Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros











Intervalo de año de publicación
1.
Small ; : e2401762, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279395

RESUMEN

Polyhedral oligomeric silsesquioxane (POSS) is a 3D, cage-like nanoparticle with an inorganic Si-O-Si core and eight tunable corner functional groups. Its well-defined structure grants it distinctive physical, chemical, and biological properties and has been widely used for preparing high-performance materials. Recently, click chemistry has enabled the synthesis of various functional POSS-based materials for diverse biomedical applications. This article reviews the recent applications of POSS-based materials in the biomedical field, including cancer treatment, tissue engineering, antibacterial use, and biomedical imaging. Representative examples are discussed in detail. Among the various POSS-based applications, cancer treatment and tissue engineering are the most important. Finally, this review presents the current limitations of POSS-based materials and provides guidance for future research.

2.
Polymers (Basel) ; 16(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39000732

RESUMEN

Most toughening methods for epoxy resins are usually used at the expense of other properties. Some polyhedral oligomeric silsesquioxanes (POSSs) with both a rigid Si-O-Si structure and flexible organic chain segments could be expected to be effective toughening agents. In this study, three reactive polyhedral oligomeric silsesquioxanes with a thiol group (OMPPS), a carboxyl group (OCOPS), and an epoxy group (OGCPS) were synthesized and characterized. They were utilized as modifiers to toughen 3-(oxiran-2-ylmethoxy)-N,N-bis(oxiran-2-ylmethyl)aniline (AFG-90MH)/4,4'-methylenebis(2-ethylaniline) (MOEA) (epoxy resin) with different molar ratios to obtain hybrid resins named OMPPS-EP-i, OCOPS-EP-j, and OGCPS-EP-k. The effects of the amount of modifier added and the length of the organic chain on the cage structure on various properties of the hybrid resins were investigated. The results show that all three modifiers show good compatibility with the epoxy resin. The hybrid resins have a low viscosity at 45~85 °C and can be cured at a low temperature (110 °C). The cured hybrid resins display improved toughness. Typically, the critical stress intensity factor (KIC) and impact strength of OGCPS-EP-0.6-C are 2.54 MPa∙m-1/2 and 19.33 kJ∙m-2, respectively, which increased by 58.75% and 22.48% compared with the pristine epoxy resin, respectively. In addition, the glass transition temperature and flexural strength of the hybrid resins are basically unchanged.

3.
Polymers (Basel) ; 16(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38543451

RESUMEN

This paper offers a comprehensive overview of the polyhedral oligomeric silsesquioxane (POSS) and POSS-based composites within the realm of photoresist resin. The study involves a systematic exploration and discussion of the contributions made by POSS across various lithographic systems, with specific emphasis on critical parameters such as film formation, sensitivity, resolution, solubility, and edge roughness. These lithographic systems encompass X-ray lithography (XRL), deep ultraviolet nanoimprint lithography (DUV-NIL), extreme ultraviolet lithography (EUV), and guided self-assembled lithography (DSA). The principal objective of this paper is to furnish valuable insights into the development and utilization of POSS-based photoresist materials in diverse lithographic contexts.

4.
Mikrochim Acta ; 191(3): 153, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393379

RESUMEN

This study introduces aptamer-functionalized polyhedral oligomeric silsesquioxane (POSS) nanoparticles for adenosine triphosphate (ATP) detection where the POSS nanoparticles were synthesized in a one-step, continuous flow microfluidic reactor utilizing thermal polymerization. A microemulsion containing POSS monomers was generated in the microfluidic reactor which was designed to prevent clogging by using a continuous oil flow around the emulsion during thermal polymerization. Surfaces of POSS nanoparticles were biomimetically modified by polydopamine. The aptamer sequence for ATP was successfully attached to POSS nanoparticles. The aptamer-modified POSS nanoparticles were tested for affinity-based biosensor applications using ATP as a model molecule. The nanoparticles were able to capture ATP molecules successfully with an affinity constant of 46.5 [Formula: see text]M. Based on this result, it was shown, for the first time, that microfluidic synthesis of POSS nanoparticles can be utilized in designing aptamer-functionalized nanosystems for biosensor applications. The integration of POSS in biosensing technologies not only exemplifies the versatility and efficacy of these nanoparticles but also marks a significant contribution to the field of biorecognition and sample preparation.


Asunto(s)
Técnicas Biosensibles , Nanopartículas , Compuestos de Organosilicio , Adenosina Trifosfato , Microfluídica , Oligonucleótidos
5.
J Dent ; 142: 104860, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38281618

RESUMEN

INTRODUCTION: This study create a dental composite by hybirding polyhedral oligo-sesquioxide nano monomers and bioactive glass BG 45S5. METHODS: Make an experimental composite resin material with a 60 % filler content overall by substituting 20 % of the filler with BG 45S5. The experimental resins are grouped and named P0, P2, P4, P6 and P8 based on the reactive nanomonomer methacrylic acid-based multifaceted oligomeric sesquisiloxane (POSS) added by 2 %-8 % in the resin matrix portion of each group. Utilize a universal testing machine to analyze and compare the mechanical properties of these, then perform Fourier infrared spectrum analysis, double bond conversion analysis, and scanning electron microscope analysis. Based on this, after soaking the experimental materials artificial saliva solution or lactic acid solution for a while, the pH changes of the solution, the release of Ca2+ and PO43- ions, and the precipitation of apatite on the resin material's surface were tested and analyzed. Cell viability tests were used to assess sample cell viability and quantify the cytotoxicity of biological cells. The independent sample t-test was used to examine the group comparisons, and a difference was considered statistically significant at P<0.05. RESULTS: Outstanding mechanical and the double bond conversion are demonstrated by the nanocomposites when the POSS concentration hits 4 wt%. Agglomeration will cause the performance to deteriorate if the concentration beyond this threshold. In the P4 group, the double bond conversion, CS, and FS rose by a large margin, respectively, in comparison to the blank control group P0. Thankfully, the data demonstrate that adding POSS increases adhesive ability when compared to the blank group P0, however, there is no discernible difference between the other experimental groups. The acid neutralization capacity of the P4 group is essentially the same as that of the control group (P0). Ca2+ and PO43- ions are released in significant amounts following treatment with lactic acid solution, although this tendency is clearly less pronounced in artificial saliva. SEM and EDX data indicate that when the experimental resin is soaked in lactic acid solution and artificial saliva, apatite precipitation will happen on its surface. The results of the cell viability test indicated that there was no statistically significant difference between the experimental groups, and the viability of the cells increased after 24hours and 48 hours. CONCLUSIONS: POSS was included into the composite resin along with 20% bioactive glass as a filler. When the proportion of POSS is less than 4%, the indices of composite resin materials rise in a dose-dependent way. When this value is surpassed, performance begins to deteriorate. The inclusion of POSS has no influence on the biological activity of the composites, which means that the hybrid composite resin is capable of acid neutralization, ion release, and apatite precipitation. CLINICAL SIGNIFICANCE: The experimental composite resin can be used as an intelligent material in clinical treatment. It has the clinical application potential of preventing demineralization of tooth hard tissue, promoting remineralization, and improving edge sealing through apatite precipitation.


Asunto(s)
Cementos Dentales , Vidrio , Saliva Artificial , Ensayo de Materiales , Vidrio/química , Resinas Compuestas/química , Materiales Dentales , Ácido Láctico , Apatitas , Iones , Propiedades de Superficie
6.
Nanomaterials (Basel) ; 14(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38251169

RESUMEN

Dielectric materials with superb thermal and electrical properties are highly desired for high-voltage electrical equipment and advanced electronics. Here, we propose a novel strategy to improve the performance of epoxy composites by employing boron nitride nanosheets (BNNSs) and γ-glycidyl ether oxypropyl sesimoxane (G-POSS) as functional fillers. The resultant ternary epoxy composites exhibit high electrical resistivity (1.63 × 1013 Ω·cm) and low dielectric loss (<0.01) due to the ultra-low dielectric constants of cage-structure of G-POSS. In addition, a high thermal conductivity of 0.3969 W·m-1·K-1 is achieved for the epoxy composites, which is 114.66% higher than that of pure epoxy resin. This can be attributed to the high aspect ratio and excellent thermally conductive characteristics of BNNSs, promoting phonon propagation in the composites. Moreover, the epoxy composite simultaneously possesses remarkable dynamic mechanical properties and thermal stability. It is believed that this work provides a universal strategy for designing and fabricating multifunctional composites using a combination of different functional fillers.

7.
Int J Biol Macromol ; 254(Pt 2): 127840, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37926325

RESUMEN

Cellulose/poly (glycerol citrate) reinforced with thiol-rich polyhedral oligomeric silsesquioxane and apple peel (POSS-SH@CAG-CEL/AP) was synthesized using gelation method in the presence of glutaraldehyde as a crosslinker agent and used as an efficient composite hydrogel for elimination of Tl(Ι) from aqueous solutions. This composite hydrogel and synthesized thiol-rich polyhedral oligomeric silsesquioxane were characterized by elemental analysis, FT-IR, NMR, TGA, and FE-SEM techniques. The effects of synthetic and environmental parameters on the adsorption capacity of the composite hydrogel were investigated and it was found that thiol-rich polyhedral oligomeric silsesquioxane has improved the hydrogel properties including the Tl(Ι) uptake and the thermal stability. The maximum adsorption capacity of 352.3 mg g-1 was obtained within 30 min under optimum reaction conditions. A typical Langmuir adsorption isotherm with was observed for adsorption of Tl(I) onto POSS-SH@CAG-CEL/AP and pseudo-second-order kinetic model provided the best correlation between experimental data. Thermodynamic studies showed that the Tl(I) adsorption was spontaneous process and exothermic. Also, the reusability tests confirmed that the POSS-SH@CAG-CEL/AP can be reused for four times without any remarkable change in its adsorption capacity. Thus, this reusable biobased composite hydrogel can be an ideal candidate for elimination of Tl(I) from aqueous solutions.


Asunto(s)
Hidrogeles , Contaminantes Químicos del Agua , Hidrogeles/química , Celulosa , Talio , Glicerol , Espectroscopía Infrarroja por Transformada de Fourier , Ácido Cítrico , Concentración de Iones de Hidrógeno , Agua , Cinética , Adsorción , Citratos , Compuestos de Sulfhidrilo , Contaminantes Químicos del Agua/química
8.
Int J Biol Macromol ; 254(Pt 2): 127795, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939756

RESUMEN

Biomass is one of the powerful alternatives to petroleum-based packaging materials. Herein, carboxymethyl hemicellulose (CMH) based films (CPF) were prepared using a convenient strategy. The chains of CMH provided the necessary supporting matrix, and the aminopropyl polyhedral oligomeric silsesquioxane (POSS-NH2) regulated the thermal and barrier properties of the CPF. The secondary amide groups and hydrogen bond were appeared in chemical structure, and SEM-EDS results indicated the preferable dispersion and compatibility of POSS-NH2 in CPFs. The thermal degradation temperature (Tonset > 260 °C), the coefficient of linear thermal expansion and glass transition temperature (Tg > 130 °C) have been improved by introduction of POSS-NH2. The tensile strength of CPF showed a higher level of 39.43 MPa with the POSS-NH2 loading of 20 wt%, which was 18.8 % higher than that of CMH film. More importantly, water vapor barrier property of films almost improved by two times, and its value is reduced to 18.82 g m-2 h-1. The shelf life of blueberry was effectively extended by the CPF coating for one week compared with commercial PE film. Therefore, CPF films displayed effective thermal performances, water vapor barrier characteristic and biodegradability, which might be exploited in packaging material for food application.


Asunto(s)
Polisacáridos , Vapor , Embalaje de Productos , Temperatura
9.
Polymers (Basel) ; 15(24)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38139977

RESUMEN

Phenyl polyhedral oligomeric silsesquioxane (POSS) is modified onto the GO surface by using the strong π-π coupling between a large number of benzene rings at the end of the phenyl POSS structure and the graphite structure in the GO sheet, realizing the non-covalent functionalization of GO (POSS-GO). The POSS-GO-reinforced EP (POSS-GO/EP) composite material is prepared using the casting molding process. The surface morphology of GO before and after modification and its peel dispersion in EP are examined. Furthermore, the mechanical properties, cross-sectional morphology, and reinforcement mechanism of POSS-GO/EP are thoroughly examined. The results show that the cage-like skeleton structure of POSS is embedded between the GO layers, increasing the spacing between the GO layers and leading to a steric hindrance effect, which effectively prevents their stacking and aggregation and improves the dispersion performance of GO. In particular, the 0.4 phr POSS-GO/EP sample shows the best mechanical properties. This is because, on the one hand, POSS-GO is uniformly dispersed in the EP matrix, which can more efficiently induce crack deflection and bifurcation and can also cause certain plastic deformations in the EP matrix. On the other hand, the POSS-GO/EP fracture cross-section with a stepped morphology of interlaced "canine teeth" shape is rougher and more uneven, leading to more complex crack propagation paths and greater energy consumption. Moreover, the mechanical meshing effect between the rough POSS-GO surface and the EP matrix is stronger, which is conducive to the transfer of interfacial stress and the strengthening and toughening effects of POSS-GO.

10.
J Chromatogr A ; 1707: 464319, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37639848

RESUMEN

Acteoside (ACT) is one of the phenylethanoid glycosides in Cistanche tubulosa. The ACT molecules have high medicinal value, but the content of ACT is scarce. Therefore, it is imperative to develop the ACT-based molecularly imprinted composite membranes (A-MICMs) with highly selective separation of ACT. In this study, the amine-polyhedral oligomeric sesquisiloxanes (NH2-POSS) were uniformly introduced into polydopamine modified polyvinylidene fluoride (pDA@PVDF) membranes to fabricate NH2-POSS-pDA@PVDF. Then, the ACT-imprinted layers were synthesized on the surface of NH2-POSS-pDA@PVDF to obtain A-MICMs. The results showed that the optimal conditions were 180 mg DA, 12 h DA self-polymerization time, 400 mg NH2-POSS and 10 h washing time for the synthesis of A-MICMs. The results of adsorption isotherm experiments showed that there was a single layer adsorbate analyte on the A-MICMs. The results of adsorption kinetic experiments showed that chemisorption mechanism played a major function in the adsorption process of A-MICMs for ACT. The A-MICMs exhibited the maximum rebinding capacity of 98.37 mg⋅g-1, an excellent rebinding selectivity of 4.63, and the permselectivity of 7.02. The same A-MICMs kept 95.99% of the maximum rebinding capacity for ACT after 5 adsorption-desorption cycles. The designed A-MICMs with the interleaved imprinted network structure have a potential to be applied to the highly selective separation of bioactive components from natural products.


Asunto(s)
Aminas , Productos Biológicos , Adsorción
11.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(8): 918-928, 2023 Aug 15.
Artículo en Chino | MEDLINE | ID: mdl-37586790

RESUMEN

Objective: To prepare a novel hyaluronic acid methacrylate (HAMA) hydrogel microspheres loaded polyhedral oligomeric silsesquioxane-diclofenac sodium (POSS-DS) patricles, then investigate its physicochemical characteristics and in vitro and in vivo biological properties. Methods: Using sulfhydryl POSS (POSS-SH) as a nano-construction platform, polyethylene glycol and DS were chemically linked through the "click chemistry" method to construct functional nanoparticle POSS-DS. The composition was analyzed by nuclear magnetic resonance spectroscopy and the morphology was characterized by transmission electron microscopy. In order to achieve drug sustained release, POSS-DS was encapsulated in HAMA, and hybrid hydrogel microspheres were prepared by microfluidic technology, namely HAMA@POSS-DS. The morphology of the hybrid hydrogel microspheres was characterized by optical microscope and scanning electron microscope. The in vitro degradation and drug release efficiency were observed. Cell counting kit 8 (CCK-8) and live/dead staining were used to detect the effect on chondrocyte proliferation. Moreover, a chondrocyte inflammation model was constructed and cultured with HAMA@POSS-DS. The relevant inflammatory indicators, including collagen type Ⅱ, aggrecan (AGG), matrix metalloproteinase 13 (MMP-13), recombinant A disintegrin and metalloproteinase with thrombospondin 5 (Adamts5), and recombinant tachykinin precursor 1 (TAC1) were detected by immunofluorescence staining and real-time fluorescence quantitative PCR, with normal cultured chondrocytes and the chondrocyte inflammation model without treatment as control group and blank group respectively to further evaluate their anti-inflammatory activity. Finally, by constructing a rat model of knee osteoarthritis, the effectiveness of HAMA@POSS-DS on osteoarthritis was evaluated by X-ray film and Micro-CT examination. Results: The overall particle size of POSS-DS nanoparticles was uniform with a diameter of about 100 nm. HAMA@POSS-DS hydrogel microspheres were opaque spheres with a diameter of about 100 µm and a spherical porous structure. The degradation period was 9 weeks, during which the loaded POSS-DS nanoparticles were slowly released. CCK-8 and live/dead staining showed no obvious cytotoxicity at HAMA@POSS-DS, and POSS-DS released by HAMA@POSS-DS significantly promoted cell proliferation (P<0.05). In the chondrocyte anti-inflammatory experiment, the relative expression of collagen type Ⅱ mRNA in HAMA@POSS-DS group was significantly higher than that in control group and blank group (P<0.05). The relative expression level of AGG mRNA was significantly higher than that of blank group (P<0.05). The relative expressions of MMP-13, Adamts5, and TAC1 mRNA in HAMA@POSS-DS group were significantly lower than those in blank group (P<0.05). In vivo experiments showed that the joint space width decreased after operation in rats with osteoarthritis, but HAMA@POSS-DS delayed the process of joint space narrowing and significantly improved the periarticular osteophytosis (P<0.05). Conclusion: HAMA@POSS-DS can effectively regulate the local inflammatory microenvironment and significantly promote chondrocyte proliferation, which is conducive to promoting cartilage regeneration and repair in osteoarthritis.


Asunto(s)
Hidrogeles , Osteoartritis de la Rodilla , Animales , Ratas , Metaloproteinasa 13 de la Matriz , Microesferas , Colágeno Tipo II , Diclofenaco , Inflamación , Osteoartritis de la Rodilla/tratamiento farmacológico , Ácido Hialurónico , Agrecanos
12.
Turk J Chem ; 47(2): 417-425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528932

RESUMEN

The effect of octaisobutyl-polyhedral oligomeric silsesquioxane (OIB-POSS) as a nanosized reinforcement on the cure kinetics, crosslinking density, and mechanical properties of styrene-butadiene rubber (SBR) nanocomposites was examined in this study. For this purpose, SBR compounds with various OIB-POSS nanoparticle loadings at 1, 3, and 5 phr were prepared and their results were compared with a reference compound without OIB-POSS. When 1 phr of OIB-POSS was added to the rubber matrix, the elongation at break values and tensile strength of the corresponding nanocomposite increased by 24.1% and 29.2% compared to the reference sample, respectively. The presence of OIB-POSS nanoparticles and their random distribution in the SBR matrix was confirmed by transmission electron microscopy. The crosslinking density of nanocomposites was calculated by the Flory-Rehner method and a decrease was observed with the addition of OIB-POSS nanoparticles. In addition, thermal aging process as 70 °C for 70 h was applied to vulcanized samples. It was noted that the mechanical properties of SBR/OIB-POSS nanocomposites remarkably improved, whereas their crosslinking densities gradually decreased after thermal aging.

13.
Polymers (Basel) ; 15(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37242872

RESUMEN

In this study, a tetrafunctional epoxy resin was loaded with 5 wt% of three different types of polyhedral oligomeric silsesquioxane (POSS) compounds, namely, DodecaPhenyl POSS (DPHPOSS), Epoxycyclohexyl POSS (ECPOSS), Glycidyl POSS (GPOSS), and 0.5 wt% of multi-walled carbon nanotubes (CNTs) in order to formulate multifunctional structural nanocomposites tailored for aeronautic and aerospace applications. This work aims to demonstrate how the skillful combination of desired properties, such as good electrical, flame-retardant, mechanical, and thermal properties, is obtainable thanks to the advantages connected with nanoscale incorporations of nanosized CNTs with POSS. The special hydrogen bonding-based intermolecular interactions between the nanofillers have proved to be strategic in imparting multifunctionality to the nanohybrids. All multifunctional formulations are characterized by a Tg centered at values close to 260 °C, fully satisfying structural requirements. Infrared spectroscopy and thermal analysis confirm the presence of a cross-linked structure characterized by a high curing degree of up to 94% and high thermal stability. Tunneling atomic force microscopy (TUNA) allows to detect the map of the electrical pathways at the nanoscale of the multifunctional samples, highlighting a good dispersion of the carbon nanotubes within the epoxy resin. The combined action of POSS with CNTs has allowed to obtain the highest values of self-healing efficiency if compared to those measured for samples containing only POSS in the absence of CNTs.

14.
Nanomaterials (Basel) ; 13(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37049384

RESUMEN

The reaction of octakis(3-chloropropyl)octasilsesquioxane with four equivalents of 1-hexylimidazole or 1-decylimidazole gave two products labelled as HQ-POSS (hexyl-imidazolium quaternized POSS) and DQ-POSS (decyl-imidazolium quaternized POSS) as regioisomer mixtures. An investigation of the biological activity of these two compounds revealed the higher antimicrobial performances of HQ-POSS against Gram-positive and Gram-negative microorganisms, proving its broad-spectrum activity. Due to its very viscous nature, HQ-POSS was adsorbed in variable amounts on the surface of biologically active oxides to gain advantages regarding the expendability of such formulations from an applicative perspective. Titania and 5 wt% Cu on titania were used as supports. The materials 10HQ-POSS/Ti and 15HQ-POSS/5CuTi strongly inhibited the ability of Pseudomonas PS27 cells-a bacterial strain described for its ability to handle very toxic organic solvents and perfluorinated compounds-to grow as planktonic cells. Moreover, the best formulations (i.e., 10HQ-POSS/Ti and 15HQ-POSS/5CuTi) could prevent Pseudomonas PS27 biofilm formation at a certain concentration (250 µg mL-1) which greatly impaired bacterial planktonic growth. Specifically, 15HQ-POSS/5CuTi completely impaired cell adhesion, thus successfully prejudicing biofilm formation and proving its suitability as a potential antifouling agent. Considering that most studies deal with quaternary ammonium salts (QASs) with long alkyl chains (>10 carbon atoms), the results reported here on hexylimidazolium-based POSS further deepen the knowledge of QAS formulations which can be used as antifouling compounds.

15.
Carbohydr Polym ; 312: 120832, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059548

RESUMEN

Herein, ß-cyclodextrin-containing hybrid polymers (P1, P2 and P3) were prepared through crosslinking partially benzylated ß-cyclodextrin (PBCD) by octavinylsilsesquioxane (OVS). P1 stood out in screening studies and the residual hydroxyl groups of PBCD was sulfonate-functionalized. The obtained P1-SO3Na showed greatly enhanced adsorption towards cationic MPs and maintained the excellent adsorption performance towards neutral MPs. The rate constants (k2) of cationic MPs upon P1-SO3Na were 9.8-34.8 times larger than those upon P1. The equilibrium uptakes of the neutral and cationic MPs upon P1-SO3Na were above 94.5 %. Meanwhile, P1-SO3Na demonstrated appreciable adsorption capacities, excellent selectivity, effective adsorption of mixed MPs at environmental levels and good reusability. These results confirmed the great potential of P1-SO3Na as effective adsorbent to remove MPs from water.

16.
Adv Sci (Weinh) ; 10(15): e2207381, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36967561

RESUMEN

Postmenopausal osteoporosis is one of the most prevalent skeletal disorders in women and is featured by the imbalance between intraosseous vascularization and bone metabolism. In this study, a pH-responsive shell-core structured micro/nano-hydrogel microspheres loaded with polyhedral oligomeric silsesquioxane (POSS) using gas microfluidics and ionic cross-linking technology are developed. This micro/nano-hydrogel microsphere system (PDAP@Alg/Cs) can achieve oral delivery, intragastric protection, intestinal slow/controlled release, active targeting to bone tissue, and thus negatively affecting intraosseous angiogenesis and osteoclastogenesis. According to biodistribution data, PDAP@Alg/Cs can successfully enhance drug intestinal absorption and bioavailability through intestine adhesion and bone targeting after oral administration. In vitro and in vivo experiments reveal that PDAP@Alg/Cs promoted type H vessel formation and inhibited bone resorption, effectively mitigating bone loss by activating HIF-1α/VEGF signaling pathway and promoting heme oxygenase-1 (HO-1) expression. In conclusion, this novel oral micro/nano-hydrogel microsphere system can simultaneously accelerate intraosseous vascularization and decrease bone resorption, offering a brand-new approach to prevent postmenopausal osteoporosis.


Asunto(s)
Resorción Ósea , Osteoporosis Posmenopáusica , Femenino , Humanos , Hidrogeles , Microesferas , Distribución Tisular , Huesos
17.
Adv Sci (Weinh) ; 10(15): e2207438, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36973540

RESUMEN

The monitoring of tissue regeneration is particularly important. However, most materials do not allow direct observation of the regeneration process in the cartilage layer. Here, using sulfhydryl polyhedral oligomeric silsesquioxane (POSS-SH) as a nano-construction platform, poly(ethylene glycol) (PEG), Kartogenin (KGN), hydrogenated soya phosphatidylcholine (HSPC), and fluorescein are linked through the "click chemistry" method to construct nanomaterial with fluorescence visualization for cartilage repair: POSS linked with PEG, KGN, HSPC, and fluorescein (PPKHF). PPKHF nanoparticles are encapsulated with hyaluronic acid methacryloyl to prepare PPKHF-loaded microfluidic hyaluronic acid methacrylate spheres (MHS@PPKHF) for in situ injection into the joint cavity using microfluidic technology. MHS@PPKHF forms a buffer lubricant layer in the joint space to reduce friction between articular cartilages, while releasing encapsulated positively charged PPKHF to the deep cartilage through electromagnetic force, facilitating visualization of the location of the drug via fluorescence. Moreover, PPKHF facilitates differentiation of bone marrow mesenchymal stem cells into chondrocytes, which are located in the subchondral bone. In animal experiment, the material accelerates cartilage regeneration while allowing monitoring of cartilage layer repair progression via fluorescence signals. Thus, these POSS-based micro-nano hydrogel microspheres can be used for cartilage regeneration and monitoring and potentially for clinical osteoarthritis therapy.


Asunto(s)
Cartílago Articular , Hidrogeles , Animales , Ácido Hialurónico , Microesferas , Fluoresceínas
18.
Polymers (Basel) ; 15(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36904542

RESUMEN

Fluorosilicone rubber (F-LSR) is a promising material that can be applied in various cutting-edge industries. However, the slightly lower thermal resistance of F-LSR compared with that of conventional PDMS is difficult to overcome by applying nonreactive conventional fillers that readily agglomerate owing to their incompatible structure. Polyhedral oligomeric silsesquioxane with vinyl groups (POSS-V) is a suitable material that may satisfy this requirement. Herein, F-LSR-POSS was prepared using POSS-V as a chemical crosslinking agent chemically bonded with F-LSR through hydrosilylation. All F-LSR-POSSs were successfully prepared and most of the POSS-Vs were uniformly dispersed in the F-LSR-POSSs, as confirmed by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) measurements. The mechanical strength and crosslinking density of the F-LSR-POSSs were determined using a universal testing machine (UTM) and dynamic mechanical analysis (DMA), respectively. Finally, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) measurements confirmed that the low-temperature thermal properties were maintained, and the heat resistance was significantly improved compared with conventional F-LSR. Eventually, the poor heat resistance of the F-LSR was overcome with three-dimensional high-density crosslinking by introducing POSS-V as a chemical crosslinking agent, thereby expanding the potential fluorosilicone applications.

19.
Small ; 19(18): e2207248, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36725316

RESUMEN

Glioblastoma (GBM) is the most common lethal brain tumor with dismal treatment outcomes and poor response to chemotherapy. As the regulatory center of cytogenetics and metabolism, most tumor chemotherapeutic molecules exert therapeutic effects in the nucleus. Nanodrugs showing the nuclear aggregation effect are expected to eliminate and fundamentally suppress tumor cells. In this study, a nanodrug delivery system based on polyhedral oligomeric silsesquioxane (POSS) is introduced to deliver drugs into the nuclei of GBM cells, effectively enhancing the therapeutic efficacy of chemotherapy. The nanoparticles are modified with folic acid and iRGD peptides molecules to improve their tumor cell targeting and uptake via receptor-mediated endocytosis. Nuclear aggregation allows for the direct delivery of chemotherapeutic drug temozolomide (TMZ) to the tumor cell nuclei, resulting in more significant DNA damage and inhibition of tumor cell proliferation. Herein, TMZ-loaded POSS nanoparticles can significantly improve the survival of GBM-bearing mice. Therefore, the modified POSS nanoparticles may serve as a promising drug-loaded delivery platform to improve chemotherapy outcomes in GBM patients.


Asunto(s)
Glioblastoma , Nanopartículas , Ratones , Animales , Glioblastoma/patología , Línea Celular Tumoral , Temozolomida/química , Temozolomida/farmacología , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química
20.
ACS Appl Mater Interfaces ; 15(2): 2693-2704, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36607181

RESUMEN

Facile surgical delivery and stable fixation of synthetic scaffolds play roles just as critically as degradability and bioactivity in ensuring successful scaffold-guided tissue regeneration. Properly engineered shape memory polymers (SMPs) may meet these challenges. Polyhedral oligomeric silsesquioxanes (POSSs) can be covalently integrated with urethane-crosslinked polylactide (PLA) to give high-strength, degradable SMPs around physiological temperatures. To explore their potential for guided bone regeneration, here we tune their hydrophilicity, degradability, cytocompatibility, and osteoconductivity/osteoinductivity by crosslinking star-branched POSS-PLA with hydrophilic polyethylene glycol diisocyanates of different lengths and up to 60 wt % hydroxyapatite (HA). The composites exhibit high compliance, toughness, up to gigapascal storage moduli, and excellent shape recovery (>95%) at safe triggering temperatures. Water swelling ratios and hydrolytic degradation rates positively correlated with the hydrophilic crosslinker lengths, while the negative impact of degradation on the proliferation and osteogenesis of bone marrow stromal cells was mitigated with HA incorporation. Macroporous composites tailored for a rat femoral segmental defect were fabricated, and their ability to stably retain and sustainedly release recombinant osteogenic bone morphogenetic protein-2 and support cell attachment and osteogenesis was demonstrated. These properties combined make these amphiphilic osteoconductive degradable SMPs promising candidates as next-generation synthetic bone grafts.


Asunto(s)
Nanocompuestos , Andamios del Tejido , Ratas , Animales , Andamios del Tejido/química , Osteogénesis/fisiología , Regeneración Ósea/fisiología , Durapatita/química , Poliésteres , Nanocompuestos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA