Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
1.
J Cosmet Dermatol ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39285829

RESUMEN

BACKGROUND: Poly-l-lactic acid (PLLA-SCA; Sculptra) was approved in 1999 in Europe and 2004 in United States as a collagen biostimulator. It is a freeze-dried preparation containing 150 mg PLLA-SCA per vial and, since approval, has been recommended to be reconstituted 72 h before treatment, which can hinder its use in clinical practice. In 2021, the manufacturer authorized the reconstitution of PLLA-SCA immediately before use. OBJECTIVE: To evaluate adverse events in patients treated with immediately reconstituted PLLA-SCA on the face, body, and scars. METHOD: This was a retrospective analysis of medical records of patients treated with immediately reconstituted PLLA-SCA for aesthetic purposes from January 1, 2021, to December 31, 2021, at two medical centers. RESULTS: A total of 274 treatment sessions were conducted on 167 patients (ranging from 1 to 5 sessions per patient). Of these, 228 sessions (151 patients) targeted the face, 39 sessions (22 patients) addressed the body, and 7 sessions (5 patients) focused on scars. The mean final concentration of PLLA-SCA was 15.30 mg/mL for the face, 8.35 mg/mL for the body, and 10.53 mg/mL for scars. The majority of injections were administered with a blunt cannula (face: 87.3%, body: 100%, scars: 57%), and in 6 out of 7 scar treatments, PLLA-SCA was additionally applied topically after fractional treatment. One patient developed a PLLA-SCA nodule 30 days after facial treatment, which resolved after two saline injections. The most common adverse events were bruising (face: 6.57%, body: 7.69%) and mild pain (face: 3.07%). No events required further intervention. CONCLUSION: This study reports an adverse event profile with immediately reconstituted PLLA-SCA, used on the face, body, and scars, similar to that reported with PLLA-SCA reconstituted 72 h prior to use. TRIAL REGISTRATION: This was a retrospective study of medical records at two medical centers, and trial registration was not required.

2.
J Cosmet Dermatol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39228358

RESUMEN

BACKGROUND: Injectable fillers for soft tissue augmentation stand out as one of the most favored procedures in the field of aesthetic medicine, especially in addressing the clinical signs of skin aging. Among soft tissue fillers, non-permanent fillers have been safely used in numerous medical applications for several decades. AIMS: The aim of this post-market observational, open-label, uncontrolled, multicentered, prospective study (PMS) was to evaluate the effects of an injectable poly-L-lactic acid-based collagen stimulator (Lanluma®, the study product). PARTICIPANTS/METHODS: This analysis is based on the clinical outcomes data (safety and effectiveness) collected from investigators and participants between the first injection (T0, September 2022) and 9 months thereafter (T3, June 2023) in the treatment of five body-contouring areas. RESULTS: Overall, 70 participants had 99 treatment sessions of the neck (31%), upper arm (20%), hand (17%), thigh (16%) and décolleté (15%). Lumps (neck, upper arm, hand) and nodules (neck, hand, thigh) were the most frequent adverse events (AEs) reported by investigators. All were treatment related. None were serious, severe or fatal. No AEs were reported following treatment of the décolleté. Both investigators and participants reported high levels of satisfaction during the nine-month follow-up period with the treatments in five body areas. CONCLUSIONS: These positive clinical outcomes can be attributed to a proper implementation of best practices and recommendations, and the rheological properties of the study product. This 9-month follow-up analysis should be reconsidered in light of the study's objectives for the final analysis at the 25-month follow-up.

3.
J Dermatolog Treat ; 35(1): 2402909, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39266009

RESUMEN

BACKGROUND: Dermal fillers are widely used for facial rejuvenation and esthetic enhancement, offering temporary solutions for aging and volume loss. Despite their general safety, a rare but severe complication associated with these fillers is visual impairment, including blindness. This underscores the need for a thorough understanding of risks associated with various filler materials. Historical cases of blindness following filler injections date back to 1963, with increasing reports linked to the expansion of the cosmetic filler industry. While hyaluronic acid (HA) and autologous fat have been extensively studied, other fillers such as calcium hydroxylapatite and poly-l-lactic acid (PLLA) are less understood. OBJECTIVE: This systematic review aims to address gaps in the literature by providing a comprehensive overview of visual impairment caused by fillers other than HA and autologous fat. We systematically examine the prevalence, causes, clinical features, and treatment outcomes associated with these less common fillers. MATERIALS AND METHODS: A comprehensive literature search was conducted across databases including PubMed, Scopus, and Google Scholar using terms related to visual impairment and dermal fillers. Studies published between 2014 and 2021, including observational studies and case reports, were included. Studies were selected based on predefined inclusion and exclusion criteria, and a PRISMA flow diagram was used to illustrate the study selection process. RESULTS: The review identifies and summarizes cases of visual impairment associated with calcium hydroxylapatite, poly-d,l-lactic acid (PDLLA), and PLLA fillers. Key findings reveal that visual impairment following these fillers is rare but can occur suddenly or within a few days of the procedure. Cases of delayed onset up to two weeks are also noted, emphasizing the need for extended post-procedure monitoring. DISCUSSION: The review highlights unique insights into the risks associated with non-HA fillers, such as the heightened risk in the periorbital region and other facial areas. It explores mechanisms of complications, including retrograde flow of emboli leading to retinal ischemia. The discussion also covers emergency protocols and preventative measures, providing valuable guidance for managing and mitigating risks. CONCLUSIONS: Visual impairment caused by fillers other than HA and autologous fat, while rare, represents a serious complication that requires careful attention. This review contributes new perspectives on the differential risks of various fillers, symptom onset variability, and anatomical risk factors. Emphasizing the importance of proper patient selection, technique, and monitoring, it calls for further research to better understand and prevent these complications, ultimately aiming for safer and more effective use of soft-tissue fillers.


Asunto(s)
Técnicas Cosméticas , Rellenos Dérmicos , Durapatita , Plasma Rico en Plaquetas , Poliésteres , Humanos , Técnicas Cosméticas/efectos adversos , Rellenos Dérmicos/efectos adversos , Rellenos Dérmicos/administración & dosificación , Durapatita/efectos adversos , Poliésteres/efectos adversos , Trastornos de la Visión/inducido químicamente , Trastornos de la Visión/etiología , Ceguera/etiología , Ceguera/inducido químicamente , Rejuvenecimiento , Envejecimiento de la Piel/efectos de los fármacos , Polímeros/efectos adversos
4.
Biomaterials ; 314: 122833, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39277947

RESUMEN

The nasty urine microenvironment (UME) impedes neourethral regeneration by inhibiting angiogenesis and inducing an excessive inflammatory response. Cellular adaptation to hypoxia improves regeneration in numerous tissues. In this study, heterogeneous porous hypoxia-mimicking scaffolds were fabricated for urethral reconstruction via promoting angiogenesis and modulating the inflammatory response based on sustained release of dimethyloxalylglycine (DMOG) to promote HIF-1α stabilization. Such scaffolds exhibit a two-layered structure: a dense layer composed of electrospun poly (l-lactic acid) (PLLA) nanofibrous mats and a loose layer composed of a porous gelatin matrix incorporated with DMOG-loaded mesoporous silica nanoparticles (DMSNs) and coated with poly(glycerol sebacate) (PGS). The modification of PGS could significantly increase rupture elongation, making the composite scaffolds more suitable for urethral tissue regeneration. Additionally, sustained release of DMOG from the scaffold facilitates proliferation, migration, tube formation, and angiogenetic gene expression in human umbilical vein endothelial cells (HUVECs), as well as stimulates M2 macrophage polarization and its regulation of HUVECs migration and smooth muscle cell (SMCs) contractile phenotype. These effects were downstream of the stabilization of HIF-1α in HUVECs and macrophages under hypoxia-mimicking conditions. Furthermore, the scaffold achieved better urethral reconstruction in a rabbit urethral stricture model, including an unobstructed urethra with a larger urethral diameter, increased regeneration of urothelial cells, SMCs, and neovascularization. Our results indicate that heterogeneous porous hypoxia-mimicking scaffolds could promote urethral reconstruction via facilitating angiogenesis and modulating inflammatory response.

5.
Int J Biol Macromol ; 278(Pt 4): 134971, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182879

RESUMEN

Electrical stimulation therapy is effective in promoting wound healing by rescuing the decreased endogenous electrical field, where self-powered and miniaturized devices such as nanogenerators become the emerging trends. While high-voltage and unidirectional electric field may pose thermal effect and damage to the skin, nanogenerators with lower voltages, pulsed or bidirectional currents, and less invasive electrodes are preferred. Herein, we construct a polydopamine (PDA)-modified poly-L-lactic acid (PLLA) /MXene (PDMP/MXene) nanofibrous composite membrane that generates piezoelectric voltages matching the transepithelial potential (TEP) to accelerate wound healing. PDA coating not only enhances the piezoelectricity of PLLA by dipole attraction and alignment, but also increases its hydrophilicity and facilitates subsequent MXene adhesion for electrical conductivity and stability in physiological environment. When applied as wound dressings in mice, the PDMP/MXene membranes act as a nanogenerators with reduced internal resistances and satisfactory piezoelectric performances that resemble bioelectric potentials (~10 mV) responding to physical activities. The membrane significantly accelerates wound closure by facilitating fibroblast migration, collagen deposition and angiogenesis, and suppressing the expression of inflammatory responses. This piezoelectric fibrous membrane therefore provides a convenient solution for speeding up wound healing by sustained low voltage mimicking bioelectricity, better cell affinity.


Asunto(s)
Poliésteres , Polímeros , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Ratones , Poliésteres/química , Polímeros/química , Membranas Artificiales , Indoles/química , Conductividad Eléctrica , Fibroblastos/efectos de los fármacos , Electricidad , Nanofibras/química , Movimiento Celular/efectos de los fármacos
6.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000341

RESUMEN

Poly L-lactic acid (PLLA) fillers stimulate collagen synthesis by activating various immune cells and fibroblasts. Piezo1, an ion channel, responds to mechanical stimuli, including changes in extracellular matrix stiffness, by mediating Ca2+ influx. Given that elevated intracellular Ca2+ levels trigger signaling pathways associated with fibroblast proliferation, Piezo1 is a pivotal regulator of collagen synthesis and tissue fibrosis. The aim of the present study was to investigate the impact of PLLA on dermal collagen synthesis by activating Piezo1 in both an H2O2-induced cellular senescence model in vitro and aged animal skin in vivo. PLLA elevated intracellular Ca2+ levels in senescent fibroblasts, which was attenuated by the Piezo1 inhibitor GsMTx4. Furthermore, PLLA treatment increased the expression of phosphorylated ERK1/2 to total ERK1/2 (pERK1/2/ERK1/2) and phosphorylated AKT to total AKT (pAKT/AKT), indicating enhanced pathway activation. This was accompanied by upregulation of cell cycle-regulating proteins (CDK4 and cyclin D1), promoting the proliferation of senescent fibroblasts. Additionally, PLLA promoted the expression of phosphorylated mTOR/S6K1/4EBP1, TGF-ß, and Collagen I/III in senescent fibroblasts, with GsMTx4 treatment mitigating these effects. In aged skin, PLLA treatment similarly upregulated the expression of pERK1/2/ERK1/2, pAKT/AKT, CDK4, cyclin D1, mTOR/S6K1/4EBP1, TGF-ß, and Collagen I/III. In summary, our findings suggest Piezo1's involvement in PLLA-induced collagen synthesis, mediated by heightened activation of cell proliferation signaling pathways such as pERK1/2/ERK1/2, pAKT/AKT, and phosphorylated mTOR/S6K1/4EBP1, underscoring the therapeutic potential of PLLA in tissue regeneration.


Asunto(s)
Colágeno , Fibroblastos , Poliésteres , Animales , Poliésteres/farmacología , Poliésteres/química , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Colágeno/metabolismo , Colágeno/biosíntesis , Canales Iónicos/metabolismo , Ratones , Piel/metabolismo , Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Calcio/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos
7.
Front Bioeng Biotechnol ; 12: 1419654, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036561

RESUMEN

Additive manufacturing and electrospinning are widely used to create degradable biomedical components. This work presents important new data showing that the temperature used in accelerated tests has a significant impact on the degradation process in amorphous 3D printed poly-l-lactic acid (PLLA) fibres. Samples (c. 100 µ m diameter) were degraded in a fluid environment at 37 ° C, 50 ° C and 80 ° C over a period of 6 months. Our findings suggest that across all three fluid temperatures, the fibres underwent bulk homogeneous degradation. A three-stage degradation process was identified by measuring changes in fluid pH, PLLA fibre mass, molecular weight and polydispersity index. At 37 ° C, the fibres remained amorphous but, at elevated temperatures, the PLLA crystallised. A short-term hydration study revealed a reduction in glass transition (Tg), allowing the fibres to crystallise, even at temperatures below the dry Tg. The findings suggest that degradation testing of amorphous PLLA fibres at elevated temperatures changes the degradation pathway which, in turn, affects the sample crystallinity and microstructure. The implication is that, although higher temperatures might be suitable for testing bulk material, predictive testing of the degradation of amorphous PLLA fibres (such as those produced via 3D printing or electrospinning) should be conducted at 37 ° C.

8.
J Cosmet Dermatol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037908

RESUMEN

BACKGROUND: Poly L-lactic acid (PLLA) can stimulate fibrous tissue regeneration to exert a filling effect. However, severe inflammatory reactions and unsatisfactory effects remain a concern. OBJECTIVE: Herein, we describe the mechanism of action, efficacy, and safety of PLLA microspheres in suspension (PLLA-b-PEG/HA) for facial contouring and soft tissue augmentation. METHODS: PLLA-b-PEG/HA, ssynthesized by copolymerization with ethylene glycol, were suspended in hyaluronic acid (HA). Physiological verification was performed using scanning electron microscopy and X-ray computed tomography. PLLA-b-PEG/HA were subcutaneously injected into the dorsal region of 4-month-old rabbits. Ultrasound assessed volumetric capacity at 3 days and 1, 2, 4, and 12 weeks. The inflammatory response, collagen production, and HA degradation were evaluated. A retrospective case series of 10 patients who received PLLA-b-PEG/HA injections was conducted to assess long-term efficacy and safety. RESULTS: PLLA-b-PEG exhibited a spherical structure with a smooth surface (20-45 µm diameter). In rabbits, implant site volume increased within 4 weeks, gradually decreasing thereafter. Fibrous capsules, microvessel density, and new collagen fiber formation progressively increased at 4, 12, and 26 weeks after injection. Clinical data demonstrated significant improvements in face contouring at months 3 and 12 after injection. All patients showed improved internal contours based on the Global Aesthetic Improvement Scale. After 12 months, 90% of the patients retained good shaping and support effects with minimal adverse reactions. CONCLUSIONS: PLLA-b-PEG/HA demonstrated superior biocompatibility and facial regeneration potential, with outstanding dual collagen-stimulating properties. The clinical efficacy and safety of PLLA-b-PEG/HA have been validated and established as a promising therapeutic option.

9.
ACS Appl Bio Mater ; 7(8): 5423-5436, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39069738

RESUMEN

Nanofibers have emerged as a highly effective method for drug delivery, attributed to their remarkable porosity and ability to regulate drug release rates while minimizing toxicity and side effects. In this study, we successfully loaded the natural anticancer drugs curcumin (CUR) and hypocrellin A (HA) into pure poly(l-lactic acid) (PLLA) and PLLA-silk protein (PS) composite nanofibers through electrospinning technology. This result was confirmed through comprehensive analysis involving SEM, FTIR, XRD, DSC, TG, zeta potential, and pH stability analysis. The encapsulation efficiency of all samples exceeded 85%, demonstrating the effectiveness of the loading process. Additionally, the drug release doses were significantly higher in the composites compared to pure PLLA, owing to the enhanced crystallinity and stability of the silk proteins. Importantly, the composite nanofibers exhibited excellent pH stability in physiological and acidic environments. Furthermore, the drug-loaded composite nanofibers displayed strong inhibitory effects on cancer cells, with approximately 28% (HA) and 37% (CUR) inhibition of cell growth and differentiation within 72 h, while showing minimal impact on normal cells. This research highlights the potential for controlling drug release through the manipulation of fiber diameter and crystallinity, paving the way for wider applications of electrospun green nanomaterials in the field of medicine.


Asunto(s)
Antineoplásicos , Proliferación Celular , Curcumina , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fibroínas , Nanofibras , Tamaño de la Partícula , Perileno , Fenol , Poliésteres , Quinonas , Curcumina/química , Curcumina/farmacología , Nanofibras/química , Fibroínas/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Poliésteres/química , Quinonas/química , Quinonas/farmacología , Proliferación Celular/efectos de los fármacos , Fenol/química , Perileno/química , Perileno/análogos & derivados , Perileno/farmacología , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Preparaciones de Acción Retardada/química , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral
10.
Small ; : e2402317, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988143

RESUMEN

Here, the poly (l-lactic acid) (PLLA) membrane with multi-structured networks (MSN) is successfully prepared by electrospinning technology for the first time. It is composed of micron-sized ribbon-structured fibers and ultrafine nanofibers with a diameter of tens of nanometers, and they are connected to form the new network structure. Thanks to the special fiber morphology and structure, the interception and electrostatic adsorption ability for against atmospheric particulate matter (PM) are significantly enhanced, and the resistance to airflow is reduced due to the "slip effect" caused by ultrafine nanofibers. The PLLA MSN membrane shows excellent filtration performance with ultra-high filtration efficiency (>99.9% for PM2.5 and >99.5% for PM0.3) and ultra-low pressure drop (≈20 Pa). It has demonstrated filtration performance that even exceeds current non-biodegradable polymer materials, laying the foundation for future applications of biodegradable PLLA in the field of air filtration. In addition, this new structure also provides a new idea for optimizing the performance of other polymer materials.

11.
Aesthetic Plast Surg ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995348

RESUMEN

BACKGROUND: In Asia, the demand for cosmetic facial treatments has surged due to technological advancements, increased social acceptability, and affordability. Poly-L-lactic acid (PLLA) fillers, known for their biocompatibility and biodegradability, have emerged as a popular choice for facial contouring, yet studies specifically addressing their use in Asian populations are scarce. METHODS: This retrospective study examined 30 Chinese patients who underwent facial contouring with PLLA fillers, focusing on product composition, injection techniques, and safety measures. A comprehensive clinical evaluation was performed, including the Global Aesthetic Improvement Scale (GAIS) and Global Impression of Change Scale (GICS) for effectiveness and patient satisfaction, respectively. RESULTS: No significant difference in GAIS scores was observed between injectors and blinded evaluators over a 12-month period, indicating consistent effectiveness. Patient satisfaction remained high, with GICS scores reflecting positive outcomes. The safety profile was favorable, with no serious adverse events reported. The study highlighted the importance of anatomical knowledge to avoid complications, particularly in areas prone to blindness. CONCLUSIONS: PLLA fillers offer a safe, effective option for facial contour correction in the Asian population, achieving high patient satisfaction and maintaining results over time. The study underscores the need for tailored approaches in cosmetic procedures for Asians, considering their unique facial structures and aesthetic goals. Further research with larger, multicenter cohorts is recommended to validate these findings and explore long-term effects. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

12.
Aesthetic Plast Surg ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060798

RESUMEN

Poly-L-lactic acid (PLLA), a well-established biostimulator that induces collagenases, is widely used among clinical practice to treat skin aging. However, the precise regulatory effect of PLLA on different dermal cell subsets beyond fibroblast has not been fully elucidated. In this study, we constructed in vivo PLLA injection and in vitro PLLA-adipocyte co-culture models to analyze the regulatory effects of PLLA on the volume, differentiation, lipolysis, and thermogenic capacity of dermal adipocyte. We found that PLLA injection significantly reduced the thickness of dermal fat in mice. In co-culture assay, PLLA showed no effect on adipogenesis, but stimulated the lipolysis activity. Interestingly, PLLA also enhanced the differentiation of fat cells into beige fat cells, which possess higher thermogenic capacity. In mechanical study, we blocked adipocyte lactate uptake with a monocarboxylate transporter (MCT1/4) inhibitor and found that the regulatory effect of PLLA on dermal adipocyte relies on its metabolite lactate. In summary, our results suggest that PLLA has complex regulatory effects on the dermal cells, and its ability to improve skin aging is not fully attributed to stimulating collagen synthesis, but also partially involves adipocytes.No Level Assigned This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

13.
Am J Transl Res ; 16(6): 2607-2611, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006279

RESUMEN

OBJECTIVE: To assess the effectiveness and safety of poly-L-lactic acid (PLLA) fillers in treating nasal alar retraction. We conducted a series of case reports on 13 patients treated for nasal alar retraction at the Chengdu Ningyue FRESKIN Medicine Cosmology Clinic from September 2022 to July 2023. Patients ranged from 23 to 49 years, comprising 12 females and 1 male. Of these, 5 had no prior medical history, 7 had previously undergone rhinoplasty, and 1 had a history of nasal trauma. Treatment outcomes and adverse reactions were monitored following PLLA filler injections. The mean pre-treatment severity score was 1.62±0.65, improving to 0.54±0.66 post-treatment (t=4.19, df=23, P<0.001). All participants reported satisfaction with their results without adverse effects. PLLA facial fillers are a safe and effective treatment for nasal alar retraction, presenting no embolism risk. This treatment merits consideration for broader clinical application.

14.
J Cosmet Laser Ther ; 26(1-4): 1-16, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38852607

RESUMEN

We aimed to determine the efficacy of the various available oral, topical, and procedural treatment options for hair loss in individuals with androgenic alopecia. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic review of the National Library of Medicine was performed. Overall, 141 unique studies met our inclusion criteria. We demonstrate that many over the counter (e.g. topical minoxidil, supplements, low-level light treatment), prescription (e.g. oral minoxidil, finasteride, dutasteride), and procedural (e.g. platelet-rich plasma, fractionated lasers, hair transplantation) treatments successfully promote hair growth, highlighting the superiority of a multifaceted and individualized approach to management.


Asunto(s)
Alopecia , Terapia por Luz de Baja Intensidad , Minoxidil , Plasma Rico en Plaquetas , Humanos , Alopecia/tratamiento farmacológico , Alopecia/terapia , Terapia por Luz de Baja Intensidad/métodos , Minoxidil/uso terapéutico , Finasterida/uso terapéutico , Dutasterida/uso terapéutico
15.
Polymers (Basel) ; 16(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38932024

RESUMEN

This study aims to demonstrate the possibility of incorporating a natural antioxidant biomolecule into polymeric porous scaffolds. To this end, Poly-l-Lactic Acid (PLLA) scaffolds were produced using the Thermally Induced Phase Separation (TIPS) technique and additivated with different amounts of rosmarinic acid (RA). The scaffolds, with a diameter of 4 mm and a thickness of 2 mm, were characterized with a multi-analytical approach. Specifically, Scanning Electron Microscopy analyses demonstrated the presence of an interconnected porous network, characterized by a layer of RA at the level of the pore's surfaces. Moreover, the presence of RA biomolecules increased the hydrophilic nature of the sample, as evidenced by the decrease in the contact angle with water from 128° to 76°. The structure of PLLA and PLLA containing RA molecules has been investigated through DSC and XRD analyses, and the obtained results suggest that the crystallinity decreases when increasing the RA content. This approach is cost-effective, and it can be customized with different biomolecules, offering the possibility of producing porous polymeric structures containing antioxidant molecules. These scaffolds meet the requirements of tissue engineering and could offer a potential solution to reduce inflammation associated with scaffold implantation, thus improving tissue regeneration.

16.
Aesthetic Plast Surg ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902341

RESUMEN

OBJECTIVES: With the increasing global clinical application of regenerative injection materials, there is a growing recognition of the crucial role played by poly-L-lactic acid (PLLA). The aim of this study is to conduct a systematic review on the therapeutic efficacy and safety of PLLA in clinical applications for facial treatments. METHODS: We conducted a search of the PubMed, EMBASE, Web of Science, and Wanfang databases, followed by screening of the retrieved articles based on predefined inclusion and exclusion criteria. We then performed an analysis on the final set of included articles that met our inclusion criteria. Within these included articles, quality assessment for randomized controlled trials (RCTs) was carried out using the Jadad scale, while non-randomized controlled trials (non-RCTs) were evaluated using the MINORS scale. RESULTS: Our search of above database, using the relevant search terms, yielded a total of 1300 PLLA-related articles. After applying the inclusion and exclusion criteria, 1280 articles were excluded. Only 20 articles, 16 in English and 4 in Chinese, were included in our final analysis, among them 16 NRCTs and 4 RCTs. According to the different clinical evaluation standards, the treatment of PLLA has achieved good outcomes. Most PLLA injection-related adverse events are mild and self-limited, without any additional treatment requirement. CONCLUSION: PLLA is a reasonably safe and effective facial injection material that can be applied in different facial injection areas and depth using various reconstitute and injection methods. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

17.
Materials (Basel) ; 17(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893884

RESUMEN

One of the most effective strategies for modifying the surface properties of nano-fillers and enhancing their composite characteristics is through polymer grafting. In this study, a coprecipitation method was employed to modify hydroxyapatite (HAP) with epoxidized soybean oleic acid (ESOA), resulting in ESOA-HAP. Subsequently, oligomeric poly(lactic acid) (OPLA) was grafted onto the surface of ESOA-HAP, yielding OPLA-ESOA-HAP. HAP, ESOA-HAP, and OPLA-ESOA-HAP were comprehensively characterized. The results demonstrate the progressive grafting of ESOA and OPLA onto the surface of HAP, resulting in enhanced hydrophobicity and improved dispersity in organic solvent for OPLA-ESOA-HAP compared to HAP. The vitality and adhesion of Wistar rat mesenchymal stem cells (MSCs) were assessed using HAP and modified HAP materials. Following culture with MSCs for 72 h, the OPLA-ESOA-HAP showed an inhibition rate lower than 23.0% at a relatively high concentration (1.0 mg/mL), which is three times lower compared to HAP under similar condition. The cell number for OPLA-ESOA-HAP was 4.5 times higher compared to HAP, indicating its superior biocompatibility. Furthermore, the mechanical properties of the OPLA-ESOA-HAP/PLLA composite almost remained unaltered ever after undergoing two stages of thermal processing involving melt extrusion and inject molding. The increase in the biocompatibility and relatively high mechanical properties render OPLA-ESOA-HAP/PLLA a potential material for the biodegradable fixation system.

18.
Front Immunol ; 15: 1394530, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881903

RESUMEN

Objective: Injectable skin fillers offer a wider range of options for cutaneous anti-aging and facial rejuvenation. PLLA microspheres are increasingly favored as degradable and long-lasting fillers. The present study focused solely on the effect of PLLA on dermal collagen, without investigating its impact on the epidermis. In this study, we investigated the effects of PLLA microspheres on epidermal stem cells (EpiSCs). Methods: Different concentrations of PLLA microspheres on epidermal stem cells (EpiSCs) in vitro through culture, and identification of primary rat EpiSCs. CCK-8 detection, apoptosis staining, flow cytometry, Transwell assay, wound healing assay, q-PCR analysis, and immunofluorescence staining were used to detect the effects of PLLA on EpiSCs. Furthermore, we observed the effect on the epidermis by injecting PLLA into the dermis of the rat skin in vivo. Results: PLLA microspheres promote cell proliferation and migration while delaying cell senescence and maintaining its stemness. In vitro, Intradermal injection of PLLA microspheres in the rat back skin resulted in delayed aging, as evidenced by histological and immunohistochemical staining of the skin at 2, 4, and 12 weeks of follow-up. Conclusion: This study showed the positive effects of PLLA on rat epidermis and EpiSCs, while providing novel insights into the anti-aging mechanism of PLLA.


Asunto(s)
Senescencia Celular , Microesferas , Poliésteres , Envejecimiento de la Piel , Animales , Ratas , Senescencia Celular/efectos de los fármacos , Envejecimiento de la Piel/efectos de los fármacos , Células Madre/metabolismo , Células Madre/citología , Proliferación Celular/efectos de los fármacos , Células Epidérmicas/metabolismo , Células Cultivadas , Ratas Sprague-Dawley , Epidermis/metabolismo , Epidermis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Rellenos Dérmicos/farmacología , Rellenos Dérmicos/administración & dosificación
19.
Burns Trauma ; 12: tkae009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841099

RESUMEN

Background: Given the significant impact on human health, it is imperative to develop novel treatment approaches for diabetic wounds, which are prevalent and serious complications of diabetes. The diabetic wound microenvironment has a high level of reactive oxygen species (ROS) and an imbalance between proinflammatory and anti-inflammatory cells/factors, which hamper the healing of chronic wounds. This study aimed to develop poly(L-lactic acid) (PLLA) nanofibrous membranes incorporating curcumin and silver nanoparticles (AgNPs), defined as PLLA/C/Ag, for diabetic wound healing. Methods: PLLA/C/Ag were fabricated via an air-jet spinning approach. The membranes underwent preparation and characterization through various techniques including Fourier-transform infrared spectroscopy, measurement of water contact angle, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, assessment of in vitro release of curcumin and Ag+, testing of mechanical strength, flexibility, water absorption and biodegradability. In addition, the antioxidant, antibacterial and anti-inflammatory properties of the membranes were evaluated in vitro, and the ability of the membranes to heal wounds was tested in vivo using diabetic mice. Results: Loose hydrophilic nanofibrous membranes with uniform fibre sizes were prepared through air-jet spinning. The membranes enabled the efficient and sustained release of curcumin. More importantly, antibacterial AgNPs were successfully reduced in situ from AgNO3. The incorporation of AgNPs endowed the membrane with superior antibacterial activity, and the bioactivities of curcumin and the AgNPs gave the membrane efficient ROS scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further results from animal studies indicated that the PLLA/C/Ag membranes had the most efficient wound healing properties, which were achieved by stimulating angiogenesis and collagen deposition and inhibiting inflammation. Conclusions: In this research, we successfully fabricated PLLA/C/Ag membranes that possess properties of antioxidants, antibacterial agents and anti-inflammatory agents, which can aid in the process of wound healing. Modulating wound inflammation, these new PLLA/C/Ag membranes serve as a novel dressing to enhance the healing of diabetic wounds.

20.
Int J Nanomedicine ; 19: 5157-5172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855731

RESUMEN

Background: Poly-L-lactic acid (PLLA) stents have broad application prospects in the treatment of cardiovascular diseases due to their excellent mechanical properties and biodegradability. However, foreign body reactions caused by stent implantation remain a bottleneck that limits the clinical application of PLLA stents. To solve this problem, the biocompatibility of PLLA stents must be urgently improved. Albumin, the most abundant inert protein in the blood, possesses the ability to modify the surface of biomaterials, mitigating foreign body reactions-a phenomenon described as the "stealth effect". In recent years, a strategy based on albumin camouflage has become a focal point in nanomedicine delivery and tissue engineering research. Therefore, albumin surface modification is anticipated to enhance the surface biological characteristics required for vascular stents. However, the therapeutic applicability of this modification has not been fully explored. Methods: Herein, a bionic albumin (PDA-BSA) coating was constructed on the surface of PLLA by a mussel-inspired surface modification technique using polydopamine (PDA) to enhance the immobilization of bovine serum albumin (BSA). Results: Surface characterization revealed that the PDA-BSA coating was successfully constructed on the surface of PLLA materials, significantly improving their hydrophilicity. Furthermore, in vivo and in vitro studies demonstrated that this PDA-BSA coating enhanced the anticoagulant properties and pro-endothelialization effects of the PLLA material surface while inhibiting the inflammatory response and neointimal hyperplasia at the implantation site. Conclusion: These findings suggest that the PDA-BSA coating provides a multifunctional biointerface for PLLA stent materials, markedly improving their biocompatibility. Further research into the diverse applications of this coating in vascular implants is warranted.


Asunto(s)
Materiales Biocompatibles Revestidos , Poliésteres , Polímeros , Albúmina Sérica Bovina , Stents , Poliésteres/química , Animales , Albúmina Sérica Bovina/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Polímeros/química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Indoles/química , Indoles/farmacología , Propiedades de Superficie , Humanos , Ensayo de Materiales , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA