Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chempluschem ; : e202400470, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212148

RESUMEN

Cr(VI) pollution poses great harm to the cyclic utilization of groundwater and surface water resources. Efficient adsorbent materials have great potential to change this situation and assist in the restoration of ecosystems. This work chooses porous boron nitride fibers (pBN) with stable physical and chemical properties as the matrix, 3-aminopropyltriethoxysilane (APTES) as the coupling agent, and uses a one-step crosslinking method to graft poly(allylamine hydrochloride) (PAH) onto pBN, forming pBN-AS@PAH with fascinating Cr(VI) adsorption capacity. PAH is uniformly covered and modified on the surface of pBN, and the composite with high specific surface area (383.33 m2/g), large pore volume (0.37 cm3/g), and abundant amino groups. Its equilibrium adsorption capacity for Cr(VI) can reach up to 123.32 mg/g, and the adsorption behavior follows the quasi second-order kinetic model and Langmuir model, indicating the chemical adsorption process of monolayer. The adsorption style belongs to a spontaneous exothermic process and has the optimal adsorption effect at a pH of ~ 2. Additionally, after cycling for 5 times, the decrease rate of adsorption capacity is less than 10%, showing an excellent reusability.

2.
Int J Pharm ; 664: 124638, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39187033

RESUMEN

The fabrications of hollow microcapsules (MCs) with new architecture and ability to incorporate different nanomaterials have received great interest for targeted cancer therapy. Recently, CuS based nanomaterials have been demonstrated to possess the ability to mimic Fenton-like activity in tumor environment and inducing cancer cell apoptosis by generating highly reactive oxygen species (ROS). In this study, we have developed poly(allylamine) hydrochloride (PAH)/dextran sulfate (DS) polyelectrolyte MCs capable of carrying doxorubicin (DOX) for targeted cancer therapy and ultrasound imaging. The electron microscopy investigations showed the formation of polymeric MCs of 3 µm in size with incorporated CuS NRs in their interior structure. The surface modification of MCs with folic acid (FA), and encapsulation of model hydrophilic molecules in MCs was studied by UV-Visible (UV-Vis) spectroscopy, Fourier transform infra-red (FTIR) spectroscopy and confocal laser scanning microscopy. The encapsulation efficiency of DOX was found to be 56 % and the release was found to be linear at pH 5.5 and 7.4 in the absence of ultrasound exposure. The ultrasound exposure resulted in sudden rupture of MCs at 1 MHz and 1 W/cm2 and caused burst release of DOX at both pH conditions. The FA decorated PAH/DS/CuS NR MCs exhibited improved anti-cancer activity against MDA-MB-231 cancer cells due to the synergistic effects of ultrasound mediated burst release of chemotherapeutic drug (DOX), glutathione-stimulated ROS and targeted cancer therapy. Further, the capsules showed better echogenicity than that of control PAH/DS MCs when imaged under medical ultrasound-scanning system. Hence, the MCs demonstrated in this study have huge potential for targeted cancer theranostics by offering an option to image the cancer cells during the treatment period.


Asunto(s)
Cápsulas , Cobre , Doxorrubicina , Liberación de Fármacos , Nanotubos , Humanos , Doxorrubicina/administración & dosificación , Doxorrubicina/farmacología , Doxorrubicina/química , Nanotubos/química , Línea Celular Tumoral , Cobre/química , Polielectrolitos/química , Supervivencia Celular/efectos de los fármacos , Ultrasonografía/métodos , Sulfato de Dextran , Poliaminas/química , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Especies Reactivas de Oxígeno/metabolismo , Ácido Fólico/química , Portadores de Fármacos/química
3.
Nanomaterials (Basel) ; 14(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38607105

RESUMEN

In healthcare facilities, infections caused by Staphylococcus aureus (S. aureus) from textile materials are a cause for concern, and nanomaterials are one of the solutions; however, their impact on safety and biocompatibility with the human body must not be neglected. This study aimed to develop a novel multilayer coating with poly(allylamine hydrochloride) (PAH) and immobilized ZnO nanoparticles (ZnO NPs) to make efficient antibacterial and biocompatible cotton, polyester, and nylon textiles. For this purpose, the coated textiles were characterized with profilometry, contact angles, and electrokinetic analyzer measurements. The ZnO NPs on the textiles were analyzed by scanning electron microscopy and inductively coupled plasma mass spectrometry. The antibacterial tests were conducted with S. aureus and biocompatibility with immortalized human keratinocyte cells. The results demonstrated successful PAH/ZnO coating formation on the textiles, demonstrating weak hydrophobic properties. Furthermore, PAH multilayers caused complete ZnO NP immobilization on the coated textiles. All coated textiles showed strong growth inhibition (2-3-log reduction) in planktonic and adhered S. aureus cells. The bacterial viability was reduced by more than 99%. Cotton, due to its better ZnO NP adherence, demonstrated a slightly higher antibacterial performance than polyester and nylon. The coating procedure enables the binding of ZnO NPs in an amount (<30 µg cm-2) that, after complete dissolution, is significantly below the concentration causing cytotoxicity (10 µg mL-1).

4.
Appl Spectrosc ; 78(1): 56-66, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38116634

RESUMEN

The pKa values of propanolamine hydrochloride (PAMH) and poly(allylamine hydrochloride) (PAAMH) in concentrated solutions were determined by both Fourier transform infrared spectroscopy (FT-IR) titration and classical potentiometric (POT) titration and compared. Starting with the respective fully protonated forms PAMH and PAAMH and increasing the pH value by sodium hydroxide addition in situ attenuated total reflection FT-IR (ATR FT-IR) spectra on PAMH and PAAMH solutions show the variation of diagnostic infrared (IR) bands. From the decrease of the most intense δ(NH3+) band the dissociation process of the NH3+ groups could be followed. Thereby, from the respective normalized band area A the dissociation degree αIR of the ammonium groups could be determined. Plotting pH versus αIR and fitting this curve by a modified Henderson-Hasselbalch function pH = pKa + B log (αIR/1 - αIR) the parameters pKa and cooperativity factor B were obtained. pKa values from FT-IR titration were qualitatively in line with respective pKa values from POT titration. Quantitative systematic pKa deviations between polyelectrolyte (PEL) and respective monoelectrolyte and the tentative effects of PEL molecular weight, ambient ionic strength, and titration concept (FT-IR and POT) are discussed based on classical models of weak PEL.

5.
Biosensors (Basel) ; 13(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37998129

RESUMEN

A highly sensitive electrochemical biosensor for ethanol based on a screen-printed electrode modified with gold nanoparticles-electrochemically reduced graphene oxide-poly (allylamine hydrochloride) nanocomposite (AuNPs-ERGO-PAH) is reported in this work. Ethanol was oxidized in the presence of the oxidized form of the nicotinamide adenine dinucleotide (NAD+) in a reaction catalyzed by alcohol dehydrogenase (ADH) immobilized in sol-gel. The AuNPs-ERGO-PAH nanocomposite was used as a transducer for the electrocatalytic oxidation of the reduced form the nicotinamide adenine dinucleotide (NADH) produced in the enzyme reaction. Under the optimal conditions, the ethanol biosensor exhibits a wide dynamic range from 0.05 to 5 mM with a low detection limit of 10 µM (S/N = 3) and a high sensitivity of 44.6 ± 0.07 µA/mM·cm2 for the linear range between 0.05 and 0.2 mM. The biosensor response was stable for up to 6 weeks. Furthermore, the developed biosensor has been used to detect ethanol in alcoholic beverages with good results, suggesting its potential application in various fields, including fermentation processes and food quality control.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Nanocompuestos , Etanol , Oro , NAD , Técnicas Biosensibles/métodos , Electrodos , Técnicas Electroquímicas
6.
J Colloid Interface Sci ; 647: 364-374, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37267799

RESUMEN

HYPOTHESIS: Integration of ultralow surface energy and surface functionality on one surface coatings is highly desirable in chemical and biomedical applications. However, it is a fundamental challenge to reduce surface energy without cost of surface functionality and vice versa. To address this challenge, the present work made use of the rapid and reversible change of surface orientation conformations of weak polyelectrolyte multilayers to create ionic, perfluorinated surfaces. EXPERIMENTS: Poly(allylamine hydrochloride) (PAH) chains and the micelles of sodium perfluorooctanoate (SPFO) were layer-by-layer (LbL) assembled into (SPFO/PAH)n multilayer films, which readily exfoliated to freestanding membranes. The static and dynamic surface wetting behaviors of the resulting membranes were studied by sessile drop technique and their surface charge behaviors in water by electrokinetic analysis. FINDINGS: As-prepared (SPFO/PAH)n membranes exhibited ultralow surface energy in air; the lowest surface energy is 2.6 ± 0.5 mJ/m2 for PAH-capped surfaces and 7.0 ± 0.9 mJ/m2 for SPFO-capped surfaces. They readily became positively charged in water, which allowed not only effective adsorption of ionic species for further functionalization with subtle change in surface energy, but effective adhesion onto various solid substrates such as glass, stainless steel, and polytetrafluoroethylene to endorse the wide applicability of (SPFO/PAH)n membranes.

7.
Nanotechnology ; 33(48)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-35998539

RESUMEN

In this work, an electrochemical immunosensor based on black phosphorus nanosheets (BPNS)/poly(allylamine hydrochloride) (PAH) nanocomposite modified glassy carbon electrode was developed for the detection of ovarian cancer biomarker HE4. PAH has been applied to retain BPNS in its original honeycomb structure and to anchor biomolecules electrostatically on the transducer surface. The as synthesized nanocomposite was characterized by zeta potential analysis, scanning electron microscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy. Subsequently, the performance of the electrochemical immunosensor was evaluated through cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. Under the optimal condition, the developed electrochemical immunosensor permitted to detect HE4 with a linear range of 0.1-300 ng ml-1and a detection limit of 0.01 ng ml-1. The developed sensor exhibited good selectivity and specificity to HE4 with negligible interference effect from common biomolecules like bovine serum albumin, lysozyme, protamine, glucose, fructose, hemoglobin and fetal bovine serum. Further, practical application of developed electrochemical immunosensor was demonstrated in spiked human serum which showed satisfactory recovery percentages.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Electrodos , Humanos , Inmunoensayo/métodos , Límite de Detección , Fósforo , Poliaminas
8.
ACS Appl Mater Interfaces ; 14(10): 12538-12550, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35230798

RESUMEN

The structure near polyelectrolyte-coated gold nanoparticles (AuNPs) is of significant interest because of the increased use of AuNPs in technological applications and the possibility that the acquisition of polyelectrolytes can lead to novel chemistry in downstream environments. We use all-atom molecular dynamics (MD) simulations to reveal the electric potential around citrate-capped gold nanoparticles (cit-AuNPs) and poly(allylamine hydrochloride) (PAH)-wrapped cit-AuNP (PAH-AuNP). We focus on the effects of the overall ionic strength and the shape of the electric potential. The ionic number distributions for both cit-AuNP and PAH-AuNP are calculated using MD simulations at varying salt concentrations (0, 0.001, 0.005, 0.01, 0.05, 0.1, and 0.2 M NaCl). The net charge distribution (Z(r)) around the nanoparticle is determined from the ionic number distribution observed in the simulations and allows for the calculation of the electric potential (ϕ(r)). We find that the magnitude of ϕ(r) decreases with increasing salt concentration and upon wrapping by PAH. Using a hydrodynamic radius (RH) estimated from the literature and fits to the Debye-Hü̈ckel expression, we found and report the ζ potential for both cit-AuNP and PAH-AuNP at varying salt concentrations. For example, at 0.001 M NaCl, MD simulations suggest that ζ = -25.5 mV for cit-AuNP. Upon wrapping of cit-AuNP by one PAH chain, the resulting PAH-AuNP exhibits a reduced ζ potential (ζ = -8.6 mV). We also compare our MD simulation results for ϕ(r) to the classic Poisson-Boltzmann equation (PBE) approximation and the well-known Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We find agreement with the limiting regimes─with respect to surface charge, salt concentration and particle size─in which the assumptions of the PBE and DLVO theory are known to be satisfied.

9.
Chemosphere ; 296: 134001, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35181416

RESUMEN

In this study, sliver (Ag) and gold (Au) nanoparticles (NPs) were embedded on poly (acrylic acid) (PAA)/poly (allylamine) hydrochloride (PAH) hydrogel fibers for improved electrochemical oxidation (EO) of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) removal. The NPs-loaded PAA/PAHs shows the better charge transport compared to the ceramic nanofiber membranes (CNM) electrodes. At 10 mA cm-2 of current density, the Ag-PAA/PAH electrodes showed a faster removal of PFAS compared to the Ag-CNM electrode probably due to large surface area-volume ratio and high porosity from the hydrogel. Among NPs-loaded PAA/PAH electrodes, the Ag/Au-PAA/PAH electrodes showed the highest removal of PFOA (72%) and PFOS (91%) in 2 h with the maximum removal rate of PFOA (0.0046 min-1) and PFOS (0.0093 min-1). The rapid PFOS removal is possibly due to the high activity of electron transfer with a higher redox potential of SO4•- than •OH. The highly stable F- generation was obtained from each electrode during reproducibility (n = 3). The net energy consumption from Ag/Au-PAA/PAH electrode was 164.9 kWh m-3 for 72% PFOA removal and 90 kWh m-3 for 91% PFOS removal, respectively. The developed Au-PAA/PAH electrodes were applied to lake water samples and showed acceptable PFOS removal (65%) with relative standard deviations (RSD) of 10.2% (n = 3) at 10 mA cm-2 of current density. Overall, the NP-embedded hydrogel nanofibers were proven to be a promising sustainable catalyst for the electrochemical PFAS oxidation in water.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Nanopartículas , Caprilatos , Electrodos , Fluorocarburos/análisis , Hidrogeles , Oxidación-Reducción , Reproducibilidad de los Resultados , Agua
10.
Carbohydr Polym ; 278: 118966, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973781

RESUMEN

In order to improve the mechanical properties and functionalities of natural cellulosic fibres, this paper first analyzed the characteristics of natural cellulosic fibres and the conventional modification methods of natural cellulosic fibres, and then focused on the polyelectrolytes modified natural cellulosic fibres. The main methods and process parameters of this modification were described in detail; the modification effects of polyelectrolytes on different types of fibres were systematically summarized; the influencing factors on modification of fibres were also discussed in depth; the characterization methods of polyelectrolytes modified fibres were analyzed in detail. Finally, the main application fields of polyelectrolytes modified fibres were systematically summarized.


Asunto(s)
Productos Biológicos/química , Celulosa/química , Polielectrolitos/química
11.
Polymers (Basel) ; 13(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34771283

RESUMEN

Fouling not only deteriorates the membrane structure but also compromises the quality of the permeate and has deleterious consequences on the membrane operation. In the current study, a commercial thin film composite nanofiltration membrane (NF90) was modified by sequentially depositing oppositely charged polycation (poly(allylamine hydrochloride)) and polyanion (poly(acrylic acid)) polyelectrolytes using the layer-by-layer assembly method. The water contact angle was decreased by ~10° after the coating process, indicating increased hydrophilicity. The surface roughness of the prepared membranes decreased from 380 nm (M-0) to 306 nm (M-10) and 366 nm (M-20). M-10 membrane showed the highest permeate flux of 120 L m-2 h-1 with a salt rejection of >98% for MgSO4 and NaCl. The fabricated membranes M-20 and M-30 showed 15% improvement in fouling resistance and maintained the initial permeate flux longer than the pristine membrane.

12.
Materials (Basel) ; 14(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062785

RESUMEN

The layer-by-layer (LbL) method of polyelectrolyte multilayer (PEM) fabrication is extremely versatile. It allows using a pair of any oppositely charged polyelectrolytes. Nevertheless, it may be difficult to ascribe a particular physicochemical property of the resulting PEM to a structural or chemical feature of a single component. A solution to this problem is based on the application of a polycation and a polyanion obtained by proper modification of the same parent polymer. Polyelectrolyte multilayers (PEMs) were prepared using the LbL technique from hydrophilic and amphiphilic derivatives of poly(allylamine hydrochloride) (PAH). PAH derivatives were obtained by the substitution of amine groups in PAH with sulfonate, ammonium, and hydrophobic groups. The PEMs were stable in 1 M NaCl and showed three different modes of thickness growth: exponential, mixed exponential-linear, and linear. Their surfaces ranged from very hydrophilic to hydrophobic. Root mean square (RMS) roughness was very variable and depended on the PEM composition, sample environment (dry, wet), and the polymer constituting the topmost layer. Atomic force microscopy (AFM) imaging of the surfaces showed very different morphologies of PEMs, including very smooth, porous, and structured PEMs with micellar aggregates. Thus, by proper choice of PAH derivatives, surfaces with different physicochemical features (growth type, thickness, charge, wettability, roughness, surface morphology) were obtained.

13.
Pharmaceutics ; 12(8)2020 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-32824299

RESUMEN

Pancreatic cancer is one of the highest causes of mortality throughout the world; thus, it requires an effective treatment strategy. Some chemotherapeutic agents used in the clinics or under clinical trials are hydrophobic and have poor aqueous solubility; consequently, they also have minimal systemic bioavailability. Nanoparticle-based drug delivery tactics have the potential for overcoming these limitations and enhancing their therapeutic efficacy. Herein, a glutathione (GSH)-sensitive micelle (PAH-SS-PLGA) was synthesized for the combined delivery of alpha-tocopheryl succinate (TOS) and curcumin to improve its therapeutic efficacy. The chemical structures of PAH-SS-PLGA were analyzed using Proton Nuclear Magnetic Resonance (1H-NMR) and Fourier Transform Infrared (FTIR) spectroscopy, whereas the particle size, zeta potential, and surface morphology were observed using dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release results revealed that more TOS and curcumin were released in the presence of GSH (5 mM) than the physiological pH value. Fluorescence microscopy images revealed that nanoformulated curcumin/rhodamine was uptaken by PAN02 pancreatic cancer cells. In vitro cytotoxicity assays showed higher cytotoxicity for nanoformulated TOS and/or curcumin than free TOS and/or curcumin. In addition, higher cytotoxicity was observed for combination drugs than free drugs alone. Most interestingly, at all tested concentrations of nanoformulated drugs (PAH-SS-PLGA, TOS, and curcumin), the calculated combination index (CI) value was less than one, which shows that TOS and curcumin have a synergistic effect on cellular proliferation inhibition. Overall, synthesized co-polymers are the best carriers for combination drugs, TOS, and curcumin, because they enhance the therapeutic efficacy and improve pancreatic cancer treatments.

14.
Arh Hig Rada Toksikol ; 71(1): 63-68, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32597138

RESUMEN

Preventing bacterial attachment to surfaces is the most efficient approach to controlling biofilm proliferation. The aim of this study was to compare anti-adhesion potentials of 5 and 50 mmol/L polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate), poly(4-vinyl-N-ethylpyridinium bromide)/ poly(sodium 4-styrenesulfonate), and poly(4-vinyl-N-isobutylpyridinium bromide)/poly(sodium 4-styrenesulfonate) against Escherichia coli. Glass surface was covered with five polyelectrolyte layers and exposed to bacterial suspensions. Poly(4-vinyl-N-ethylpyridinium bromide)/poly(sodium 4-styrenesulfonate) was the most effective against bacterial adhesion, having reduced it by 60 %, followed by poly(4-vinyl-N-isobutylpyridinium bromide)/poly(sodium 4- styrenesulfonate) (47 %), and poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) (38 %). Polyelectrolyte multilayers with quaternary amine groups have a significant anti-adhesion potential and could find their place in coatings for food, pharmaceutical, and medical industry.


Asunto(s)
Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Nanotecnología/métodos , Polielectrolitos/química
15.
Colloids Surf B Biointerfaces ; 190: 110953, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32193074

RESUMEN

Electrospun polyacrylonitrile fiber membranes (EPFMs) were coated with multilayer films, assembled using the layer-by-layer (LbL) technique through the alternate deposition of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA), to develop an antithrombogenic drug release membrane for hemodialysis. Methylene blue (MB) and heparin (HEP) were attached to the PAH and PAA multilayers, respectively, as model drug and antithrombogenic agent to investigate the dual functionality of the membranes. The positively (PAH, MB) and negatively (PAA, HEP) charged groups generated a supermolecular polyelectrolyte multilayer film (SPF) capable of loading high amounts of MB and HEP on the EPFMs at appropriate composition. The pH was fixed at 5.5 during assembly to stabilize the SPF. Heavy assembly of the PAH/PAA multilayer occurred at 10 wt% of both MB and HEP with 25 cycles of LbL deposition, and it exhibited long-term release of MB and low release of HEP at pH 7.4 in a circulatory system. The SPF-coated EPFMs also achieved low platelet attachment after 4 h of platelet rich plasma circulation and showed prolonged clotting times including thromboplastin, thrombin, and prothrombin times. Collectively, these observations suggest that SPF-coated EPFMs have great potential for use as hemodialysis membranes with positively charged drug loading.


Asunto(s)
Resinas Acrílicas/química , Polielectrolitos/química , Adsorción , Sustancias Macromoleculares/química , Tamaño de la Partícula , Propiedades de Superficie
16.
Int J Biol Macromol ; 153: 931-941, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32088230

RESUMEN

Reduced graphene oxide (RGO) has shown tremendous potential as a NIR responsive nanomaterial and has been extensively explored for NIR mediated photothermal therapy and drug delivery. However, the potential of NIR as a stimulus to trigger release of entrapped/complexed DNA from its surface have not been explored. Strong complexation between the loaded cargo and the carrier often leads to no-release or decrease in the release of the therapeutic cargo. Herein, we investigated NIR as a stimulus for inducing DNA release from RGO nanocomposites. A quaternary ammonium modified poly(allylamine hydrochloride) functionalized RGO nanocomposite (RGO-MPAH) was synthesized, which was further tagged with a targeting moiety, folic acid (FA). The structural, optical and chemical properties of the synthesized nanocomposites were characterized which validated successful reduction and functionalization of GO with PAH/MPAH. The nanocomposites were found to be non-toxic and showed excellent DNA binding ability at complexation ratios as low as 3:1 (w/w). Additionally, the nanocomposites demonstrated NIR responsive release of complexed DNA from their surfaces, with RGO-PAH showing maximum DNA release followed by RGO-MPAH and RGO-MPAH-FA. This study shows the potential of NIR light to act as a stimulus for inducing release of entrapped nucleic acids from the surface of nanocarriers.


Asunto(s)
ADN/química , Portadores de Fármacos/química , Ácido Fólico/química , Grafito/química , Rayos Infrarrojos , Poliaminas/química , Compuestos de Amonio Cuaternario/química , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Células HEK293 , Humanos , Nanocompuestos/química , Nanocompuestos/toxicidad , Oxidación-Reducción
17.
Nanomedicine (Lond) ; 14(3): 255-274, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30676277

RESUMEN

AIM: To develop near-infrared (NIR) light-responsive reduced graphene oxide (RGO)-based nanocomposites with improved stability, biocompatibility and enhanced in vitro chemo-photothermal therapeutic efficiency. MATERIALS & METHODS: Poly(allylamine hydrochloride)-functionalized RGO-based nanocomposites (RGO-PAH) were synthesized and thoroughly characterized. In vitro biocompatibility, cellular uptake and in vitro synergistic chemo-photothermal therapeutic efficiency of drug-loaded RGO-PAH nanocomposites were evaluated along with elucidation of cell death mechanism. RESULTS: RGO-PAH nanocomposites showed excellent photothermal transduction, pH-dependent drug release, rapid internalization, high biocompatibility and highly efficient synergistic in vitro chemo-photothermal therapy via apoptosis induction through increase in intracellular reactive oxygen species (ROS) production followed by oxidative DNA damage. CONCLUSION: Excellent biocompatibility and highly efficient chemo-photothermal killing of cancer cells at a very low concentration reflects the potential of RGO-PAH as a NIR-responsive therapeutic agent for cancer therapy.


Asunto(s)
Portadores de Fármacos/química , Grafito/química , Hipertermia Inducida/métodos , Poliaminas/química , Polímeros/química , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Fragmentación del ADN/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacología , Humanos , Especies Reactivas de Oxígeno/metabolismo
18.
ACS Appl Mater Interfaces ; 10(26): 22218-22225, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29883097

RESUMEN

Salinity gradients exhibit a great potential for production of renewable energy. Several techniques such as pressure-retarded osmosis and reverse electrodialysis have been employed to extract this energy. Unfortunately, these techniques are restricted by the high costs of membranes and problems with membrane fouling. However, the expansion and contraction of hydrogels can be a new and cheaper way to harvest energy from salinity gradients since the hydrogels swell in freshwater and shrink in saltwater. We have examined the effect of cross-linker concentration and different external loads on the energy recovered for this type of energy-producing systems. Poly(allylamine hydrochloride) hydrogels were cross-linked with glutaraldehyde to produce hydrogels with excellent expansion and contraction properties. Increasing the cross-linker concentration markedly improved the energy that could be recovered from the hydrogels, especially at high external loads. A swollen hydrogel of 60 g could recover more than 1800 mJ when utilizing a high cross-linker concentration, and the maximum amount of energy produced per gram of polymer was 3.4 J/g. Although more energy is recovered at high cross-linking densities, the maximum amount of energy produced per gram of polymer is highest at an intermediate cross-linking concentration. Energy recovery was reduced when the salt concentration was increased for the low-concentration saline solution. The results illustrate that hydrogels are promising for salinity gradient energy recovery, and that optimizing the systems significantly increases the amount of energy that can be recovered.

19.
Polymers (Basel) ; 10(6)2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-30966604

RESUMEN

In the present work, the novel dense and supported membranes based on polyvinyl alcohol (PVA) with improved transport properties were developed by bulk and surface modifications. Bulk modification included the blending of PVA with chitosan (CS) and the creation of a mixed-matrix membrane by introduction of fullerenol. This significantly altered the internal structure of PVA membrane, which led to an increase in permeability with high selectivity to water. Surface modification of the developed modified dense membranes, based on composites PVA-CS and PVA-fullerenol-CS, was performed through (i) making of a supported membrane with a thin selective composite layer and (ii) applying of the layer-by-layer assembly (LbL) method for coating of nano-sized polyelectrolyte (PEL) layers to increase the membrane productivity. The nature of polyelectrolyte type-(poly(allylamine hydrochloride) (PAH), poly(sodium 4-styrenesulfonate) (PSS), poly(acrylic acid) (PAA), CS), and number of PEL bilayers (2⁻10)-were studied. The structure of the composite membranes was investigated by FTIR, X-ray diffraction, and SEM. Transport properties were studied during the pervaporation separation of 80% isopropanol⁻20% water mixture. It was shown that supported membrane consisting of hybrid layer of PVA-fullerenol (5%)⁻chitosan (20%) with five polyelectrolyte bilayers (PSS, CS) deposited on it had the best transport properties.

20.
Macromol Biosci ; 17(8)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28547877

RESUMEN

Polyelectrolyte multilayer (PEM) coatings on biomaterials are applied to tailor adhesion, growth, and function of cells on biomedical implants. Here, biogenic and synthetic polyelectrolytes (PEL) are used for layer-by-layer assembly to study the osteogenic activity of PEM with human osteosarcoma MG-63 cells in a comparative manner. Formation of PEM is achieved with biogenic PEL fibrinogen (FBG) and poly-l-lysine (PLL) as well as biotinylated chondroitin sulfate (BCS) and avidin (AVI), while poly(allylamine hydrochloride) (PAH) and polystyrene sulfonate (PSS) represent a fully synthetic PEM used as a reference system here. Surface plasmon resonance measurements show highest layer mass for FBG/PLL and similar for PSS/PAH and BCS/AVI systems, while water contact angle and zeta potential measurements indicate larger differences for PSS/PAH and FBG/PLL but not for BCS/AVI multilayers. All PEM systems support cell adhesion and growth and promote osteogenic differentiation as well. However, FBG/PLL layers are superior regarding MG-63 cell adhesion during short-term culture, while the BCS/AVI system increases alkaline phosphatase activity in long-term culture. Particularly, a multilayer system based on affinity interaction like BCS/AVI may be useful for controlled presentation of biotinylated growth factors to promote growth and differentiation of cells for biomedical applications.


Asunto(s)
Neoplasias Óseas/metabolismo , Osteogénesis/efectos de los fármacos , Osteosarcoma/metabolismo , Polielectrolitos , Avidina/química , Avidina/farmacología , Neoplasias Óseas/patología , Línea Celular Tumoral , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Fibrinógeno/química , Fibrinógeno/farmacología , Humanos , Osteosarcoma/patología , Poliaminas/química , Poliaminas/farmacología , Polielectrolitos/química , Polielectrolitos/farmacología , Polilisina/química , Polilisina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA