Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38315659

RESUMEN

The mesenchymal stem cells (MSCs) are the fundamental part of bone tissue engineering for the emergence of reconstructive medicine. Bone tissue engineering has recently been considered a promising strategy for treating bone diseases and disorders. The technique needs a scaffold to provide an environment for cell attachment to maintain cell function and a rich source of stem cells combined with appropriate growth factors. MSCs can be isolated from adipose tissue (ASCs), bone marrow (BM-MSCs), or umbilical cord (UC-MSCs). In the present study, the potential of ASCs to stimulate bone formation in composite polymeric scaffolds was discussed and it showed that ASCs have osteogenic ability in vitro. The results also indicated that the ASCs have the potential for rapid growth, easier adipose tissue harvesting with fewer donor site complications and high proliferative capacity. The osteogenic differentiation capacity of ASCs varies due to the culture medium and the addition of factors that can change signaling pathways to increase bone differentiation. Furthermore, gene expression analysis has a significant impact on improving our understanding of the molecular pathways involved in ASCs and, thus, osteogenic differentiation. Adding some drugs, such as dexamethasone, to the biomaterial composite also increases the formation of osteocytes. Combining ASCs with scaffolds synthesized from natural and synthetic polymers seems to be an effective strategy for bone regeneration. Applying exopolysaccharides, such as schizophyllan, chitosan, gelatin, and alginate in composite scaffolds enhances the osteogenesis potential of ASCs in bone tissue regeneration.

2.
J Tissue Eng ; 15: 20417314241228118, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343772

RESUMEN

The dura mater, as the crucial outermost protective layer of the meninges, plays a vital role in safeguarding the underlying brain tissue. Neurosurgeons face significant challenges in dealing with trauma or large defects in the dura mater, as they must address the potential complications, such as wound infections, pseudomeningocele formation, cerebrospinal fluid leakage, and cerebral herniation. Therefore, the development of dural substitutes for repairing or reconstructing the damaged dura mater holds clinical significance. In this review we highlight the progress in the development of dural substitutes, encompassing autologous, allogeneic, and xenogeneic replacements, as well as the polymeric-based dural substitutes fabricated through various scaffolding techniques. In particular, we explore the development of composite materials that exhibit improved physical and biological properties for advanced dural substitutes. Furthermore, we address the challenges and prospects associated with developing clinically relevant alternatives to the dura mater.

3.
Tissue Eng Part A ; 30(13-14): 387-408, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38205634

RESUMEN

Bioprinting describes the printing of biomaterials and cell-laden or cell-free hydrogels with various combinations of embedded bioactive molecules. It encompasses the precise patterning of biomaterials and cells to create scaffolds for different biomedical needs. There are many requirements that bioprinting scaffolds face, and it is ultimately the interplay between the scaffold's structure, properties, processing, and performance that will lead to its successful translation. Among the essential properties that the scaffolds must possess-adequate and appropriate application-specific chemical, mechanical, and biological performance-the mechanical behavior of hydrogel-based bioprinted scaffolds is the key to their stable performance in vivo at the site of implantation. Hydrogels that typically constitute the main scaffold material and the medium for the cells and biomolecules are very soft, and often lack sufficient mechanical stability, which reduces their printability and, therefore, the bioprinting potential. The aim of this review article is to highlight the reinforcement strategies that are used in different bioprinting approaches to achieve enhanced mechanical stability of the bioinks and the printed scaffolds. Enabling stable and robust materials for the bioprinting processes will lead to the creation of truly complex and remarkable printed structures that could accelerate the application of smart, functional scaffolds in biomedical settings. Impact statement Bioprinting is a powerful tool for the fabrication of 3D structures and scaffolds for biomedical applications. It has gained tremendous attention in recent years, and the bioink library is expanding to include more and more material combinations. From the practical application perspective, different properties need to be considered, such as the printed structure's chemical, mechanical, and biological performances. Among these, the mechanical behavior of the printed constructs is critical for their successful translation into the clinic. The aim of this review article is to explore the different reinforcement strategies used for the mechanical stabilization of bioinks and bioprinted structures.


Asunto(s)
Bioimpresión , Medicina Regenerativa , Andamios del Tejido , Bioimpresión/métodos , Humanos , Medicina Regenerativa/métodos , Andamios del Tejido/química , Animales , Hidrogeles/química , Impresión Tridimensional , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos
4.
Tissue Eng Part A ; 30(5-6): 214-224, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38126344

RESUMEN

Many surgical tendon repairs fail despite advances in surgical materials and techniques. Tendon repair failure can be partially attributed to the tendon's poor intrinsic healing capacity and the repurposing of sutures from other clinical applications. Electrospun materials show promise as a biological scaffold to support endogenous tendon repair, but their relatively low tensile strength has limited their clinical translation. It is hypothesized that combining electrospun fibers with a material with increased tensile strength may improve the suture's mechanical properties while retaining biophysical cues necessary to encourage cell-mediated repair. This article describes the production of a hybrid electrospun-extruded suture with a sheath of submicron electrospun fibers and a core of melt-extruded fibers. The porosity and tensile strength of this hybrid suture is compared with an electrospun-only braided suture and clinically used sutures Vicryl and polydioxanone (PDS). Bioactivity is assessed by measuring the adsorbed serum proteins on electrospun and melt-extruded filaments using mass spectrometry. Human hamstring tendon fibroblast attachment and proliferation were quantified and compared between the hybrid and control sutures. Combining an electrospun sheath with melt-extruded cores created a hybrid braid with increased tensile strength (70.1 ± 0.3N) compared with an electrospun only suture (12.9 ± 1 N, p < 0.0001). The hybrid suture had a similar force at break to clinical sutures, but lower stiffness and stress. The Young's modulus was 772.6 ± 32 MPa for the hybrid suture, 1693.0 ± 69 MPa for PDS, and 3838.0 ± 132 MPa for Vicryl, p < 0.0001. Hybrid sutures had lower overall porosity than electrospun-only sutures (40 ± 4% and 60 ± 7%, respectively, p = 0.0018) but had a significantly larger overall porosity and average pore diameter compared with surgical sutures. There were similar clusters of adsorbed proteins on electrospun and melt-extruded filaments, which were distinct from PDS. Tendon fibroblast attachment and cell proliferation on hybrid and electrospun sutures were significantly higher than on clinical sutures. This study demonstrated that a bioactive suture with increased tensile strength and lower stiffness could be produced by adding a core of 10 µm melt-extruded fibers to a sheath of electrospun fibers. In contrast to currently used sutures, the hybrid sutures promoted a bioactive response: serum proteins adsorbed, and fibroblasts attached, survived, grew along the sutures, and adopted appropriate morphologies.


Asunto(s)
Polidioxanona , Poliglactina 910 , Humanos , Técnicas de Sutura , Tendones/cirugía , Suturas , Resistencia a la Tracción , Proteínas Sanguíneas
5.
Polymers (Basel) ; 15(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37688220

RESUMEN

Dendrimeric and branched peptides are polypeptides formed by diverse types of scaffolds to give them different forms. Previously, we reported a cascade-type, Lys-scaffolded antimicrobial peptide dendrimer D4R tethered with four RLYR tetrapeptides. Antimicrobial D4R is broad-spectrum, salt insensitive, and as potent as the natural-occurring tachyplesins, displaying minimum inhibitory concentrations (MIC) < 1 µM. However, the relationships between scaffolds and antimicrobial potency remain undefined. Here, we report the design of four novel types of peptide antimicrobials whose scaffolded backbones are lysine (Lys), iso-Lys, ornithine (Orn), or iso-Orn tethered with RLYR on their α- or sidechain-amines to give ε-, δ-, and their α-branched peptides. When assayed against ten microorganisms, the Lys-scaffolded α- and ε-branched peptides are broadly active, salt insensitive, and as potent as D4R and tachyplesins, whereas the corresponding Orn-scaffolded α- and δ-branched peptides are salt sensitive and much less potent, displaying MICs ranging from 1 to >500 µM. Structure-activity relationship studies suggested that Lys-scaffolds, but not Orn-scaffolds, can support a reverse turn to organize RLYR tetrapeptides as parallel ß-strands to form an amphipathic structure with Leu-Tyr as a hydrophobic core. Together, these results provide a structural approach for designing potent and salt-insensitive dendrimeric or branched peptide antimicrobials.

6.
Polymers (Basel) ; 15(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37571222

RESUMEN

Scaffold-based systems have become essential in biomedical research, providing the possibility of building in vitro models that can better mimic tissue/organic physiology. A relatively new family of biomimetics-pseudo-proteins (PPs)-can therefore be considered especially promising in this context. Three different artificial leucine-based LPP films were tested in vitro as potential scaffolding materials. In vitro experiments were performed using two types of cells: primary mouse skin fibroblasts and a murine monocyte/macrophages cell line, RAW264.7. Cell adhesion and cell spreading were evaluated according to morphological parameters via scanning electron microscopy (SEM), and they were assessed according to actin cytoskeleton distribution, which was studied via confocal laser microscopy. Cell proliferation was evaluated via an MTT assay. Cell migration was studied using time-lapse microscopy. SEM images for both types of cells demonstrated prominent adhesion and perfect cell spreading on all three LPPs. Analyses of actin cytoskeleton organization revealed a high number of focal adhesions and prominent motility-associated structures. A certain stimulation of cell proliferation was detected in the cases of all three LPPs, and two of them promoted macrophage migration. Overall, our data suggest that the LPPs used in the study can be considered potential cell-friendly scaffolding materials.

7.
Tissue Eng Part A ; 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37341034

RESUMEN

Suspended hydrogel printing is a growing method for fabricating bioprinted hydrogel constructs, largely due to how it enables nonviscous hydrogel inks to be used in extrusion printing. In this work, a previously developed poly(N-isopropylacrylamide)-based thermogelling suspended bioprinting system was examined in the context of chondrocyte-laden printing. Material factors such as ink concentration and cell concentration were found to have a significant effect on printed chondrocyte viability. In addition, the heated poloxamer support bath was able to maintain chondrocyte viability for up to 6 h of residence within the bath. The relationship between the ink and support bath was also assessed by measuring the rheological properties of the bath before and after printing. Bath storage modulus and yield stress decreased during printing as nozzle size was reduced, indicating the likelihood that dilution occurs over time through osmotic exchange with the ink. Altogether this work demonstrates the promise for printing high-resolution cell-encapsulating tissue engineering constructs, while also elucidating complex relationships between the ink and bath, which must be taken into consideration when designing suspended printing systems.

8.
Biomimetics (Basel) ; 8(2)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37218792

RESUMEN

Composite biomaterials that combine osteoconductive and osteoinductive properties are a promising approach for bone tissue engineering (BTE) since they stimulate osteogenesis while mimicking extracellular matrix (ECM) morphology. In this context, the aim of the present research was to produce polyvinylpyrrolidone (PVP) nanofibers containing mesoporous bioactive glass (MBG) 80S15 nanoparticles. These composite materials were produced by the electrospinning technique. Design of experiments (DOE) was used to estimate the optimal electrospinning parameters to reduce average fiber diameter. The polymeric matrices were thermally crosslinked under different conditions, and the fibers' morphology was studied using scanning electron microscopy (SEM). Evaluation of the mechanical properties of nanofibrous mats revealed a dependence on thermal crosslinking parameters and on the presence of MBG 80S15 particles inside the polymeric fibers. Degradation tests indicated that the presence of MBG led to a faster degradation of nanofibrous mats and to a higher swelling capacity. The assessment of in vitro bioactivity in simulated body fluid (SBF) was performed using MBG pellets and PVP/MBG (1:1) composites to assess if the bioactive properties of MBG 80S15 were kept when it was incorporated into PVP nanofibers. FTIR and XRD analysis along with SEM-EDS results indicated that a hydroxy-carbonate apatite (HCA) layer formed on the surface of MBG pellets and nanofibrous webs after soaking in SBF over different time periods. In general, the materials revealed no cytotoxic effects on the Saos-2 cell line. The overall results for the materials produced show the potential of the composites to be used in BTE.

9.
Polymers (Basel) ; 15(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36904522

RESUMEN

This paper concerns a detailed study of the phase separation and structure formation processes that occur in solutions of highly hydrophobic polylactic-co-glycolic acid (PLGA) in highly hydrophilic tetraglycol (TG) upon their contact with aqueous media. In the present work, cloud point methodology, high-speed video recording, differential scanning calorimetry, and both optical and scanning electron microscopy were used to analyze the behavior of PLGA/TG mixtures differing in composition when they are immersed in water (the so-called "harsh" antisolvent) or in a nonsolvent consisting of equal amounts of water and TG (a "soft" antisolvent). The phase diagram of the ternary PLGA/TG/water system was designed and constructed for the first time. The PLGA/TG mixture composition with which the polymer undergoes glass transition at room temperature was determined. Our data enabled us to analyze in detail the structure evolution process taking place in various mixtures upon their immersion in "harsh" and "soft" antisolvent baths and gain an insight into the peculiarities of the structure formation mechanism active in the course of antisolvent-induced phase separation in PLGA/TG/water mixtures. This provides intriguing opportunities for the controlled fabrication of a wide variety of bioresorbable structures-from polyester microparticles, fibers, and membranes to scaffolds for tissue engineering.

10.
ACS Appl Mater Interfaces ; 14(24): 27589-27598, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35673709

RESUMEN

A fluorometric glucose biosensor based on fine-tuned chemoenzymatic nanohybrids is herein proposed. The successful integration of an engineered glucose oxidase enzyme and an optically responsive polymeric nanogel in a single entity has led to the fabrication of a highly efficient glucose chemobiosensor. The optical responsiveness has been achieved by the loading of preactivated polymeric hydrogel with fluorescent lanthanide, i.e., cerium (III), cations. A comprehensive investigation of the responsiveness of the biomaterial revealed the interplay between the oxidation state of the cerium lanthanide and the fluorescence emission of the polymer. Finally, a full structural, chemical, and biochemical characterization of the reported system supports the chemobiosensors as robust, specific, and sensitive materials that could be utilized to faithfully quantify the amount of glucose in tear fluids.


Asunto(s)
Cerio , Elementos de la Serie de los Lantanoides , Glucosa , Elementos de la Serie de los Lantanoides/química , Nanogeles , Polímeros
11.
Int J Nanomedicine ; 17: 1035-1068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309965

RESUMEN

One of the most arduous challenges in tissue engineering is neovascularization, without which there is a lack of nutrients delivered to a target tissue. Angiogenesis should be completed at an optimal density and within an appropriate period of time to prevent cell necrosis. Failure to meet this challenge brings about poor functionality for the tissue in comparison with the native tissue, extensively reducing cell viability. Prior studies devoted to angiogenesis have provided researchers with some biomaterial scaffolds and cell choices for angiogenesis. For example, while most current angiogenesis approaches require a variety of stimulatory factors ranging from biomechanical to biomolecular to cellular, some other promising stimulatory factors have been underdeveloped (such as electrical, topographical, and magnetic). When it comes to choosing biomaterial scaffolds in tissue engineering for angiogenesis, key traits rush to mind including biocompatibility, appropriate physical and mechanical properties (adhesion strength, shear stress, and malleability), as well as identifying the appropriate biomaterial in terms of stability and degradation profile, all of which may leave essential trace materials behind adversely influencing angiogenesis. Nevertheless, the selection of the best biomaterial and cells still remains an area of hot dispute as such previous studies have not sufficiently classified, integrated, or compared approaches. To address the aforementioned need, this review article summarizes a variety of natural and synthetic scaffolds including hydrogels that support angiogenesis. Furthermore, we review a variety of cell sources utilized for cell seeding and influential factors used for angiogenesis with a concentrated focus on biomechanical factors, with unique stimulatory factors. Lastly, we provide a bottom-to-up overview of angiogenic biomaterials and cell selection, highlighting parameters that need to be addressed in future studies.


Asunto(s)
Materiales Biocompatibles , Andamios del Tejido , Materiales Biocompatibles/farmacología , Hidrogeles , Neovascularización Fisiológica , Ingeniería de Tejidos
12.
Cancers (Basel) ; 14(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35267582

RESUMEN

Epithelial Ovarian Cancer (EOC) is a silent, deadly and aggressive gynaecological disease with a relatively low survival rate. This has been attributed, to some extent, to EOC's high recurrence rate and resistance to currently available platinum-based chemotherapeutic treatment methods. Multiple groups have studied and reported the effect of chemotherapeutic agents on various EOC 3D in vitro models. However, there are very few studies wherein a direct comparative study has been carried out between the different in vitro 3D models of EOC and the effect of chemotherapy within them. Herein, we report, for the first time, a direct comprehensive systematic comparative study of three different 3D in vitro platforms, namely (i) spheroids, (ii) synthetic PeptiGels/hydrogels of various chemical configurations and (iii) polymeric scaffolds with coatings of various extracellular matrices (ECMs) on the cell growth and response to the chemotherapeutic (Cisplatin) for ovary-derived (A2780) and metastatic (SK-OV-3) EOC cell lines. We report that all three 3D models are able to support the growth of EOC, but for different time periods (varying from 7 days to 4 weeks). We have also reported that chemoresistance to Cisplatin, in vitro, observed especially for metastatic EOC cells, is platform-dependent, in terms of both the structural and biochemical composition of the model/platform. Our study highlights the importance of selecting an appropriate 3D platform for in vitro tumour model development. We have demonstrated that the selection of the best platform for producing in vitro tumour models depends on the cancer/cell type, the experimental time period and the application for which the model is intended.

13.
Molecules ; 26(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34834134

RESUMEN

Dental, oral, and craniofacial (DOC) regenerative medicine aims to repair or regenerate DOC tissues including teeth, dental pulp, periodontal tissues, salivary gland, temporomandibular joint (TMJ), hard (bone, cartilage), and soft (muscle, nerve, skin) tissues of the craniofacial complex. Polymeric materials have a broad range of applications in biomedical engineering and regenerative medicine functioning as tissue engineering scaffolds, carriers for cell-based therapies, and biomedical devices for delivery of drugs and biologics. The focus of this review is to discuss the properties and clinical indications of polymeric scaffold materials and extracellular matrix technologies for DOC regenerative medicine. More specifically, this review outlines the key properties, advantages and drawbacks of natural polymers including alginate, cellulose, chitosan, silk, collagen, gelatin, fibrin, laminin, decellularized extracellular matrix, and hyaluronic acid, as well as synthetic polymers including polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), poly (ethylene glycol) (PEG), and Zwitterionic polymers. This review highlights key clinical applications of polymeric scaffolding materials to repair and/or regenerate various DOC tissues. Particularly, polymeric materials used in clinical procedures are discussed including alveolar ridge preservation, vertical and horizontal ridge augmentation, maxillary sinus augmentation, TMJ reconstruction, periodontal regeneration, periodontal/peri-implant plastic surgery, regenerative endodontics. In addition, polymeric scaffolds application in whole tooth and salivary gland regeneration are discussed.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Medicina Regenerativa , Andamios del Tejido , Humanos
14.
Polymers (Basel) ; 13(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34451161

RESUMEN

In the determination of the bioavailability of drugs administered orally, the drugs' solubility and permeability play a crucial role. For absorption of drug molecules and production of a pharmacological response, solubility is an important parameter that defines the concentration of the drug in systemic circulation. It is a challenging task to improve the oral bioavailability of drugs that have poor water solubility. Most drug molecules are either poorly soluble or insoluble in aqueous environments. Polymer nanocomposites are combinations of two or more different materials that possess unique characteristics and are fused together with sufficient energy in such a manner that the resultant material will have the best properties of both materials. These polymeric materials (biodegradable and other naturally bioactive polymers) are comprised of nanosized particles in a composition of other materials. A systematic search was carried out on Web of Science and SCOPUS using different keywords, and 485 records were found. After the screening and eligibility process, 88 journal articles were found to be eligible, and hence selected to be reviewed and analyzed. Biocompatible and biodegradable materials have emerged in the manufacture of therapeutic and pharmacologic devices, such as impermanent implantation and 3D scaffolds for tissue regeneration and biomedical applications. Substantial effort has been made in the usage of bio-based polymers for potential pharmacologic and biomedical purposes, including targeted deliveries and drug carriers for regulated drug release. These implementations necessitate unique physicochemical and pharmacokinetic, microbiological, metabolic, and degradation characteristics of the materials in order to provide prolific therapeutic treatments. As a result, a broadly diverse spectrum of natural or artificially synthesized polymers capable of enzymatic hydrolysis, hydrolyzing, or enzyme decomposition are being explored for biomedical purposes. This summary examines the contemporary status of biodegradable naturally and synthetically derived polymers for biomedical fields, such as tissue engineering, regenerative medicine, bioengineering, targeted drug discovery and delivery, implantation, and wound repair and healing. This review presents an insight into a number of the commonly used tissue engineering applications, including drug delivery carrier systems, demonstrated in the recent findings. Due to the inherent remarkable properties of biodegradable and bioactive polymers, such as their antimicrobial, antitumor, anti-inflammatory, and anticancer activities, certain materials have gained significant interest in recent years. These systems are also actively being researched to improve therapeutic activity and mitigate adverse consequences. In this article, we also present the main drug delivery systems reported in the literature and the main methods available to impregnate the polymeric scaffolds with drugs, their properties, and their respective benefits for tissue engineering.

15.
Tissue Eng Part C Methods ; 26(10): 519-527, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32977739

RESUMEN

Background: Three-dimensional (3D) printing using melt electrowriting (MEW) technology is a recently developed technique to produce biocompatible micron-level mesh scaffolds layer-by-layer that can be seeded with cells for tissue engineering. Examining cell behavior, such as growth rate and migration, can be problematic in these opaque 3D scaffolds. A straightforward and quantitative method was developed to examine these cellular parameters on poly-ɛ-caprolactone (PCL) multilayered MEW scaffolds developed as components of the annulus fibrosus region of bioengineered intervertebral discs. Experiment: The anti-adhesion protein, bovine serum albumin (BSA), was used to coat plasticware to improve mesenchymal stem cell (T0523) adhesion to MEW scaffolds. Cells were seeded on circular MEW (cMEW) discs as defined growth starting points sandwiched between two test template scaffolds investigated at varying pore sizes. Cell expansion, growth, and migration were quantitated utilizing the protein-specific dye sulforhodamine B (SRB). Live cell imaging combined with image analysis were used to examine cell motility and expansion on 3D scaffolds. Results: After one coating of BSA, cells remained nonadherent for the duration of the study with cell spheroids formed and enlarging over 21 days and becoming entangled in MEW scaffold pores. Cells grown on the 250 µm pore size scaffolds exhibited a doubling time of 7 days, whereas the 400 µm pore size scaffolds time was 11.5 days. Conclusions: BSA coating of tissue culture dishes prevented surface adhesion of cells to vessel surfaces and promoted spheroid formation that encouraged attachment to the PCL scaffolds. Batch-printed cMEW scaffolds were useful as a defined starting point for quantitative assays that successfully measured cell migration, expansion and proliferation on test scaffolds. The SRB assay was shown to be a useful and straightforward way to quantitate cell numbers in multilayered MEW scaffolds. A pore size of 250 µm exhibited the fastest cell growth, spread, and expansion. Impact statement In this article, a new, useful, and straightforward method to quantitate cell numbers on three-dimensional (3D) melt electrowritten (MEW) scaffolds is presented. By using the sulforhodamine B assay on bovine serum albumin-coated dishes cell migration, expansion and proliferation in 3D printed MEW test scaffolds were quantitatively measured. Printed circular MEW (cMEW) scaffolds sandwiched between two MEW test scaffolds (Fig. 3) were used as defined cellular growth starting points with a particular pore size of 250 µm displaying the fastest cell growth and migration. This MEW sandwich technique could potentially be used to quantitate cell numbers and migration in other 3D multilayered MEW scaffold systems.


Asunto(s)
Células Madre Mesenquimatosas/citología , Rodaminas/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Línea Celular , Proliferación Celular , Humanos , Poliésteres/química
16.
Int J Mol Sci ; 21(10)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32414114

RESUMEN

Advances in material science and innovative medical technologies have allowed the development of less invasive interventional procedures for deploying implant devices, including scaffolds for cardiac tissue engineering. Biodegradable materials (e.g., resorbable polymers) are employed in devices that are only needed for a transient period. In the case of coronary stents, the device is only required for 6-8 months before positive remodelling takes place. Hence, biodegradable polymeric stents have been considered to promote this positive remodelling and eliminate the issue of permanent caging of the vessel. In tissue engineering, the role of the scaffold is to support favourable cell-scaffold interaction to stimulate formation of functional tissue. The ideal outcome is for the cells to produce their own extracellular matrix over time and eventually replace the implanted scaffold or tissue engineered construct. Synthetic biodegradable polymers are the favoured candidates as scaffolds, because their degradation rates can be manipulated over a broad time scale, and they may be functionalised easily. This review presents an overview of coronary heart disease, the limitations of current interventions and how biomaterials can be used to potentially circumvent these shortcomings in bioresorbable stents, vascular grafts and cardiac patches. The material specifications, type of polymers used, current progress and future challenges for each application will be discussed in this manuscript.


Asunto(s)
Implantes Absorbibles/efectos adversos , Materiales Biocompatibles/uso terapéutico , Sistema Cardiovascular/efectos de los fármacos , Polímeros/farmacología , Materiales Biocompatibles/efectos adversos , Prótesis Vascular/efectos adversos , Sistema Cardiovascular/patología , Humanos , Polímeros/química , Stents , Ingeniería de Tejidos
17.
Med Res Rev ; 40(5): 1833-1870, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32301138

RESUMEN

The loss of bone tissue is a striking challenge in orthopedic surgery. Tissue engineering using various advanced biofunctional materials is considered a promising approach for the regeneration and substitution of impaired bone tissues. Recently, polymeric supportive scaffolds and biomaterials have been used to rationally promote the generation of new bone tissues. To restore the bone tissue in this context, biofunctional polymeric materials with significant mechanical robustness together with embedded materials can act as a supportive matrix for cellular proliferation, adhesion, and osteogenic differentiation. The osteogenic regeneration to replace defective tissues demands greater calcium deposits, high alkaline phosphatase activity, and profound upregulation of osteocalcin as a late osteogenic marker. Ideally, the bioactive polymeric scaffolds (BPSs) utilized for bone tissue engineering should impose no detrimental impacts and function as a carrier for the controlled delivery and release of the loaded molecules necessary for the bone tissue regeneration. In this review, we provide comprehensive insights into different synthetic and natural polymers used for the regeneration of bone tissue and discuss various technologies applied for the engineering of BPSs and their physicomechanical properties and biological effects.


Asunto(s)
Osteogénesis , Medicina Regenerativa , Huesos , Humanos , Polímeros , Andamios del Tejido
18.
Tissue Eng Part A ; 25(19-20): 1404-1412, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30672386

RESUMEN

While the gold standard for inducing mesenchymal stem cell (MSC) chondrogenesis utilizes pellet culture, most tissue engineering strategies for cartilage regeneration encapsulate MSCs as single cells, partially due to the technical challenge to homogeneously encapsulate cell pellets in three-dimensional (3D) hydrogels. It remains unclear whether encapsulating MSCs as single cell suspension or cell aggregates in 3D hydrogels would enhance MSC-based cartilage formation. In this study, we determined that the optimal size of MSC micropellets (µPellets) that can be homogeneously encapsulated in hydrogels with high cell viability is 100 cells/pellet. Using optimized µPellet size, MSCs were encapsulated either as single cell suspension or µPellets in four soft hydrogel formulations with stiffness ranging 3-6 kPa. Regardless of hydrogel formulations, single cell encapsulation resulted in more neocartilage deposition with improved mechanical functions over µPellet encapsulation. For single cell encapsulation, polyethylene glycol (PEG) hydrogels containing chondroitin sulfate led to the most cartilage matrix deposition, with compressive modulus reaching 211 kPa after only 21 days, a range approaching the stiffness of native cartilage. The findings from this study offer valuable insights on guiding optimal method design for MSCs and hydrogel-based cartilage regeneration. The optimized µPellet encapsulation method may be broadly applicable to encapsulate other stem cell types or cancer cells as aggregates in hydrogels. Impact Statement While the gold standard for inducing mesenchymal stem cell (MSC) chondrogenesis utilizes pellet culture, it remains unclear whether encapsulating MSCs as cell pellets in three-dimensional hydrogels would enhance MSC-based cartilage formation. In this study, we determined the optimal size of MSC micropellet (µPellet) that can be homogeneously encapsulated in hydrogels with high cell viability. Unexpectedly, single cell encapsulation resulted in more robust new cartilage formation than µPellet encapsulation. Furthermore, tuning hydrogel formulation led to rapid cartilage regeneration with stiffness approaching that of native cartilage. The findings from this study would facilitate clinical translation of MSCs and hydrogel-based therapies for cartilage regeneration with optimized parameters.


Asunto(s)
Cartílago Articular/fisiología , Hidrogeles/farmacología , Células Madre Mesenquimatosas/citología , Regeneración/efectos de los fármacos , Cartílago Articular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Fenotipo
19.
ACS Biomater Sci Eng ; 5(1): 193-214, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33405863

RESUMEN

Presently, clinical nanomedicine and nanobiotechnology have impressively demanded the generation of new organic/inorganic analogues of graphene (as one of the intriguing biomedical research targets) for stem-cell-based tissue engineering. Among different shapes of graphene, three-dimensional (3D) graphene foams (GFs) are highly promising candidates to provide conditions for mimicking in vivo environments, affording effective cell attachment, proliferation,and differentiation due to their unique properties. These include the highest biocompatibility among nanostructures, high surface-to-volume ratio, 3D porous structure (to provide a homogeneous/isotropic growth of tissues), highly favorable mechanical characteristics, and rapid mass and electron transport kinetics (which are required for chemical/physical stimulation of differentiated cells). This review aims to describe recent and rapid advances in the fabrication of 3D GFs, together with their use in tissue engineering and regenerative nanomedicine applications. Moreover, we have summarized a broad range of recent studies about the behaviors, biocompatibility/toxicity,and biodegradability of these materials, both in vitro and in vivo. Finally, the highlights and challenges of these 3D porous structures, compared to the current polymeric scaffold competitors, are discussed.

20.
J Tissue Eng Regen Med ; 12(6): 1420-1431, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29701914

RESUMEN

The neoassembly and maturation of elastic matrix is an important challenge for engineering small-diameter grafts for patients with peripheral artery disease. We have previously shown that hyaluronan oligomers and transforming growth factor-ß (elastogenic factors or EFs) promote elastogenesis in smooth muscle cell (SMC) culture. However, their combined effects on macrophages and inflammatory cells in vivo are unknown. This information is needed to use the body (e.g., peritoneal cavity) as an "in vivo bioreactor" to recruit autologous cells to implanted EF-functionalized scaffolds. In this study, we determined if peritoneal fluid cells respond to EFs like smooth muscle cells and if these responses differ between cells sourced during different stages of inflammation triggered by scaffold implantation. Electrospun poly(ε-caprolactone)/collagen conduits were implanted in the peritoneal cavity prior to peritoneal fluid collection at 3-42 days postimplantation. Cells from the fluid were cultured in vitro with and without EFs to determine their response. Their phenotype/behaviour was assessed with a DNA assay, quantitative real-time PCR, and immunofluorescence. The EFs reduced peritoneal cell proliferation, maintained cell contractility, and unexpectedly did not exhibit proelastic effects, which we attributed to differences in cell density. We found the greatest elastin deposition in regions containing a high cell density. Further, we found that cells isolated from the peritoneal cavity at longer times after conduit implantation responded better to the EFs and exhibited more CD31 expression than cells at an earlier time point. Overall, this study provides information about the potential use of EFs in vivo and can guide the design of future tissue-engineered vascular grafts.


Asunto(s)
Elasticidad , Ácido Hialurónico/farmacología , Peritoneo/citología , Ingeniería de Tejidos , Andamios del Tejido/química , Factor de Crecimiento Transformador beta1/farmacología , Animales , Líquido Ascítico/citología , Bovinos , Recuento de Células , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fenotipo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA