Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt B): 1045-1060, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39178668

RESUMEN

Chemotherapy is commonly used to treat malignant tumors. However, conventional chemotherapeutic drugs often cannot distinguish between tumor and healthy cells, resulting in adverse effects and reduced therapeutic efficacy. Therefore, zigzag-shaped gear-occlude-guided cymbal-closing (ZGC) DNA nanotechnology was developed based on the mirror-symmetry principle to efficiently construct symmetric DNA polyhedra. This nanotechnology employed simple mixing steps for efficient sequence design and assembly. A targeting aptamer was installed at a user-defined position using an octahedron as a model structure. Chemotherapeutic drug-loaded polyhedral objects were subsequently delivered into tumor cells. Furthermore, anticancer drug-loaded DNA octahedra were intravenously injected into a HeLa tumor-bearing mouse model. Assembly efficiency was almost 100 %, with no residual building blocks identified. Moreover, this nanotechnology required a few DNA oligonucleotides, even for complex polyhedrons. Symmetric DNA polyhedrons retained their structural integrity for 24 h in complex biological environments, guaranteeing prolonged circulation without drug leakage in the bloodstream and promoting efficient accumulation in tumor tissues. In addition, DNA octahedra were cleared relatively slowly from tumor tissues. Similarly, tumor growth was significantly inhibited in vivo, and a therapeutic outcome comparable to that of conventional gene-chemo combination therapy was observed. Moreover, no systemic toxicity was detected. These findings indicate the potential application of ZGC DNA nanotechnology in precision medicine.

2.
ACS Appl Mater Interfaces ; 16(31): 41542-41550, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39077804

RESUMEN

The separation of acetylene (C2H2) from ethylene (C2H4) and ethane (C2H6) is crucial for the production of high-purity C2H2 and the recovery of other gases. Polyhedron-based metal-organic frameworks (PMOFs) are characterized by their spacious cavities, which facilitate gas trapping, and cage windows with varying sizes that enable gas screening. In this study, we carefully selected a class of PMOFs based on V-type tetracarboxylic acid linker (JLU-Liu22 containing benzene ring, JLU-Liu46 containing urea group and recombinant reconstructed In/Cu CBDA on the basis of JLU-Liu46) to study the relationship between pore environment and C2 adsorption and separation performance. Among the three compounds, JLU-Liu46 exhibits superior selectivity toward C2H2/C2H4 (2.06) as well as C2H2/C2H6 (2.43). Comparative structural analysis reveals that the exceptional adsorbed-C2H2 performance of JLU-Liu46 can be attributed to the synergistic effects arising from coordinatively unsaturated Cu sites combined with an optimal pore environment (matched pore size and polarity, urea functional group), resulting in a strong affinity between the framework and C2H2 molecules. Furthermore, transient breakthrough simulations of JLU-Liu46 confirmed its potential for separating C2H2 in ternary C2 gas.

3.
Adv Sci (Weinh) ; : e2402128, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083289

RESUMEN

Artificial morphing surfaces, inspired by the high adaptability of biological tissues, have emerged as a significant area of research in recent years. However, the practical applications of these surfaces, constructed from soft materials, are considerably limited due to their low shear stiffness. Rigid-foldable cylinders are anisotropic structures that exhibit high adaptability and shear stiffness. Thus, they have the potential to address this issue. However, changes in shape and area at both ends during folding can lead to collisions or gaps on the morphing surface. Here, a quasi-rigid-foldable (QRF) rate is first introduced to quantify the rigid-foldability of a foldable structure and validate it through experiments. More importantly, a QRF polyhedron is then proposed, which is not only notably anisotropic, similar to a rigid-foldable cylinder, but also exhibits a zero-Poisson's ratio property, making it suitable for arraying as morphing surfaces without any collisions or gaps. Such surfaces have a myriad of applications, including modulating electromagnetic waves, gripping fragile objects, and serving as soles for climbing robots.

4.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891816

RESUMEN

Based on nanoarchitectonics and molecular dynamics simulations, we investigate the structural properties and diffusion pathway of Na atoms in sodium trisilicate over a wide temperature range. The structural and dynamics properties are analyzed through the radial distribution function (RDF), the Voronoi Si- and O-polyhedrons, the cluster function fCL(r), and the sets of fastest (SFA) and slowest atoms (SSA). The results indicate that Na atoms are not placed in Si-polyhedrons and bridging oxygen (BO) polyhedrons; instead, Na atoms are mainly placed in non-bridging oxygen (NBO) polyhedrons and free oxygen (FO) polyhedrons. Here BO, NBO, and FO represent O bonded with two, one, and no Si atoms, respectively. The simulation shows that O atoms in sodium trisilicate undergo numerous transformations: NBF0 ↔ NBF1, NBF1 ↔ NBF2, and BO0 ↔ BO1, where NBF is NBO or FO. The dynamics in sodium trisilicate are mainly distributed by the hopping and cooperative motion of Na atoms. We suppose that the diffusion pathway of Na atoms is realized via hopping Na atoms alone in BO-polyhedrons and the cooperative motion of a group of Na atoms in NBO- and FO-polyhedrons.

5.
Chem Asian J ; 19(15): e202400443, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38773630

RESUMEN

Two polyhedral silver-thiolate clusters, [S@Ag16(Tab)10(MeCN)8](PF6)14 (Ag16) and [Ag12(Tab)6(DMF)12](PF6)12 (Ag12), were synthesized by using electroneutral Tab species as protective ligands (Tab=4-(trimethylammonio)benzenethiolate, DMF=N,N-dimethylformamide, MeCN=acetonitrile). Ag16 has a decahedral shape composed of eight pentagon {Ag5} units and two square {Ag4} units. The structure of Ag12 is a cuboctahedron, a classical Archimedean structure composed of six triangular faces and eight square faces. The former configuration is discovered in silver-thiolate cluster for the first time, possibly benefited from the more flexible coordination between the Tab ligand and Ag+ facilitated by the electropositive -N(CH3)3 + substituent group. Third-order nonlinear optical studies show that both clusters in DMF exhibit reverse saturate absorption response under the irradiation of 532 nm laser.

6.
Angew Chem Int Ed Engl ; 63(24): e202404100, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38616169

RESUMEN

Exploration of efficient red emitting antimony hybrid halide with large Stokes shift and zero self-absorption is highly desirable due to its enormous potential for applications in solid light emitting, and active optical waveguides. However, it is still challenging and rarely reported. Herein, a series of (TMS)2SbCl5 (TMS=triphenylsulfonium cation) crystals have been prepared with diverse [SbCl5]2- configurations and distinctive emission color. Among them, cubic-phase (TMS)2SbCl5 shows bright red emission with a large Stokes shift of 312 nm. In contrast, monoclinic and orthorhombic (TMS)2SbCl5 crystals deliver efficient yellow and orange emission, respectively. Comprehensive structural investigations reveal that larger Stokes shift and longer-wavelength emission of cubic (TMS)2SbCl5 can be attributed to the larger lattice volume and longer Sb⋅⋅⋅Sb distance, which favor sufficient structural aberration freedom at excited states. Together with robust stability, (TMS)2SbCl5 crystal family has been applied as optical waveguide with ultralow loss coefficient of 3.67 ⋅ 10-4 dB µm-1, and shows superior performance in white-light emission and anti-counterfeiting. In short, our study provides a novel and fundamental perspective to structure-property-application relationship of antimony hybrid halides, which will contribute to future rational design of high-performance emissive metal halides.

7.
Food Chem ; 450: 139261, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657344

RESUMEN

This study employed an innovative copper oxide/cuprous oxide (CuO/Cu2O) polyhedron­cadmium sulphide quantum dots (CdS QDs) double Z-scheme heterostructure as a matrix for the cathodic PEC determination of mercury ions (Hg2+). First, the CuO/Cu2O polyhedral composite was prepared by calcining a copper-based metal organic framework (Cu-MOF). Subsequently, the amino-modified CuO/Cu2O was integrated with mercaptopropionic acid (MPA)-capped CdS QDs to form a CuO/Cu2O polyhedron-CdS QDs double Z-scheme heterostructure, producing a strong cathodic photocurrent. Importantly, this heterostructure exhibited a specifically reduced photocurrent for Hg2+ when using CdS QDs as Hg2+-recognition probe. This was attributed to the extreme destruction of the double Z-scheme heterostructure and the in situ formation of the CuO/Cu2O-CdS/HgS heterostructure. Besides, p-type HgS competed with the matrix for electron acceptors, further decreasing the photocurrent. Consequently, Hg2+ was sensitively assayed, with a low detection limit (0.11 pM). The as-prepared PEC sensor was also used to analyse Hg2+ in food and the environment.


Asunto(s)
Compuestos de Cadmio , Cobre , Técnicas Electroquímicas , Mercurio , Estructuras Metalorgánicas , Puntos Cuánticos , Sulfuros , Puntos Cuánticos/química , Cobre/química , Mercurio/análisis , Mercurio/química , Sulfuros/química , Compuestos de Cadmio/química , Técnicas Electroquímicas/instrumentación , Estructuras Metalorgánicas/química , Contaminación de Alimentos/análisis , Electrodos , Límite de Detección
8.
J Colloid Interface Sci ; 663: 609-623, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38430831

RESUMEN

The matching of long cycle life, high power density, and high energy density has been an inevitable requirement for the development of efficient anode materials for lithium-ion capacitors (LICs). Here, we introduce an N-doped carbon nanotube hollow polyhedron structure (Co3O4-CNT-800) with high specific surface area and active sites, which is anchored with two-dimensional (2D) Ti3C2Tx nanosheets with metallic conductivity and abundant surface functional groups by electrostatic adsorption to form a hierarchical multilevel hollow semi-covered framework structure. Benefiting from the synergistic effect between Co3O4-CNT-800 and Ti3C2Tx, the composites exhibit superior energy storage efficiency and long cycling stability. The Co3O4-CNT-800/Ti3C2Tx electrodes exhibit a high specific capacity of 817C/g at a current density of 0.5 A/g under the three-electrode system, and the capacity retention rate is 91 % after 5000 cycles at a current density of 2 A/g. Additionally, we assembled Co3O4-CNT-800/Ti3C2Tx as the anode and Activated carbon (AC) cathode to form LIC devices, which showed an electrochemical test result of 90.01 % capacitance retention after 8000 cycles at 2 A/g, and the maximum power density of the LIC was 3000 W/kg and the maximum energy density was 121 Wh/kg. This work pioneered the combination of N-doped carbon nanotube hollow polyhedron structure with two-dimensional Ti3C2Tx, which provides an effective strategy for preparing LIC negative electrode materials with high specific capacitance and long cycling stability.

9.
ACS Appl Mater Interfaces ; 16(8): 10238-10250, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38372639

RESUMEN

The electrochemical conversion of oxygen holds great promise in the development of sustainable energy for various applications, such as water electrolysis, regenerative fuel cells, and rechargeable metal-air batteries. Oxygen electrocatalysts are needed that are both highly efficient and affordable, since they can serve as alternatives to costly precious-metal-based catalysts. This aspect is particularly significant for their practical implementation on a large scale in the future. Herein, highly porous polyhedron-entrapped metal-organic framework (MOF)-assisted CoTe2/MnTe2 heterostructure one-dimensional nanorods were initially synthesized using a simple hydrothermal strategy and then transformed into ZIF-67 followed by tellurization which was used as a bifunctional electrocatalyst for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). The designed MOF CoTe2/MnTe2 nanorod electrocatalyst exhibited superior activity for both OER (η = 220 mV@ 10 mA cm-2) and ORR (E1/2 = 0.81 V vs RHE) and outstanding stability. The exceptional achievement could be primarily credited to the porous structure, interconnected designs, and deliberately created deficiencies that enhanced the electrocatalytic activity for the OER/ORR. This improvement was predominantly due to the enhanced electrochemical surface area and charge transfer inherent in the materials. Therefore, this simple and cost-effective method can be used to produce highly active bifunctional oxygen electrocatalysts.

10.
Small ; 20(11): e2305459, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37922532

RESUMEN

Electrocatalyst engineering from the atomic to macroscopic level of electrocatalysts is one of the most powerful routes to boost the performance of electrochemical devices. However, multi-scale structure engineering mainly focuses on the range of atomic-to-particle scale such as hierarchical porosity engineering, while catalyst engineering at the macroscopic level, such as the arrangement configuration of nanoparticles, is often overlooked. Here, a 2D carbon polyhedron array with a multi-scale engineered structure via facile chemical etching, ice-templating induced self-assembly, and high-temperature pyrolysis processes is reported. Controlled phytic acid etching of the carbon precursor introduces homogeneous atomic phosphorous and nitrogen doping, as well as a well-defined mesoporous structure. Subsequent ice-templated self-assembly triggers the formation of a 2D particle array superstructure. The atomic-level doping gives rise to high intrinsic activity, while the well-engineered porous structure and particle arrangement addresses the mass transport limitations at the microscopic particle level and macroscopic electrode level. As a result, the as-prepared electrocatalyst delivers outstanding performance toward oxygen reduction reaction in both acidic and alkaline media, which is better than recently reported state-of-the-art metal-free electrocatalysts. Molecular dynamics simulation together with extensive characterizations indicate that the performance enhancement originates from multi-scale structural synergy.

11.
Adv Mater ; 35(42): e2302716, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37434296

RESUMEN

Neural-vascular networks are densely distributed through periosteum, cortical bone, and cancellous bone, which is of great significance for bone regeneration and remodeling. Although significant progress has been made in bone tissue engineering, ineffective bone regeneration, and delayed osteointegration still remains an issue due to the ignorance of intrabony nerves and blood vessels. Herein, inspired by space-filling polyhedra with open architectures, polyhedron-like scaffolds with spatial topologies are prepared via 3D-printing technology to mimic the meshwork structure of cancellous bone. Benefiting from its spatial topologies, polyhedron-like scaffolds greatly promoted the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) via activating PI3K-Akt signals, and exhibiting satisfactory performance on angiogenesis and neurogenesis. Computational fluid dynamic (CFD) simulation elucidates that polyhedron-like scaffolds have a relatively lower area-weighted average static pressure, which is beneficial to osteogenesis. Furthermore, in vivo experiments further demonstrate that polyhedron-like scaffolds obviously promote bone formation and osteointegration, as well as inducing vascularization and ingrowth of nerves, leading to innervated and vascularized bone regeneration. Taken together, this work offers a promising approach for fabricating multifunctional scaffolds without additional exogenous seeding cells and growth factors, which holds great potential for functional tissue regeneration and further clinical translation.


Asunto(s)
Materiales Biocompatibles , Osteogénesis , Materiales Biocompatibles/química , Osteogénesis/fisiología , Andamios del Tejido/química , Fosfatidilinositol 3-Quinasas , Regeneración Ósea , Ingeniería de Tejidos , Diferenciación Celular , Impresión Tridimensional
12.
Chem Asian J ; 18(18): e202300480, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37370258

RESUMEN

Crystallization of organic steric molecules often leads to multiple polyhedral crystal morphologies. However, the relationships among the molecular structure, supramolecular interaction, aggregation mode and crystal morphology are still unclear. In this work, we elaborate two model crystals formed by spiro[fluorene-9,9'-xanthene] (SFX) and spiro[cyclopenta[1,2-b : 5,4-b']dipyridine-5,9'-xanthene] (SDAFX) to demonstrate the feasibility of morphology prediction by periodic bond chain (PBC) theory based on interaction energy (IE) values in terms of single point energy. With non-directional van der Waals forces, only one PBC direction is found in SFX crystal, leading to the irregular 1D rod-like structure. Compared with SFX, the extra N heteroatoms in SDAFX can bring additional hydrogen bonds and some other interactions into the bulky molecular skeletons, inducing 3-dimensionally oriented PBCs to form the explicit F-face network in SDAFX which leads to the final octahedral structure. A simple and accurate method has been provided to quantify PBC vector on the supramolecular level in the organic molecular system, and the PBC theory has also been further demonstrated and developed in the morphology prediction of organic spiro-molecules.

13.
Math Biosci Eng ; 20(5): 8031-8048, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-37161184

RESUMEN

Silicate minerals make up the majority of the earth's crust and account for almost 92 percent of the total. Silicate sheets, often known as silicate networks, are characterised as definite connectivity parallel designs. A key idea in studying different generalised classes of graphs in terms of planarity is the face of the graph. It plays a significant role in the embedding of graphs as well. Face index is a recently created parameter that is based on the data from a graph's faces. The current draft is utilizing a newly established face index, to study different silicate networks. It consists of a generalized chain of silicate, silicate sheet, silicate network, carbon sheet, polyhedron generalized sheet, and also triangular honeycomb network. This study will help to understand the structural properties of chemical networks because the face index is more generalized than vertex degree based topological descriptors.

14.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 3): 233-244, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37249507

RESUMEN

A method for the visualization of noncovalent interactions using examples of the conformational polymorphs of four organic compounds: 2-(phenylamino)nicotinic, 2-(3-chloro-2-methylphenylamino)nicotinic, N-(3-chloro-2-methylphenyl)anthranilic and 2-(methylphenylamino)nicotinic acids is examined. The changes in noncovalent contacts are plotted against the angle between the planes of aromatic rings allowing a visual representation of conformational adjustment of molecules as well as packing features of crystal structures. According to the k-Φ criterion, the studied structures represent conformational polymorphs. Different types of hydrogen bonding are discussed within the framework of the method of visualization and molecular Voronoi-Dirichlet polyhedra. Good correlations are found between calculated and experimental data for several cases, such as the agreement between π stacking and polymorphic transition temperatures as well as between the area of a contact and the energy of conjugation. Also, an attempt has been made to assess the relative contributions of conformational and packing polymorphism in the formation of polymorphs.

15.
J Colloid Interface Sci ; 646: 794-801, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37229997

RESUMEN

While Platinum (Pt)-based electrocatalysts have been extensively studied for the oxygen reduction reaction (ORR), improving their durability remains a challenge. One promising approach is to design structure-defined carbon supports that can uniformly immobilize Pt nanocrystals (NCs). In this study, we present an innovative strategy for constructing three-dimensional ordered, hierarchically porous carbon polyhedrons (3D-OHPCs) as an efficient support for immobilizing Pt NCs. We achieved this by template-confined pyrolysis of a zinc-based zeolite imidazolate framework (ZIF-8) grown within the voids of polystyrene templates, followed by carbonizing the native oleylamine ligands on Pt NCs to produce graphitic carbon shells. This hierarchical structure enables the uniform anchorage of Pt NCs, while enhancing facile mass transfer and local accessibility of active sites. The optimal material with graphitic carbon armor shells on the surface of Pt NCs (CA-Pt), named CA-Pt@3D-OHPCs-1600, shows comparable activities to commercial Pt/C catalysts. Furthermore, it can withstand over 30,000 cycles of accelerated durability tests, owing to the protective carbon shells and hierarchically ordered porous carbon supports. Our study presents a promising approach for designing highly efficient and durable electrocatalysts for energy-based applications and beyond.

16.
Small ; 19(26): e2301001, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36949523

RESUMEN

Molecule sieve effect (MSE) can enable direct separation of target, thus overcoming two major scientific and industrial separation problems in traditional separation, coadsorption, and desorption. Inspired by this, herein, the concept of coordination sieve effect (CSE) for direct separation of UO2 2+ , different from the previously established two-step separation method, adsorption plus desorption is reported. The used adsorbent, polyhedron-based hydrogen-bond framework (P-HOF-1), made from a metal-organic framework (MOF) precursor through a two-step postmodification approach, afforded high uptake capacity (close to theoretical value) towards monovalent Cs+ , divalent Sr2+ , trivalent Eu3+ , and tetravalent Th4+ ions, but completely excluded UO2 2+ ion, suggesting excellent CSE. Direct separation of UO2 2+ can be achieved from a mixed solution containing Cs+ , Sr2+ , Eu3+ , Th4+ , and UO2 2+ ions, giving >99.9% removal efficiency for Cs+ , Sr2+ , Eu3+ , and Th4+ ions, but <1.2% removal efficiency for UO2 2+ , affording benchmark reverse selectivity (SM/U ) of >83 and direct generation of high purity UO2 2+ (>99.9%). The mechanism for such direct separation via CSE, as unveiled by both single crystal X-ray diffraction and density-functional theory (DFT) calculation, is due to the spherical coordination trap in P-HOF-1 that can exactly accommodate the spherical coordination ions of Cs+ , Sr2+ , Eu3+ , and Th4+ , but excludes the planar coordination UO2 2+ ion.

17.
ACS Nano ; 17(5): 4287-4295, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36854051

RESUMEN

We report several types of entropy-driven phase transition behaviors in hard bipyramid systems using Monte Carlo simulations. Bipyramidal nanoparticle shapes are synthesizable from gold and silver, with sizes ranging from tens to hundreds of nanometers. We report numerous colloidal crystalline phases with varying symmetries and complexities as the bipyramid aspect ratio and base polygon are varied. Some bipyramids are mesogenic and undergo either monotropic or enantiotropic phase transitions. We show that such mesophase behavior can be modulated by tuning the bipyramid aspect ratio. In addition, we report stepwise kinetic crystallization and melting pathways that occur via an intermediate mesophase as the system gains or loses order in successive stages. Our results demonstrate that complex phase transition behavior involving mesophases can be driven by entropy alone. Importantly, our results can guide the synthesis of bipyramid shapes able to assemble target structures and can be used to engineer the kinetic pathways to and from those structures to involve or avoid mesophases.

18.
Chem Asian J ; 18(6): e202201249, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36650336

RESUMEN

Organic pollutants cause severe environmental problems because of their damage to human health and ecological systems. Photocatalytic degradation of persistent organic pollutants is of great importance to address these hazards. Herein, we report a lanthanide organic polyhedra-based hybrid material Gd8 L12 ⊂MSN with the capability of photocatalytic dye degradation. Gd8 L12 ⊂MSN was prepared by embedding the Gd8 L12 complex into mesoporous silica nanoparticles (MSNs) using a "ship-in-a-bottle" strategy. Photocurrent response tests revealed that this hybrid material is a potential semiconductor and could generate a rapid and steady photocurrent upon irradiation. Further dye degradation experiments indicated that it could photocatalyze the degradation of familiar organic dyes. Thereinto, compared with the critical Gd8 L12 complex, the hybrid material exhibited an acceleration of 2.4 times and realized reusability. This not only offers a potential advanced photocatalyst for degrading persistent organic pollutants, but also provides a strategy for the application of supramolecular materials in environmental science.

19.
ACS Appl Mater Interfaces ; 14(49): 54649-54661, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36453244

RESUMEN

Photocatalytic H2 evolution and biomass-derived alcohol oxidation is a cooperative way for improving the utilization of photogenerated charge carriers. Herein, a highly efficient photocatalyst was fabricated by decorating Zn0.5Cd0.5S with a C,N codoped CoP polyhedron (referred to as CoP, derived from ZIF-67), and then it was used for H2 evolution and 5-hydroxymethylfurfural (HMF) oxidation. For the optimized sample (20% CoP/Zn0.5Cd0.5S), the generated H2 rate is significantly enhanced from that of the HMF aqueous solution with 2,5-diformylfuran (DFF) as a concomitant product, about 31.7 times higher than the pristine Zn0.5Cd0.5S under visible light irradiation. The separation of photoexcited electrons (e-) and holes (h+) in the process was promoted, as both e- and h+ were involved in the desired conversions. From the results of density functional theory (DFT) calculations and in situ XPS spectra, the utilization of e- was further improved as a spontaneous transfer from Zn0.5Cd0.5S to CoP occurred due to the p-n heterojunction formed between Zn0.5Cd0.5S (n type) and CoP (p type). This work provides an efficient method to separate the photoinduced charge carriers and a new way for H2 evolution accompanied by transformation of HMF to DFF.

20.
J Phys Condens Matter ; 35(10)2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36538830

RESUMEN

The structure of Nb5Si3at the atomic level is fundamental for identifying its complicated structure in atomic simulations and for further understanding the phase selection behaviors during the solidification of Nb-Si alloys. In this study, the structure of Nb5Si3was investigated using deep-learning molecular dynamic simulations. The idealßNb5Si3is characterized by Nb-centered Voronoi polyhedrons (VPs) <0,0,12,3>, <0,0,12,2>, and Si-centered VPs <0,2,8,2>, <0,2,8,0>. Most initial VPs are distorted at high temperatures due to intense thermal perturbation. A new cluster transformation analysis (CTA) method was proposed to evaluate the stability of ideal VPs against perturbation and predict the possible transformations of the initial VPs in atomic simulations. Most transformations of the initial VPs inßNb5Si3originate from distortions at the edges of the Nb-centered VPs and the faces/vertices of the Si-centered VPs. The distorted VPs inßNb5Si3at high temperatures are dominated by <0,1,10,4>, <0,1,10,5>, <0,2,8,1> and <1,2,5,3> VPs, which are predicted as the primary transformations by the CTA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA