobalt nanoparticles were effectively anchored in the biochar derived from pomelo peel-flesh (BDPPF) by impregnation adsorption/complexation combined with heat treatment. Co/BDPPF (BDPPF embedded with Co) can effectively activate peroxymonosulfate (PMS) to SO4·-, ·OH and 1O2 reactive oxygen species, and achieve nearly 100% degradation of tetracycline persistent organic pollutant. Co/BDPPF can not only degrade tetracycline efficiently in complex water environment, but also degrade most organic pollutants universally, and has long-term stability, which solves the problem of poor universality and stability of heterogeneous catalysts to a certain extent. Importantly, Co/BDPPF derived from waste biomass was also innovatively designed as the core of an integrated continuous purification device to achieve continuous purification of organic wastewater. In this study, agricultural waste resources were selected as biomass raw materials to achieve efficient capture of Co2+, and finally developed advanced AOPs catalyst with excellent performance to achieve the purification of organic wastewater. It also provides a promising solution for the preparation of simple, low-cost, large-scale production of AOPs catalysts that can be put into actual production.

13.
J Fluoresc ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789858

RESUMEN

A green, economical and simple method for the preparation of water-soluble, high-fluorescent carbon quantum dots (CQDs) has been developed via hydrothermal process using pomelo peels as carbon source. The synthesized CQDs were characterized by transmission electron microscopy (TEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy (FTIR), UV - vis absorption spectra and fluorescence spectrophotometer. The results reveal that the as-prepared C-dots were spherical shape with an average diameter of 2.64 nm and emit bright blue photoluminescence (PL) with a quantum yield of approximately 3.63%. The surface of the C-dots was rich in hydroxyl groups and presented various merits including excellent photostability, low toxicity, and satisfactory solubility. Additionally, we found that two widely used synthetic food colorants, tartrazine and sunset yellow, could result in a strong fluorescence quenching of the C-dots, The possible mechanisms are caused by different ratios of inner filter and static quenching effects. According to this property, This study attempts to establish an analytical method for the determination of tartrazine and sunset yellow using carbon quantum dots as fluorescent probe. A linear relationship was found in the range of 0-100 µM tartrazine and sunset yellow with the detection limit(3σ/k) of 0.65 nM and 1.7 nM. The relative standard deviation (RSD) was 3.5% (tartrazine) and 3.0% (sunset yellow).This observation was further successfully applied for the determination of tartrazine and sunset yellow in food samples collected from local markets, and the recovery rates of the two ranges from 79% to 117.8 and 81 -103.5%, respectively. suggesting its great potential toward food routine analysis.

14.
Sci Rep ; 14(1): 9182, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649422

RESUMEN

In order to obtain high yield pomelo peel pectin with better physicochemical properties, four pectin extraction methods, including hot acid extraction (HAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction, and enzymatic assisted extraction (EAE) were compared. MAE led to the highest pectin yield (20.43%), and the lowest pectin recovery was found for EAE (11.94%). The physicochemical properties of pomelo peel pectin obtained by different methods were also significantly different. Pectin samples obtained by MAE had the highest methoxyl content (8.35%), galacturonic acid content (71.36%), and showed a higher apparent viscosity, thermal and emulsion stability. The pectin extracted by EAE showed the highest total phenolic content (12.86%) and lowest particle size (843.69 nm), showing higher DPPH and ABTS scavenging activities than other extract methods. The pectin extracted by HAE had the highest particle size (966.12 nm) and degree of esterification (55.67%). However, Fourier-transform infrared spectroscopy showed that no significant difference occurred among the different methods in the chemical structure of the extracted pectin. This study provides a theoretical basis for the industrial production of pomelo peel pectin.


Asunto(s)
Citrus , Ácidos Hexurónicos , Pectinas , Pectinas/química , Pectinas/aislamiento & purificación , Citrus/química , Viscosidad , Tamaño de la Partícula , Microondas , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Fraccionamiento Químico/métodos , Fenómenos Químicos , Frutas/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Fenoles/análisis , Fenoles/química , Fenoles/aislamiento & purificación , Esterificación
15.
Food Chem ; 446: 138798, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452501

RESUMEN

Several macromolecules from the pomelo fruitlet (PF) have demonstrated functional potential in previous research. In this study, pomelo fruitlet albumin (PFA) was extracted from PF, its anti-inflammatory and antioxidant properties were assessed using enzyme-linked immunosorbent assays, and its capacity to clear free radicals was measured. Meanwhile, we hypothesize that the amino acid sequence may affect the anti-inflammatory and antioxidant properties, and the two may rely on common significant sites within the amino acid sequence. Therefore, we analyzed the amino acid sequence using a quantitative structure-activity relationship model to explore the connection between the antioxidant and anti-inflammatory capacities of PFA. Both capacities were closely associated with six sites within the amino acid sequence. Collectively, this study illustrates that PFA exhibits both anti-inflammatory and antioxidant capacities, with six specific sites identified as significantly affecting both activities.


Asunto(s)
Antioxidantes , Péptidos , Antioxidantes/química , Péptidos/química , Antiinflamatorios/farmacología , Radicales Libres , Albúminas
16.
Adv Sci (Weinh) ; 11(19): e2307409, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477567

RESUMEN

Uncontrollable massive bleeding caused by trauma will cause the patient to lose a large amount of blood and drop body temperature quickly, resulting in hemorrhagic shock. This study aims to develop a hemostatic product for hemorrhage management. In this study, waste pomelo peel as raw material is chosen. It underwent processes of carbonization, purification, and freeze-drying. The obtained carbonized pomelo peel (CPP) is hydrophilic and exhibits a porous structure (nearly 80% porosity). The water/blood absorption ratio is significantly faster than the commercial Gelfoam and has a similar water/blood absorption capacity. In addition, the CPP showed a water-triggered shape-recoverable ability. Moreover, the CPP shows ideal cytocompatibility and blood compatibility in vitro and favorable tissue compatibility after long terms of subcutaneous implantation. Furthermore, CPP can absorb red blood cells and fibrin. It also can absorb platelets and activate platelets, and it is capable of achieving rapid hemostasis on the rat tail amputation and hepatectomized hemorrhage model. In addition, the CPP not only can quickly stop bleeding in the rat liver-perforation and rabbit heart uncontrolled hemorrhage models, but also promotes rat liver and rabbit heart tissue regeneration in situ. These results suggest the CPP has shown great potential for managing uncontrolled hemorrhage.


Asunto(s)
Celulosa , Modelos Animales de Enfermedad , Hemorragia , Animales , Conejos , Ratas , Celulosa/química , Citrus/química , Hemostáticos/farmacología , Masculino , Hemostasis/efectos de los fármacos , Ratas Sprague-Dawley , Geles , Heridas y Lesiones/complicaciones
17.
Int J Biol Macromol ; 262(Pt 2): 130143, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367775

RESUMEN

A novel carrier comprised of ethanol- and alkali-modified cellulosic pomelo pith matrix coated with alginate was developed to improve viability while enabling gastrointestinal release of probiotics. Scanning electron microscopy imaging revealed the agricultural byproduct had a honeycomb-structured cellulose framework, enabling high loading capacity of the probiotic Lactobacillus plantarum up to 9 log CFU/g. Ethanol treatment opened up pores with an average diameter of 97 µm, while alkali treatment increased swelling and porosity, with an average pore size of 51 µm. The survival rate through the stomach was increased from 89.76 % to 91.08 % and 91.24 % after ethanol and alkali modification, respectively. The control group displayed minimal release in the first 4 h followed by a burst release. Both ethanol modification and alkali modification resulted in constant linear release over time. The release time was prolonged when decreasing the width of the pomelo peel rolls from 10 mm to 5 mm while keeping the volume of the peel constant. After 8 weeks of refrigerated storage, the cellulose-encapsulated probiotics retained viability above 7 log CFU/g. This study demonstrates the potential of the structurally intact, sustainably-sourced cellulosic pomelo pith for probiotic encapsulation and controlled delivery.


Asunto(s)
Alginatos , Probióticos , Celulosa , Preparaciones de Acción Retardada , Álcalis , Etanol , Viabilidad Microbiana
18.
Int J Biol Macromol ; 262(Pt 2): 130164, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367776

RESUMEN

Ultrasound (US) triggered alterations in the viscoelastic behavior of the procaine-loaded ionically gelatinized pectin hydrogel matrix, and drug release was observed using a sono-device rheometer. The gel softened immediately upon activation of the ultrasound operated at 43 kHz and remained in a softened state throughout the irradiation. Upon cessation of ultrasound, the gel promptly reverted to its original hardness. This cycle of softening was consistently observed in ionically crosslinked pectin hydrogels, resulting in the promotion of procaine release, particularly with higher US power and lower calcium concentration. As the amount of loaded procaine increased, the gel weakened due to ion exchange with the calcium crosslinker and procaine. The most substantial release efficiency, reaching 82 % with a concentration of 32 µg/ml, was achieved when the hydrogels contained 0.03 % procaine within the gelatinized hydrogel medicine at a calcium concentration of 0.9 M, representing a six-fold increase compared to that without US. Notably, US exposure affected the 3D porous structure and degradation rate, leading to hydrogel collapse and facilitating medicine release. Additionally, the procaine-loaded pectin hydrogels with 0.9 M calcium exhibited improved fibroblast cell viability, indicating non-toxicity compared to those hydrogels prepared at a higher Ca2+ concentration of 2.4 M.


Asunto(s)
Calcio , Hidrogeles , Hidrogeles/química , Calcio/química , Pectinas/química , Liberación de Fármacos , Procaína
19.
Foods ; 13(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397601

RESUMEN

To improve the application potential of pomelo peel insoluble dietary fiber (PIDF) in emulsion systems, acetylation (PIDF-A), cellulase hydrolysis (PIDF-E), and wet ball milling (PIDF-M) were investigated in this paper as methods to change the emulsification properties of PIDF. The impact of the methods on PIDF composition, structure, and physicochemical properties was also assessed. The results demonstrated that both acetylation modification and cellulase hydrolysis could significantly improve the emulsification properties of PIDF. The emulsions stabilized with PIDF-A and PIDF-E could be stably stored at 25 °C for 30 d without phase separation at particle concentrations above 0.8% (w/v) and had higher storage stability: The D4,3 increments of PIDF-A- and PIDF-E-stabilized emulsions were 0.98 µm and 0.49 µm, respectively, at particle concentrations of 1.2% (w/v), while the storage stability of PIDF-M-stabilized emulsion (5.29 µm) significantly decreased compared with that of PIDF (4.00 µm). Moreover, PIDF-A showed the highest water retention capacity (21.84 g/g), water swelling capacity (15.40 mL/g), oil retention capacity (4.67 g/g), and zeta potential absolute (29.0 mV) among the PIDFs. In conclusion, acetylation modification was a promising method to improve the emulsifying properties of insoluble polysaccharides.

20.
J Microbiol Biotechnol ; 34(1): 132-140, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-37957113

RESUMEN

In this study, carrageenase immobilization was evaluated with a concise and efficient strategy. Pomelo peel cellulose (PPC) modified by polyethyleneimine (PEI) using the physical absorption method was used as a carrier to immobilize carrageenase and achieved repeated batch catalysis. In addition, various immobilization and reaction parameters were scrutinized to enhance the immobilization efficiency. Under the optimized conditions, the enzyme activity recovery rate was more than 50% and 4.1 times higher than immobilization with non-modified pomelo peels. The optimum temperature and pH of carrageenase after immobilization by PEI-modified pomelo peel, at 60°C and 7.5 respectively, were in line with the free enzyme. The temperature resistance was reduced, inconsistent with free enzyme, and pH resistance was increased. A significant loss of activity (46.8%) was observed after reusing it thrice under optimal reaction conditions. In terms of stability, the immobilized enzyme conserved 76.0% of the initial enzyme activity after 98 days of storage. Furthermore, a modest decrease in the kinetic constant (Km) value was observed, indicating the improved substrate affinity of the immobilized enzyme. Therefore, modified pomelo peel is a verified and promising enzyme immobilization system for the synthesis of inorganic solvents.


Asunto(s)
Enzimas Inmovilizadas , Polietileneimina , Enzimas Inmovilizadas/metabolismo , Estabilidad de Enzimas , Polietileneimina/química , Concentración de Iones de Hidrógeno , Cinética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA