Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 119(12): 3447-3461, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36120842

RESUMEN

Polymerized human hemoglobin (PolyhHb) is being studied as a possible red blood cell (RBC) substitute for use in scenarios where blood is not available. While the oxygen (O2 ) carrying capacity of PolyhHb makes it appealing as an O2 therapeutic, the commercial PolyhHb PolyHeme® (Northfield Laboratories Inc.) was never approved for clinical use due to the presence of large quantities of low molecular weight (LMW) polymeric hemoglobin (Hb) species (<500 kDa), which have been shown to elicit vasoconstriction, systemic hypertension, and oxidative tissue injury in vivo. Previous bench-top scale studies in our lab demonstrated the ability to synthesize and purify PolyhHb using a two-stage tangential flow filtration purification process to remove almost all undesirable Hb species (>0.2 µm and <500 kDa) in the material, to create a product that should be safer for transfusion. Therefore, to enable future large animal studies and eventual human clinical trials, PolyhHb synthesis and purification processes need to be scaled up to the pilot scale. Hence in this study, we describe the pilot scale synthesis and purification of PolyhHb. Characterization of pilot scale PolyhHb showed that PolyhHb could be successfully produced to yield biophysical properties conducive for its use as an RBC substitute. Size exclusion high performance liquid chromatography showed that pilot scale PolyhHb yielded a high molecular weight Hb polymer containing a small percentage of LMW Hb species (<500 kDa). Additionally, the auto-oxidation rate of pilot scale PolyhHb was even lower than that of previous generations of PolyhHb. Taken together, these results demonstrate that PolyhHb has the ability to be seamlessly manufactured at the pilot scale to enable future large animal studies and clinical trials.


Asunto(s)
Sustitutos Sanguíneos , Hemoglobinas , Animales , Humanos , Sustitutos Sanguíneos/síntesis química , Hemoglobinas/síntesis química , Peso Molecular
2.
Biotechnol Prog ; 36(3): e2958, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31922354

RESUMEN

Hepatic hollow fiber (HF) bioreactors can be used to provide temporary support to patients experiencing liver failure. Before being connected to the patient's circulation, cells in the bioreactor must be exposed to a range of physiological O2 concentrations as observed in the liver sinusoid to ensure proper performance. This zonation in cellular oxygenation promotes differences in hepatocyte phenotype and may better approximate the performance of a real liver within the bioreactor. Polymerized human hemoglobin (PolyhHb) locked in the tense quaternary state (T-state) has the potential to both supply and regulate O2 transport to cultured hepatocytes in the bioreactor due to its low O2 affinity. In this study, T-state PolyhHb production and purification processes were optimized to minimize the concentration of low-molecular-weight PolyhHb species in solution. Deconvolution of size-exclusion chromatography spectra was performed to calculate the distribution of polymeric Hb species in the final product. Fluid flow and mass transport within a single fiber of a hepatic HF bioreactor was computationally modeled with finite element methods to simulate the effects of employing T-state PolyhHb to facilitate O2 transport in a hepatic bioreactor system. Optimal bioreactor performance was defined as having a combined hypoxic and hyperoxic volume fraction in the extracapillary space of less than 0.05 where multiple zones were observed. The Damköhler number and Sherwood number had strong inverse relationships at each cell density and fiber thickness combination. These results suggest that targeting a specific Damköhler number may be beneficial for optimal hepatic HF bioreactor operation.


Asunto(s)
Hemoglobinas/química , Fallo Hepático/genética , Hígado/metabolismo , Polimerizacion , Animales , Reactores Biológicos , Hemoglobinas/genética , Hepatocitos/metabolismo , Humanos , Hígado/química , Fallo Hepático/patología , Fallo Hepático/terapia , Peso Molecular , Oxígeno/metabolismo , Multimerización de Proteína/genética , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA