Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros











Intervalo de año de publicación
1.
Polymers (Basel) ; 16(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125192

RESUMEN

In this paper, a new method involving a wear-resistant and reusable template is proposed for the preparation of high-mechanical-strength superhydrophobic polymer film based on wire electrical discharge machining (WEDM). A solid-liquid-contact-angle simulation model was established to obtain surface-texture types and sizes that may achieve superhydrophobicity. The experimental results from template preparation show that there is good agreement between the simulation and experimental results for the contact angle. The maximum contact angle on the template can reach 155.3° given the appropriate triangular surface texture and WEDM rough machining. Besides, the prepared superhydrophobic template exhibits good wear resistance and reusability. PDMS superhydrophobic polymer films were prepared by the template method, and their properties were tested. The experimental results from the preparation of superhydrophobic polymer films show that the maximum contact angle of the polymer films can be up to 154.8° and that these films have good self-cleaning and anti-icing properties, wear resistance, bending resistance, and ductility.

2.
Heliyon ; 10(12): e32794, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975128

RESUMEN

Thermoplastic polyurethane (TPU) doped with multi-walled carbon nanotubes (MWCNTs) at 1, 3, 5, and 7 wt% has been studied. The effect of MWCNTs on thermal, viscoelastic, and electric properties in the TPU matrix was characterized by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and by impedance spectroscopy. The results show that the thermal, electrical, and viscoelastic properties, such as the glass transition temperature, shifted towards high temperatures. The melting temperature decreased, and the conductivity and the storage modulus increased by 61.5 % and 58.3 %. The previously observed behavior on the films is due to the increase in the mass percentage of carbon nanotubes (CNTs) in the TPU matrix. Also, it can be said that the CNTs were homogeneously dispersed in the TPU matrix, preventing the movement of the polymer chains, and generating channels or connections that increase the conductivity and improve the thermal properties of the material.

3.
Gels ; 10(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38920900

RESUMEN

Gelatin films are very versatile materials whose properties can be tuned through functionalization with different systems. This work investigates the influence of WO3 nanoparticles on the swelling, barrier, mechanical, and photochromic properties of gelatin films. To this purpose, polyvinylpirrolidone (PVP)-stabilized WO3 nanoparticles were loaded on gelatin films at two different pH values, namely, 4 and 7. The values of swelling and solubility of functionalized films displayed a reduction of around 50% in comparison to those of pristine, unloaded films. In agreement, WO3 nanoparticles provoked a significant decrease in water vapor permeability, whereas the decrease in the values of elastic modulus (from about 2.0 to 0.7 MPa) and stress at break (from about 2.5 to 1.4 MPa) can be ascribed to the discontinuity created by the nanoparticles inside the films. The results of differential scanning calorimetry and X-ray diffraction analysis suggest that interaction of PVP with gelatin reduce gelatin renaturation. No significant differences were found between the samples prepared at pH 4 and 7, whereas crosslinking with glutaraldehyde greatly influenced the properties of gelatin films. Moreover, the incorporation of WO3 nanoparticles in gelatin films, especially in the absence of glutaraldehyde, conferred excellent photochromic properties, inducing the appearance of an intense blue color after a few seconds of light irradiation and providing good resistance to several irradiation cycles.

4.
Materials (Basel) ; 17(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38930328

RESUMEN

This research is aimed at studying the properties of polymer anticorrosion coatings based on ED-20 resin widely used in practice and industrial wastes. In this work, three basic types of nanoscale nanofillers were chosen: dispersed particles-microsilica, microspheres obtained at Kazakh enterprises, and carbon nanotubes. Physicochemical research methods were used in the research: a laser analyzer for studying the dispersibility of industrial waste and spectrometric research methods. The properties of materials were investigated by standardized methods. The obtained results show that the introduction of microsilica and microspheres obtained at Kazakhstani enterprises, used as additives, improves both the physical and mechanical properties of epoxy composites compared to the standard (control) material. The results of experiments have shown that the optimal content of additives of microsilica and microspheres provides an improvement in the physical and mechanical properties of epoxy composites in comparison with the standard (control) material. Studies have shown that the introduction of microspheres into ED-20 polymer increases impact toughness. The introduction of microsilica into the matrix contributes to the increase of elastic modulus. Experimental studies of optical properties of samples of carbon composite polymer films based on polystyrene (PS) with additives of carbon nanotubes C60 and C70 and multilayer carbon nanotubes were also carried out. The experimental results obtained for the optical properties of polymer composites based on basic polymers from solid waste and carbon nanotubes showed that the optical properties of polymer composites undergo noticeable changes.

5.
Sensors (Basel) ; 24(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38894449

RESUMEN

In the present paper the humidity sensing properties of regioregular rr-P3HT (poly-3-hexylthiophene) polymer films is investigated by means of surface acoustic wave (SAW) based sensors implemented on LiNbO3 (1280 Y-X) and ST-quartz piezoelectric substrates. The polymeric layers were deposited along the SAW propagation path by spray coating method and the layers thickness was measured by atomic force microscopy (AFM) technique. The response of the SAW devices to relative humidity (rh) changes in the range ~5-60% has been investigated by measuring the SAW phase and frequency changes induced by the (rh) absorption in the rr-P3HT layer. The SAW sensor implemented onto LiNbO3 showed improved performance as the thickness of the membrane increases (from 40 to 240 nm): for 240 nm thick polymeric membrane a phase shift of about -1.2 deg and -8.2 deg was measured for the fundamental (~78 MHz operating frequency) and 3rd (~234 MHz) harmonic wave at (rh) = 60%. A thick rr-P3HT film (~600 nm) was deposited onto the quartz-based SAW sensor: the sensor showed a linear frequency shift of ~-20.5 Hz per unit (rh) changes in the ~5-~50% rh range, and a quite fast response (~5 s) even at low humidity level (~5% rh). The LiNbO3 and quartz-based sensors response was assessed by using a dual delay line system to reduce unwanted common mode signals. The simple and cheap spray coating technology for the rr-P3HT polymer films deposition, complemented with fast low level humidity detection of the tested SAW sensors (much faster than the commercially available Michell SF-52 device), highlight their potential in a low-medium range humidity sensing application.

6.
ACS Appl Mater Interfaces ; 16(19): 25268-25279, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691002

RESUMEN

Modern electrical applications urgently need flexible polymer films with a high dielectric constant (εr) and low loss. Recently, the MXene-filled percolative composite has emerged as a potential material choice because of the promised high εr. Nevertheless, the typically accompanied high dielectric loss hinders its applications. Herein, a facile and effective surface modification strategy of cladding Ti3C2Tx MXene (T = F or O; FMX) with fluorographene (FG) via self-assembly is proposed. The obtained FMX@FG hybrid yields high εr (up to 108 @1 kHz) and low loss (loss tangent tan δ = 1.16 @ 1 kHz) in a ferroelectric polymer composite at a low loading level (the equivalent of 1.5 wt % FMX), which is superior to its counterparts in our work (e.g., FMX: εr = 104, tan δ = 10.71) and other studies. It is found that the FG layer outside FMX plays a critical role in both the high dielectric constant and low loss from experimental characterizations and finite element simulations. For one thing, FG with a high F/C ratio would induce a favorable structure of high ß-phase crystallinity, extensive microcapacitor networks, and abundant interfacial dipoles in polymer composites that account for the high εr. For another, FG, as a highly insulating layer, can inhibit the formation of conductive networks and inter-FMX electron tunneling, which is responsible for conduction loss. The results demonstrate the potential of a self-assembled FMX@FG hybrid for high εr and low loss polymer composite films and offer a new strategy for designing advanced polymer composite dielectrics.

7.
J Biomater Sci Polym Ed ; 35(10): 1537-1549, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38588607

RESUMEN

Packaging plays an important role in protecting foodstuffs against physicochemical damage and microbial activity, as well as extending shelf life. In recent years, petrochemical compounds that cause environmental pollution and contamination due to their non-biodegradability have been replaced by biocompatible polymer-based films in the food packaging industry. Due to aromatic essential oils (EO), various biological activities, and their potential to replace chemical preservatives in the field of food preservation, Star Anise essential oil, which has properties, such as free radical scavenger, antibacterial, antifungal and antiviral, was used as an additive in this study. Biodegradable and biocompatible polyvinyl alcohol (PVA) polymer was used as the matrix and polymer-based films were produced in 3 different concentrations. Spectral analysis, structural, chemical, and thermal characterizations, and surface morphologies of the produced films by the direct incorporation method were examined. In addition, the antibacterial activities of the films on Staphylococcus epidermidis ATCC 12228, Escherichia coli ATCC 25922, and Acinetobacter baumannii ATCC BAA 747 bacteria were investigated. As a result of the examinations, it was determined that an interfacial interaction occurred between the matrix and the filler, and the produced films were thermally resistant and showed antibacterial activity against Gram (+)/Gram (-) bacteria. Consequently, it can be concluded that PVA films containing Star Anise essential oil present a prospective substitute in a variety of industrial packaging systems, including those for food, medicine, and cosmetics.


Asunto(s)
Antibacterianos , Embalaje de Alimentos , Aceites Volátiles , Alcohol Polivinílico , Alcohol Polivinílico/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus epidermidis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Acinetobacter baumannii/efectos de los fármacos
8.
Materials (Basel) ; 17(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38541472

RESUMEN

Herein, we report the thermal transitions and structural properties of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril) pseudopolyrotaxane (PEDOT∙CB7-PS) and polyrotaxane (PEDOT∙CB7-PR) thin films compared with those of pristine PEDOT. The structural characteristics were investigated by using variable-temperature spectroscopic ellipsometry (VTSE), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and atomic force microscopy (AFM). VTSE and DSC results indicated the presence of an endothermic process and glass transition in the PEDOT∙CB7-PS and PEDOT∙CB7-PR thin films. X-ray diffraction of PEDOT∙CB7-PS and PEDOT∙CB7-PR powders displayed the presence of interchain π-π stacking revealing a characteristic arrangement of aromatic rings in the internal structure of the crystallites. AFM imaging of PEDOT∙CB7-PS and PEDOT∙CB7-PR thin films exhibited significant differences in the surface topographies compared with those of PEDOT. A high degree of crystallization was clearly visible on the surface of the PEDOT layer, whereas the PEDOT∙CB7-PS and PEDOT∙CB7-PR thin films exhibited more favorable surface parameters. Such significant differences identified in the surface morphology of the investigated layers can, therefore, be clearly associated with the presence of surrounding CB7 on PEDOT skeletons.

9.
ACS Appl Mater Interfaces ; 16(6): 7489-7499, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38299787

RESUMEN

Maintaining an excellent force-electric response under cyclic bending at low temperatures is still challenging for resistive-type electrically conductive polymer composite-based pressure sensors. In this study, the effect of low temperature on the fatigue failure of flexible MXene/polymer pressure sensors was systematically investigated through the silane functionalization of MXene nanosheets embedded with different polymer matrixes. The results show that the MXene/polymer interfaces are the primary factors affecting the temperature-dependent bending fatigue of the Cu/MXene/polymer/Cu sensor. Using finite element analysis and theoretical calculations, we reveal that the MXene/polymer interfaces are affected by free volume changes and the molecular chain motion under different temperatures. At room temperature, the well-distributed free volume in the polydimethylsiloxane (PDMS) matrix permits local segmental mobility that promotes the affinity between the polymer and MXene. As the temperature decreases, the free volume in the matrix shrinks with less space left for molecular chains to slide relatively, weakening the polymer/MXene interfacial bonding strength. However, for PDMS/MXene sensors with the interface modified using the silane coupling agent KH550, the nanoconstrained structure formed by strong hydrogen bonds and covalent bonds at the PDMS/MXene interface can hinder the mobility of polymer chains, which greatly helps to dissipate the inter/intrachain friction. It thus alleviates the debonding energy dissipation during cyclic bending at subzero temperatures.

10.
Nanomaterials (Basel) ; 14(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38251144

RESUMEN

The persistence and potential toxicity of emergent pollutants pose significant threats to biodiversity and human health, emphasizing the need for sensors capable of detecting these pollutants at extremely low concentrations before treatment. This study focuses on the development of glassy carbon electrodes (GCEs) modified by films of poly-tris(4-(4-(carbazol-9-yl)phenyl)silanol (PTPTCzSiOH), poly-4,4'-Di(carbazol-9-yl)-1,1'-biphenyl (PCBP), and poly-1,3,5-tri(carbazol-9-yl)benzene (PTCB) for the detection of metronidazole (MNZ) in aqueous media. The films were characterized using electrochemical, microscopy, and spectroscopy techniques, including scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Monomers were electropolymerized through cyclic voltammetry and chronoamperometry techniques. Computational methods at the B3LYP/def2-TZVP level were employed to investigate the structural and electrochemical properties of the monomers. The electrochemical detection of MNZ utilized the linear sweep voltammetry technique. Surface characterization through SEM and XPS confirmed the proper electrodeposition of polymer films. Notably, MPN-GCEs exhibited higher detection signals compared to bare GCEs up to 3.6 times in the case of PTPTCzSiOH-GCEs. This theoretical study provides insights into the structural, chemical, and electronic properties of the polymers. The findings suggest that polymer-modified GCEs hold promise as candidates for the development of electrochemical sensors.

11.
ACS Appl Mater Interfaces ; 16(2): 2726-2739, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38170672

RESUMEN

Two-dimensional (2D) films of conjugated porous organic polymers (C-POPs) can translate the rich in-plane functionalities of conjugated frameworks into diverse optical and electronic applications while addressing the processability issues of their crystalline analogs for adaptable device architectures. However, the lack of facile single-step synthetic routes to obtain large-area high-quality films of 2D-C-POPs has limited their application possibilities so far. Here, we report the synthesis of four mechanically robust imine-linked 2D-C-POP free-standing films using a single-step fast condensation route that is scalable and tunable. The rigid covalently bonded 2D structures of the C-POP films offer high stability for volatile gas sensing in harsh environments while simultaneously enhancing site accessibility for gas molecules due to mesoporosity by structural design. Structurally, all films were composed of exfoliable layers of 2D polymeric nanosheets (NSs) that displayed anisotropy from disordered stacking, evinced by out-of-plane birefringent properties. The tunable in-plane conjugation, different nitrogen centers, and porous structures allow the films to act as ultraresponsive colorimetric sensors for acid sensing via reversible imine bond protonation. All the films could detect hydrogen chloride (HCl) gas down to 0.05 ppm, far exceeding the Occupational Safety and Health Administration's permissible exposure limit of 5 ppm with fast response time and good recyclability. Computational insights elucidated the effect of conjugation and tertiary nitrogen in the structures on the sensitivity and response time of the films. Furthermore, we exploited the exfoliated large 2D NSs and anisotropic optoelectronic properties of the films to adapt them into micro-optical and triboelectric devices to demonstrate their real-time sensing capabilities.

12.
Macromol Rapid Commun ; 45(2): e2300452, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37838916

RESUMEN

Polymers are of great interest for medical and cosmeceutical applications. The current trend is to combine materials of natural and synthetic origin in order to obtain products with appropriate mechanical strength and good biocompatibility, additionally biodegradable and bioresorbable. Citric acid, being an important metabolite, is an interesting substance for the synthesis of materials for biomedical applications. Due to the high functionality of the molecule, it is commonly used in biomaterials chemistry as a crosslinking agent. Among citric acid-based biopolyesters, poly(1,8-octanediol citrate) is the best known. It shows application potential in soft tissue engineering. This work focuses on a much less studied polyester, poly(1,3-propanediol citrate). Porous and non-porous materials based on the synthesized polyesters are prepared and characterized, including mechanical, thermal, and surface properties, morphology, and degradation. The main focus is on assessing the biocompatibility and antimicrobial properties of the materials.


Asunto(s)
Antiinfecciosos , Ácido Cítrico , Glicoles de Propileno , Ácido Cítrico/química , Citratos/química , Materiales Biocompatibles/química , Poliésteres/química , Ingeniería de Tejidos , Propilenglicol , Antiinfecciosos/farmacología
13.
J Fluoresc ; 34(2): 549-560, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37306839

RESUMEN

This article is devoted to the study of various dielectric and optoelectrical parameters nonlinear optic behaviors, thermal lens and self-diffraction parameters of Fluorescein (FLs) doped polymethyl methacrylate (PMMA) films. The films were prepared with 60 mM. These studies are based on the calculated values of refractive, absorption coefficient, energy gap, extinction coefficient and nonlinear Refraction index ( n 2 ) . The polymer films were prepared using the casting technique. All samples were previously investigated by UV-Vis-NIR spectrophotometric measurements and Optical microscopy SEM and ATM. Utilizing thermal lens spectrometry, an investigation of the thermo-optical characteristics as well as the nonlinear refractive index was carried out. In this method, a pump beam and a probe beam were brought into collinear alignment with one another. To determination the nonlinear Refraction index ( n 2 ) . High values of nonlinear refractive index predict a bright future for materials in optical applications. These results indicate that the new dye is a promising candidate for applications in nonlinear optical devices. Investigations were carried out on organic photovoltaic devices in addition to devices consisting of active layers with conducting polymer of PHPP:P3HT film and PHPP:P3HT/Fls. The methods of polymer and dyes synthesis are presented and their physical properties are given.

14.
Macromol Rapid Commun ; 45(1): e2300240, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37289949

RESUMEN

The physical blending of high-mobility conjugated polymers with ductile elastomers provides a simple way to realize high-performance stretchable films. However, how to control the morphology of the conjugated polymer and elastomer blend film and its response to mechanical fracture processes during stretching are not well understood. Herein, a sandwich structure is constructed in the blend film based on a conjugated polymer poly[(5-fluoro-2,1,3-benzothiadiazole-4,7-diyl)(4,4-dihexadecyl-4H-cyclopenta[2,1-b:3,4-b″]dithiophene-2,6-diyl)(6-fluoro-2,1,3-benzothiadiazole-4,7-diyl)(4,4-dihexadecyl-4H-cyclopenta[2,1-b:3,4-b″]dithiophene-2,6-diyl)] (PCDTFBT) and an elastomer polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS). The sandwich structure is composed of a PCDTFBT:SEBS mixed layer laminated with a PCDTFBT-rich layer at both the top and bottom surfaces. During stretching, the external strain energy can be effectively dissipated by the deformation of the crystalline PCDTFBT domains and amorphous SEBS phases and the recrystallization of the PCDTFBT chains. This endows the blend film with excellent ductility, with a large crack onset strain exceeding 1100%, and minimized the electrical degradation of the blend film at a large strain. This study indicates that the electrical and mechanical performance of conjugated polymer/elastomer blend films can be improved by manipulating their microstructure.


Asunto(s)
Polímeros , Tiadiazoles , Elastómeros/química , Polímeros/química , Poliestirenos , Tiadiazoles/química , Tiofenos/química
15.
J Microbiol Methods ; 217-218: 106873, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38128700

RESUMEN

Silver nanoparticles incorporation into polymeric packaging aims to prevent microbiological contamination in food products, thus ensuring superior food safety and preservation. In this context, this study aimed to verify the antimicrobial efficacy of linear low-density polyethylene (LLDPE) films incorporated with silver nanoparticles (AgNPs) dispersed in silica (SiO2) and hydroxyapatite (HAP) carriers at different concentrations. AgNPs + carriers polymer films were characterized at 0.2, 0.4, and 0.6% concentrations using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission gun-scanning electron microscope (FEG-SEM), thermogravimetric analyzer (TGA), differential scanning calorimetry (DSC), and migration in acidic and non-acidic simulants. Antimicrobial action was investigated on Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and the Penicillium expansum and Fusarium solani fungi with antimicrobial activity by direct contact test and bacterial imaging by scanning electron microscopy. AgNPs addition to the LLDPE matrix did not interfere with the films' chemical and thermal properties and presented no significant migration to the external medium. For antimicrobial action, silver nanoparticles showed, in most concentrations, an inhibition percentage higher than 90% on all microorganisms studied, regardless of the carrier. However, a greater inhibitory action on S. aureus and between carriers was found, making hydroxyapatite more effective. The results indicated that nanostructured films with AgNPs + hydroxyapatite showed more promising antimicrobial action on microorganisms than AgNPs + silica, making hydroxyapatite with silver nanoparticle potentially useful in food packaging, improving safety and maintaining quality.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Antibacterianos/farmacología , Antibacterianos/química , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Polietileno/química , Polietileno/farmacología , Dióxido de Silicio/farmacología , Embalaje de Alimentos , Staphylococcus aureus , Durapatita/farmacología , Antiinfecciosos/farmacología , Polímeros/farmacología , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier
16.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833860

RESUMEN

A comparative study of anticorrosive inhibited polymer films on the tungsten surface formed from an aqueous solution of inhibited formulations (INFOR) containing organosilane and corrosion inhibitors was carried out by means of the prolonged exposure of a tungsten product in a modifying solution and by the method of cataphoretic deposition (CPD). Depending on the method of forming films on tungsten, the molecular organization of the near-surface layers was studied (ATR-FTIR), and the subprimary structure of the films was explored (TEM). The optimal modes of cataphoresis deposition (CPD duration and current density applied to the sample) for the formation of a protective inhibited polymer film on the tungsten surface were established by means of SEM. The energy and thermochemical characteristics (sessile drop and DSC methods), as well as operational (adhesive behavior) and protective filming ability (EIS and corrosion behavior), according to the method of formation of inhibited polymer film, were determined. Based on the combined characteristics of the films obtained by the two methods and the deposition modes, the CPD method showed better performance than the electroless dipping method.


Asunto(s)
Polímeros , Tungsteno , Polímeros/química , Tungsteno/química , Composición de Medicamentos , Películas Cinematográficas
17.
Sens Actuators B Chem ; 374: 132794, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37859642

RESUMEN

Absolute oxygen sensors based on quenching of phosphorescence have been the subject of numerous studies for the monitoring of biological environments. Here, we used simple fabrication techniques with readily available polymers to obtain high performance phosphorescent films. Specifically, evaporation-based phase separation and the breath figure technique were used to induce porosity. The pore sizes ranged from ∼37 nm to ∼141 µm while the maximum average porosity achieved was ∼74%. The oxygen sensing properties were evaluated via a standarised calibration procedure with an optoelectronic setup in both transmission and reflection based configurations. When comparing non-porous and porous films, the highest improvements achieved were a factor of ∼7.9 in dynamic range and ∼7.3 in maximum sensitivity, followed by an improved linearity with a half-sensitivity point at 43% O2 V/V. Also, the recovery time was reduced by an order of magnitude in the high porosity film and all samples prepared were not affected by variations in the humidity of the surrounding environment. Despite the use of common polymers, the fabrication techniques employed led to the significant enhancement of oxygen sensing properties and elucidated the relation between porous film morphologies and sensing performance.

18.
Polymers (Basel) ; 15(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765605

RESUMEN

Two combined ellipsometric techniques-variable angle spectroscopic ellipsometry (VASE) and variable temperature spectroscopic ellipsometry (VTSE)-were used as tools to study the surface order and dielectric properties of thin films of a poly(3-hexylthiophene-2,5-diyl) (P3HT) mixture with a fullerene derivative (6,6-phenyl-C71-butyric acid methyl ester) (PC70BM). Under the influence of annealing, a layer of the ordered PC70BM phase was formed on the surface of the blend films. The dielectric function of the ordered PC70BM was determined for the first time and used in the ellipsometric modeling of the physical properties of the P3HT:PC70BM blend films, such as their dielectric function and thickness. The applied ellipsometric optical model of the polymer-fullerene blend treats the components of the blend as a mixture of optically ordered and disordered phases, using the effective medium approximation for this purpose. The results obtained using the constructed model showed that a layer of the ordered PC70BM phase was formed on the surface of the layer of the polymer and fullerene mixture. Namely, as a result of thermal annealing, the thickness of the layer of the ordered fullerene phase increased, while the thickness of the underlying material layer decreased.

19.
Chemistry ; 29(63): e202302215, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37565655

RESUMEN

Light-responsive surfaces are attracting increasing interest, not least because their physicochemical properties can be selectively and temporally controlled by a non-invasive stimulus. Most existing immobilization strategies involve the chemical attachment of light-responsive moieties to the surface, although this approach often suffers from a low surface concentration of active species or a high inhomogeneity of applied coatings. Herein, electropolymerization of carbazoles as a facile and rapid approach for preparing light-responsive azo-based surface coatings is presented. The electrochemical oxidative polymerization of bis-carbazole containing azo-monomers yields stable films, in which the photochemical properties and specific pH sensitivity of azo molecular switches are retained. Moreover, the molecular design enables electrocatalytic control over Z→E azo double bond isomerization facilitated by the conductive polycarbazole backbone. Ultimately, the high degree of control over macromolecular properties yields conductive surface coatings responsive to a range of stimuli, showing great promise as a strategy for versatile application in organic electronics.

20.
Gels ; 9(8)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37623083

RESUMEN

One of the main branches of regenerative medicine is biomaterials research, which is designed to develop and study materials for regenerative therapies, controlled drug delivery systems, wound dressings, etc. Research is continually being conducted to find biomaterials-especially polymers-with better biocompatibility, broader modification possibilities and better application properties. This study describes a potential biomaterial, poly(1,4-butanediol citrate). The gelation time of poly(1,4-butanediol citrate) was estimated. Based on this, the limiting reaction time and temperature were determined to avoid gelling of the reaction mixture. Experiments with different process conditions were carried out, and the products were characterised through NMR spectra analysis. Using statistical methods, the functions were defined, describing the dependence of the degree of esterification of the acid groups on the following process parameters: temperature and COOH/OH group ratio. Polymer films from the synthesised polyester were prepared and characterised. The main focus was assessing the initial biocompatibility of the materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA