Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(13): e202303277, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38179786

RESUMEN

With the aim of controlling the orientation of liquid crystals (LCs) toward realizing external stimuli-responsive materials with tunable functionalities, we synthesized a composite of LCs and metal-organic frameworks (MOFs) by filling LCs into the pores of MOFs (LC@MOFs) for the first time. The included LCs interact with the MOFs through coordination bonds between the cyano groups of the LCs and the metal ions of the MOFs, enabling the orientation of the LC molecules inside the pores of the MOFs and the realization of birefringence of LC@MOFs. The three-dimensional nanometer interstice frameworks maintained the LC orientation even at temperatures much higher than the isotropic phase transition temperature of bulk LCs. Furthermore, the orientational state changed upon heating or cooling, inducing temperature-dependent birefringence. This study provides a new approach to the development of stimuli-responsive optical materials and stimuli-responsive MOFs.

2.
ACS Appl Mater Interfaces ; 14(48): 54073-54080, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36401833

RESUMEN

The development of nanoscale composites with hierarchical architecture and complex anisotropies enables the fabrication of new classes of devices. Stretchable strain sensors have been developed in the past for applications in various fields such as wearable electronics and soft robotics, yet the sensing capacities of most of these sensors are independent of the direction of deformation. In the present work, we report on the preparation of a direction-sensitive strain sensor using the anisotropic optical properties of a monolayer of oriented plasmonic 1D nano-objects. Grazing incidence spraying (GIS) is used for depositing a monolayer of in-plane aligned silver nanowires with a controlled density on a deformable and transparent substrate. Using the selective excitation of transverse and longitudinal localized plasmon resonance modes of silver nanowires by polarized UV-visible-NIR spectroscopy, we show that the macroscopic anisotropic properties of the monolayer upon stretching are highly dependent on the stretching direction and light polarization. Measuring the polarized optical properties of the anisotropic thin films upon stretching thus allow for retrieving both the local strain and the direction of the deformation using a simple model.

3.
Methods Protoc ; 5(3)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35645349

RESUMEN

Raman spectroscopy has recently been used for quantitative analyses of cortical bone tissue and related materials, such as dentin and enamel. While those analyses have proven useful as potential diagnostic tools, the Raman spectrum of bone encrypts a wealth of additional molecular scale details about structure and crystal arrangement, which are yet to be unfolded. Such details directly link to both bone physiology and pathology. In this work, a triple monochromator spectrometer with high spectral resolution, employed in polarized light configurations, was used to extract quantitative details about the preferential crystallographic orientation of apatite and collagen components in a human proximal femoral cortical bone sample. This body of information was then used to model the bone structure at the nanometric scale through a methodology that could be key in assessments of bone structure in health and disease.

4.
Appl Spectrosc ; 76(1): 51-60, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34643130

RESUMEN

*These authors contributed equally.Electrospun fibers often exhibit enhanced properties at reduced diameters, a characteristic now widely attributed to a high molecular orientation of the polymer chains along the fiber axis. A parameter that can affect the molecular organization is the type of collector onto which fibers are electrospun. In this work, we use polarized confocal Raman spectromicroscopy to determine the incidence of the three most common types of collectors on the molecular orientation and structure in individual fibers of a broad range of diameters. Poly(ethylene terephthalate) is used as a model system for fibers of weakly crystalline polymers. A clear correlation emerges between the choice of collector, the induced molecular orientation, the fraction of trans conformers, and the degree of crystallinity within fibers. Quantitative structural information gathered by Raman contributes to a general description of the mechanism of action of the collectors based on the additional strain they exert on the forming fibers.

5.
Skin Pharmacol Physiol ; 35(1): 13-22, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34153970

RESUMEN

INTRODUCTION: The human lower limb is widely used as a model to study in vivo microcirculatory physiology and pathophysiology. It is a preferential target for critical comorbidities (overweight, diabetes, and peripheral vascular disease). Movement and activity are consistently regarded as beneficial, but the related adaptive physiology is still poorly understood. Our goal was to better identify the foot microcirculatory changes after a regular walking gait activity in healthy subjects of different ages. METHODS: Twelve healthy participants of both sexes, with normal BMI and Ankle-Brachial Index, were selected and grouped according to age - group I (21.0 ± 1 y.o.) and group II (55.8 ± 3 y.o.). The protocol involved 2 phases of 5-min duration each - phase 1, a static standing position, and phase 2, 5-min walking with a comfortable pace on a pre-established circuit. Perfusion changes were assessed in the dorsal region of both feet before (baseline, phase 1) and after (phase 2) the gait period by noninvasive optical technologies - laser Doppler flowmetry (LDF), photoplethysmography, and polarized spectroscopy (PSp). Comparative statistics were performed with a 95% confidence level. RESULTS: All instruments detected an asymmetric nonsignificant perfusion between right and left feet during rest in all participants with values in females consistently lower than men. Older participants exhibited lower baseline values than the younger group. Gait evoked a perfusion reduction in all participants relative to phase 1 detected with all technologies, with statistically significant changes recorded with LDF (group I, p = 0.033, and group II, p = 0.028) and PSp (group II, p = 0.041). Furthermore, LDF revealed that gait significantly reduced perfusion velocity in the older group (p = 0.003). Corresponding changes in the younger group were present but discrete. Recovery to baseline levels was also slower in the older group. DISCUSSION/CONCLUSIONS: Our results confirm that perfusion is age dependent and demonstrate the clinical relevance of simple dynamic activities such as gait. This reduction of the dorsal foot perfusion occurs in depth, being more pronounced with the movement intensity, suggesting a wide application potential in early diagnostics as for rehabilitation.


Asunto(s)
Pie , Extremidad Inferior , Adulto , Femenino , Humanos , Flujometría por Láser-Doppler , Masculino , Microcirculación , Perfusión , Piel
6.
Chemistry ; 25(61): 13930-13938, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31373409

RESUMEN

The photophysics of a structurally unique aza-analogue of polycyclic aromatic hydrocarbons characterized by 12 conjugated rings and a curved architecture was studied in detail. The combined experimental and computational investigation reveals that the lowest excited state has charge-transfer character, in spite of the absence of any peripheral electron-withdrawing groups. The exceptionally electron-rich core comprised of two fused pyrrole rings is responsible for it. The observed strong solvatofluorochromism is related to symmetry breaking occurring in the emitting excited state, leading to a significant dipole moment (13.5 D) in the relaxed excited state. The anomalously small fluorescence anisotropy of this molecule, which is qualitatively different from what is observed in standard quadrupolar dyes, is explained as due to the presence of excited states that are close in energy but have different polarization directions.

7.
Chemphyschem ; 20(1): 134-141, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30403318

RESUMEN

In this work, we present an experimental setup for the in situ and ex situ study of the optical activity of samples, which can be prepared under ultra-high vacuum (UHV) conditions by second-harmonic generation circular dichroism (SHG-CD) over a broad spectral range. The use of a racemic mixture as a qualified reference for the anisotropy factor is described and, as an example, the chiroptical properties of 1.5 µm thick (multilayers) as well as sub-monolayer thin films of the R- and S-enantiomer of 1,1'-Bi-2-naphthol (BINOL) evaporated onto BK7 substrates were investigated.

8.
Chemphyschem ; 19(17): 2123-2130, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-29762888

RESUMEN

Using linear polarized light, it is possible in case of ordered structures, such as stretched polymers or single crystals, to determine the orientation of the transition moments of electronic and vibrational transitions. This not only helps to resolve overlapping bands, but also assigning the symmetry species of the transitions and to elucidate the structure. To perform spectral evaluation quantitatively, a sometimes "Linear Dichroism Theory" called approach is very often used. This approach links the relative orientation of the transition moment and polarization direction to the quantity absorbance. This linkage is highly questionable for several reasons. First of all, absorbance is a quantity that is by its definition not compatible with Maxwell's equations. Furthermore, absorbance seems not to be the quantity which is generally compatible with linear dichroism theory. In addition, linear dichroism theory disregards that it is not only the angle between transition moment and polarization direction, but also the angle between sample surface and transition moment, that influences band shape and intensity. Accordingly, the often invoked "magic angle" has never existed and the orientation distribution influences spectra to a much higher degree than if linear dichroism theory would hold strictly. A last point that is completely ignored by linear dichroism theory is the fact that partially oriented or randomly-oriented samples usually consist of ordered domains. It is their size relative to the wavelength of light that can also greatly influence a spectrum. All these findings can help to elucidate orientation to a much higher degree by optical methods than currently thought possible by the users of linear dichroism theory. Hence, it is the goal of this contribution to point out these shortcomings of linear dichroism theory to its users to stimulate efforts to overcome the long-lasting stagnation of this important field.

9.
Angew Chem Int Ed Engl ; 54(42): 12463-7, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26013838

RESUMEN

Colloidal semiconductor nanocrystals (NC) have reached a high level of synthetic control allowing the tuning of their properties, and their use in various applications. However, the surface of NCs and in particular their size-dependent capping organic ligand behavior, which play an important role in the NC synthesis, dispersibility, and optoelectronic properties, is still not well understood. We study the size-dependent properties of the ligand shell on the surface of NCs, by embedding surface bound dyes as a probe within the ligand shell. The reorientation times for these dyes show a linear dependence on the NC surface curvature indicating size-dependent change in viscosity, which is related to a change in the density of the ligand layer because of the geometry of the surface, a unique feature of NCs. Understanding the properties of the ligand shell will allow rational design of the surface to achieve the desired properties, providing an additional important knob for tuning their functionality.


Asunto(s)
Nanopartículas/química , Semiconductores , Termodinámica , Anisotropía , Ligandos , Tamaño de la Partícula , Propiedades de Superficie
10.
Angew Chem Int Ed Engl ; 54(20): 5943-7, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25802205

RESUMEN

Directing the supramolecular polymerization towards a preferred type of organization is extremely important in the design of functional soft materials. Proposed herein is a simple methodology to tune the length and optical chirality of supramolecular polymers formed from a chiral bichromophoric binaphthalene by the control of enantiomeric excess (ee). The enantiopure compound gave thin fibers longer than a few microns, while the racemic mixture favored the formation of nanoparticles. The thermodynamic study unveils that the heterochiral assembly gets preference over the homochiral assembly. The stronger heterochiral binding over homochiral one terminated the elongation of fibrous assembly, thus leading to a control over the length of fibers in the nonracemic mixtures. The supramolecular polymerization driven by π-π interactions highlights the effect of the geometry of a twisted π-core on this self-sorting assembly.

11.
Chemphyschem ; 15(11): 2337-50, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-24862946

RESUMEN

Novel, high-sensitivity and high-resolution spectroscopic methods can provide site-specific nuclear information by exploiting nuclear magneto-optic properties. We present a first-principles electronic structure formulation of the recently proposed nuclear-spin-induced Cotton-Mouton effect in a strong external magnetic field (NSCM-B). In NSCM-B, ellipticity is induced in a linearly polarized light beam, which can be attributed to both the dependence of the symmetric dynamic polarizability on the external magnetic field and the nuclear magnetic moment, as well as the temperature-dependent partial alignment of the molecules due to the magnetic fields. Quantum-chemical calculations of NSCM-B were conducted for a series of molecular liquids. The overall order of magnitude of the induced ellipticities is predicted to be 10(-11) -10(-6) rad T(-1) M(-1) cm(-1) for fully spin-polarized nuclei. In particular, liquid-state heavy-atom systems should be promising for experiments in the Voigt setup.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA