Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052360

RESUMEN

With the advancement of CRISPR technologies, a comprehensive understanding of repair mechanisms following double-strand break (DSB) formation is important for improving the precision and efficiency of genetic modifications. In plant genetics, two Cas nucleases are widely used, i.e. Cas9 and Cas12a, which differ with respect to PAM sequence composition, position of the DSB relative to the PAM, and DSB-end configuration (blunt vs. staggered). The latter difference has led to speculations about different options for repair and recombination. Here, we provide detailed repair profiles for LbCas12a in Arabidopsis thaliana, using identical experimental settings previously reported for Cas9-induced DSBs, thus allowing for a quantitative comparison of both nucleases. For both enzymes, non-homologous end-joining (NHEJ) produces 70% of mutations, whereas polymerase theta-mediated end-joining (TMEJ) generates 30%, indicating that DSB-end configuration does not dictate repair pathway choice. Relevant for genome engineering approaches aimed at integrating exogenous DNA, we found that Cas12a similarly stimulates the integration of T-DNA molecules as does Cas9. Long-read sequencing of both Cas9 and Cas12a repair outcomes further revealed a previously underappreciated degree of DNA loss upon TMEJ. The most notable disparity between Cas9 and Cas12a repair profiles is caused by how NHEJ acts on DSB ends with short overhangs: non-symmetric Cas9 cleavage produce 1 bp insertions, which we here show to depend on polymerase Lambda, whereas staggered Cas12a DSBs are not subjected to fill-in synthesis. We conclude that Cas9 and Cas12a are equally effective for genome engineering purposes, offering flexibility in nuclease choice based on the availability of compatible PAM sequences.

2.
DNA Repair (Amst) ; 136: 103645, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428373

RESUMEN

DNA polymerases lambda (Polλ) and mu (Polµ) are X-Family polymerases that participate in DNA double-strand break (DSB) repair by the nonhomologous end-joining pathway (NHEJ). Both polymerases direct synthesis from one DSB end, using template derived from a second DSB end. In this way, they promote the NHEJ ligation step and minimize the sequence loss normally associated with this pathway. The two polymerases differ in cognate substrate, as Polλ is preferred when synthesis must be primed from a base-paired DSB end, while Polµ is required when synthesis must be primed from an unpaired DSB end. We generated a Polλ variant (PolλKGET) that retained canonical Polλ activity on a paired end-albeit with reduced incorporation fidelity. We recently discovered that the variant had unexpectedly acquired the activity previously unique to Polµ-synthesis from an unpaired primer terminus. Though the sidechains of the Loop1 region make no contact with the DNA substrate, PolλKGET Loop1 amino acid sequence is surprisingly essential for its unique activity during NHEJ. Taken together, these results underscore that the Loop1 region plays distinct roles in different Family X polymerases.


Asunto(s)
ADN Polimerasa beta , ADN Polimerasa Dirigida por ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Mutación con Ganancia de Función , ADN Polimerasa beta/metabolismo , Reparación del ADN , ADN/metabolismo , Reparación del ADN por Unión de Extremidades
3.
J Mol Biol ; 432(13): 3965-3979, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32224012

RESUMEN

Cellular DNA is under constant attack by a wide variety of agents, both endogenous and exogenous. To counteract DNA damage, human cells have a large collection of DNA repair factors. Among them, DNA polymerase lambda (Polλ) stands out for its versatility, as it participates in different DNA repair and damage tolerance pathways in which gap-filling DNA synthesis is required. In this work, we show that human Polλ is conjugated with Small Ubiquitin-like MOdifier (SUMO) proteins both in vitro and in vivo, with Lys27 being the main target of this covalent modification. Polλ SUMOylation takes place in the nuclear pore complex and is mediated by the E3 ligase RanBP2. This post-translational modification promotes Polλ entry into the nucleus, which is required for its recruitment to DNA lesions and stimulated by DNA damage induction. Our work represents an advance in the knowledge of molecular pathways that regulate cellular localization of human Polλ, which are essential to be able to perform its functions during repair of nuclear DNA, and that might constitute an important point for the modulation of its activity in human cells.


Asunto(s)
ADN Polimerasa beta/genética , Chaperonas Moleculares/genética , Proteínas de Complejo Poro Nuclear/genética , Proteína SUMO-1/genética , Sumoilación/genética , Núcleo Celular/genética , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , Humanos , Procesamiento Proteico-Postraduccional/genética , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/genética
4.
BMC Evol Biol ; 18(1): 177, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30486781

RESUMEN

BACKGROUND: Bdelloid rotifers are the oldest, most diverse and successful animal taxon for which males, hermaphrodites, and traditional meiosis are unknown. Their degenerate tetraploid genome, with 2-4 copies of most loci, includes thousands of genes acquired from all domains of life by horizontal transfer. Many bdelloid species thrive in ephemerally aquatic habitats by surviving desiccation at any life stage with no loss of fecundity or lifespan. Their unique genomic diversity and the intense selective pressure of desiccation provide an exceptional opportunity to study the evolution of diversity and novelty in genes involved in DNA repair. RESULTS: We used genomic data and RNA-Seq of the desiccation process in the bdelloid Adineta vaga to characterize DNA damage reversal, translesion synthesis, and the major DNA repair pathways: base, nucleotide, and alternate excision repair, mismatch repair (MMR), and double strand break repair by homologous recombination (HR) and classical non-homologous end joining (NHEJ). We identify multiple horizontally transferred DNA damage response genes otherwise unknown in animals (AlkD, Fpg, LigK UVDE), and the presence of genes often considered vertebrate specific, particularly in the NHEJ complex and X family polymerases. While 75-100% of genes involved in MMR and HR are present in 0-2 copies, genes involved in NHEJ, which are present in only a single copy in nearly all other animals, are retained in 3-8 copies. We present structural predictions and expression evidence of neo- or sub-functionalization of multiple copy genes involved in NHEJ and other repair processes. CONCLUSION: The horizontally-acquired genes and duplicated genes in BER and NHEJ suggest resilience to oxidative damage is conferred in part by increased DNA damage recognition and efficient end repair capabilities. The pattern of gene loss and retention in MMR and HR may facilitate recombination and gene conversion between divergent sequences, thus providing at least some of the benefits of sex. The unique retention and divergence of duplicates genes in NHEJ may be facilitated by the lack of efficient selection in the absence of meiotic recombination and independent assortment, and may contribute to the evolutionary success of bdelloids.


Asunto(s)
Reparación del ADN/genética , Evolución Molecular , Variación Genética , Reproducción Asexuada/genética , Rotíferos/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada/genética , Dosificación de Gen , Transferencia de Gen Horizontal/genética , Filogenia , Proteínas/química , Proteínas/genética
5.
EMBO J ; 35(18): 2045-59, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27481934

RESUMEN

8-oxo-7,8-dihydroxy-2'-deoxyguanosine (8-oxo-dG) has high mutagenic potential as it is prone to mispair with deoxyadenine (dA). In order to maintain genomic integrity, post-replicative 8-oxo-dG:dA mispairs are removed through DNA polymerase lambda (Pol λ)-dependent MUTYH-initiated base excision repair (BER). Here, we describe seven novel crystal structures and kinetic data that fully characterize 8-oxo-dG bypass by Pol λ. We demonstrate that Pol λ has a flexible active site that can tolerate 8-oxo-dG in either the anti- or syn-conformation. Importantly, we show that discrimination against the pro-mutagenic syn-conformation occurs at the extension step and identify the residue responsible for this selectivity. This residue acts as a kinetic switch, shunting repair toward long-patch BER upon correct dCMP incorporation, thus enhancing repair efficiency. Moreover, this switch also provides a potential mechanism to increase repair fidelity of MUTYH-initiated BER.


Asunto(s)
Disparidad de Par Base , ADN Polimerasa beta/química , ADN Polimerasa beta/metabolismo , Reparación del ADN , Desoxiguanosina/análogos & derivados , 8-Hidroxi-2'-Desoxicoguanosina , Dominio Catalítico , Cristalografía por Rayos X , Desoxiguanosina/metabolismo , Humanos , Cinética , Conformación Proteica
6.
Proc Natl Acad Sci U S A ; 112(33): E4537-45, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240371

RESUMEN

Nonhomologous end joining (NHEJ) repairs chromosome breaks and must remain effective in the face of extensive diversity in broken end structures. We show here that this flexibility is often reliant on the ability to direct DNA synthesis across strand breaks, and that polymerase (Pol) µ and Pol λ are the only mammalian DNA polymerases that have this activity. By systematically varying substrate in cells, we show each polymerase is uniquely proficient in different contexts. The templating nucleotide is also selected differently, with Pol µ using the unpaired base adjacent to the downstream 5' phosphate even when there are available template sites further upstream of this position; this makes Pol µ more flexible but also less accurate than Pol λ. Loss of either polymerase alone consequently has clear and distinguishable effects on the fidelity of repair, but end remodeling by cellular nucleases and the remaining polymerase helps mitigate the effects on overall repair efficiency. Accordingly, when cells are deficient in both polymerases there is synergistic impact on NHEJ efficiency, both in terms of repair of defined substrates and cellular resistance to ionizing radiation. Pol µ and Pol λ thus provide distinct solutions to a problem for DNA synthesis that is unique to this pathway and play a key role in conferring on NHEJ the flexibility required for accurate and efficient repair.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Polimerasa beta/química , ADN Polimerasa Dirigida por ADN/química , Animales , Proliferación Celular , ADN/química , Daño del ADN , Relación Dosis-Respuesta en la Radiación , Fibroblastos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleótidos/química , Radiación Ionizante
7.
Proc Natl Acad Sci U S A ; 112(33): E4530-6, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240373

RESUMEN

Among the many proteins used to repair DNA double-strand breaks by nonhomologous end joining (NHEJ) are two related family X DNA polymerases, Pol λ and Pol µ. Which of these two polymerases is preferentially used for filling DNA gaps during NHEJ partly depends on sequence complementarity at the break, with Pol λ and Pol µ repairing complementary and noncomplementary ends, respectively. To better understand these substrate preferences, we present crystal structures of Pol µ on a 2-nt gapped DNA substrate, representing three steps of the catalytic cycle. In striking contrast to Pol λ, Pol µ "skips" the first available template nucleotide, instead using the template base at the 5' end of the gap to direct nucleotide binding and incorporation. This remarkable divergence from canonical 3'-end gap filling is consistent with data on end-joining substrate specificity in cells, and provides insights into polymerase substrate choices during NHEJ.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , Catálisis , Cristalografía por Rayos X , Daño del ADN , ADN Polimerasa beta/química , Humanos , Cinética , Conformación de Ácido Nucleico , Nucleótidos/genética , Estructura Secundaria de Proteína , Análisis de Secuencia de ADN , Especificidad por Sustrato
8.
Proc Natl Acad Sci U S A ; 111(30): E3033-42, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25015085

RESUMEN

Although lamivudine and emtricitabine, two L-deoxycytidine analogs, have been widely used as antiviral drugs for years, a structural basis for D-stereoselectivity against L-dNTPs, enantiomers of natural nucleotides (D-dNTPs), by any DNA polymerase or reverse transcriptase has not been established due to lack of a ternary structure of a polymerase, DNA, and an incoming L-dNTP. Here, we report 2.10-2.25 Å ternary crystal structures of human DNA polymerase λ, DNA, and L-deoxycytidine 5'-triphosphate (L-dCTP), or the triphosphates of lamivudine ((-)3TC-TP) and emtricitabine ((-)FTC-TP) with four ternary complexes per asymmetric unit. The structures of these 12 ternary complexes reveal that relative to D-deoxycytidine 5'-triphosphate (D-dCTP) in the canonical ternary structure of Polλ-DNA-D-dCTP, L-dCTP, (-)3TC-TP, and (-)FTC-TP all have their ribose rotated by 180°. Among the four ternary complexes with a specific L-nucleotide, two are similar and show that the L-nucleotide forms three Watson-Crick hydrogen bonds with the templating nucleotide dG and adopts a chair-like triphosphate conformation. In the remaining two similar ternary complexes, the L-nucleotide surprisingly interacts with the side chain of a conserved active site residue R517 through one or two hydrogen bonds, whereas the templating dG is anchored by a hydrogen bond with the side chain of a semiconserved residue Y505. Furthermore, the triphosphate of the L-nucleotide adopts an unprecedented N-shaped conformation. Our mutagenic and kinetic studies further demonstrate that the side chain of R517 is critical for the formation of the abovementioned four complexes along proposed catalytic pathways for L-nucleotide incorporation and provide the structural basis for the D-stereoselectivity of a DNA polymerase.


Asunto(s)
ADN Polimerasa beta/química , Nucleótidos de Desoxicitosina/química , Sustitución de Aminoácidos , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Nucleótidos de Desoxicitosina/genética , Nucleótidos de Desoxicitosina/metabolismo , Humanos , Enlace de Hidrógeno , Mutación Missense , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA