Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(36): e2407010, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39011780

RESUMEN

Miniaturized polarimetric photodetectors based on anisotropic two-dimensional materials attract potential applications in ultra-compact polarimeters. However, these photodetectors are hindered by the small polarization ratio values and complicated artificial structures. Here, a novel polarization photodetector based on in-sublattice carrier transition in the CdSb2Se3Br2/WSe2 heterostructure, with a giant and reconfigurable PR value, is demonstrated. The unique periodic sublattice structure of CdSb2Se3Br2 features an in-sublattice carrier transition preferred along Sb2Se3 chains. Leveraging on the in-sublattice carrier transition in the CdSb2Se3Br2/WSe2 heterostructure, gate voltage has an anisotropic modulation effect on the band alignment of heterostructure along sublattice. Consequently, the heterostructure exhibits a polarization-tunable photo-induced threshold voltage shift, which provides reconfigurable PR values from positive (unipolar regime) to negative (bipolar regime), covering all possible numbers (1→+∞/-∞→-1). Using this anisotropic photovoltaic effect, gate-tunable polarimetric imaging is successfully implemented. This work provides a new platform for developing next-generation highly polarimetric optoelectronics.

2.
Micromachines (Basel) ; 15(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38542566

RESUMEN

Infrared polarization imaging holds significant promise for enhancing target recognition in both civil and defense applications. The Division of Focal Plane (DoFP) scheme has emerged as a leading technology in the field of infrared polarization imaging due to its compact design and absence of moving parts. However, traditional DoFP solutions primarily rely on micro-polarizer arrays, necessitating precise alignment with the focal plane array and leading to challenges in alignment and the introduction of optical crosstalk. Recent research has sought to augment the performance of infrared detectors and enable polarization and spectral selection by integrating metamaterial absorbers with the pixels of the detector. Nevertheless, the results reported so far exhibit shortcomings, including low polarization absorption rates and inadequate polarization extinction ratios. Furthermore, there is a need for a comprehensive figure of merit to systematically assess the performance of polarization-selective thermal detectors. In this study, we employ the particle swarm optimization algorithm to present a multilayer, multi-sized metamaterial absorber capable of achieving a remarkable polarization-selective absorption rate of up to 87.2% across the 8-14 µm spectral range. Moreover, we attain a polarization extinction ratio of 38.51. To elucidate and predict the resonant wavelengths of the structure, we propose a modified equivalent circuit model. Our analysis employs optical impedance matching to unveil the underlying mechanisms responsible for the high absorption. We also introduce a comprehensive figure of merit to assess the efficacy of infrared polarization detection through the integration of metamaterials with microbolometers. Finally, drawing on the proposed figure of merit, we suggest future directions for improving integrated metamaterial absorber designs, with the potential to advance practical mid-infrared polarization imaging technologies.

3.
Sensors (Basel) ; 24(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38474902

RESUMEN

Underwater optical imaging for information acquisition has always been an innovative and crucial research direction. Unlike imaging in the air medium, the underwater optical environment is more intricate. From an optical perspective, natural factors such as turbulence and suspended particles in the water cause issues like light scattering and attenuation, leading to color distortion, loss of details, decreased contrast, and overall blurriness. These challenges significantly impact the acquisition of underwater image information, rendering subsequent algorithms reliant on such data unable to function properly. Therefore, this paper proposes a method for underwater image restoration using Stokes linearly polarized light, specifically tailored to the challenges of underwater complex optical imaging environments. This method effectively utilizes linear polarization information and designs a system that uses the information of the first few frames to calculate the enhanced images of the later frames. By doing so, it achieves real-time underwater Stokes linear polarized imaging while minimizing human interference during the imaging process. Furthermore, the paper provides a comprehensive analysis of the deficiencies observed during the testing of the method and proposes improvement perspectives, along with offering insights into potential future research directions.

4.
Int J Comput Assist Radiol Surg ; 19(6): 1033-1043, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503943

RESUMEN

PURPOSE: Wide-field imaging Mueller polarimetry is a revolutionary, label-free, and non-invasive modality for computer-aided intervention; in neurosurgery, it aims to provide visual feedback of white matter fibre bundle orientation from derived parameters. Conventionally, robust polarimetric parameters are estimated after averaging multiple measurements of intensity for each pair of probing and detected polarised light. Long multi-shot averaging, however, is not compatible with real-time in vivo imaging, and the current performance of polarimetric data processing hinders the translation to clinical practice. METHODS: A learning-based denoising framework is tailored for fast, single-shot, noisy acquisitions of polarimetric intensities. Also, performance-optimised image processing tools are devised for the derivation of clinically relevant parameters. The combination recovers accurate polarimetric parameters from fast acquisitions with near-real-time performance, under the assumption of pseudo-Gaussian polarimetric acquisition noise. RESULTS: The denoising framework is trained, validated, and tested on experimental data comprising tumour-free and diseased human brain samples in different conditions. Accuracy and image quality indices showed significant ( p < 0.05 ) improvements on testing data for a fast single-pass denoising versus the state-of-the-art and high polarimetric image quality standards. The computational time is reported for the end-to-end processing. CONCLUSION: The end-to-end image processing achieved real-time performance for a localised field of view ( ≈ 6.5 mm 2 ). The denoised polarimetric intensities produced visibly clear directional patterns of neuronal fibre tracts in line with reference polarimetric image quality standards; directional disruption was kept in case of neoplastic lesions. The presented advances pave the way towards feasible oncological neurosurgical translations of novel, label-free, interventional feedback.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Procedimientos Neuroquirúrgicos , Humanos , Procedimientos Neuroquirúrgicos/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Cirugía Asistida por Computador/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/cirugía
5.
Sensors (Basel) ; 24(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38257591

RESUMEN

The bionic polarimetric imaging navigation sensor (BPINS) is a navigation sensor that provides absolute heading, and it is of practical engineering significance to model the measurement error of BPINS. The existing BPINSs are still modeled using photodiode-based measurements rather than imaging measurements and are not modeled systematically enough. This paper proposes a measurement performance analysis method of BPINS that takes into account the geometric and polarization errors of the optical system. Firstly, the key error factors affecting the overall measurement performance of BPINS are investigated, and the Stokes vector-based measurement error model of BPINS is introduced. Secondly, based on its measurement error model, the effect of the error source on the measurement performance of BPINS is quantitatively analyzed using Rayleigh scattering to generate scattered sunlight as a known incident light source. The numerical results show that in angle of E-vector (AoE) measurement, the coordinate deviation of the principal point has a greater impact, followed by grayscale response inconsistency of CMOS and integration angle error of micro-polarization array, and finally lens attenuation; in degree of linear polarization (DoLP) measurement, the grayscale response inconsistency of CMOS has a more significant impact. This finding can accurately guide the subsequent calibration of BPINS, and the quantitative results provide an important theoretical reference for its optimal design.

6.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37960595

RESUMEN

This paper focuses on the experimental characterization of the polarization behavior of light backscattered through fog. A polarimetric orthogonal state contrast imager and an active, purely polarized white illuminator system are used to evaluate both linear and circular polarization signals. The experiments are carried out in a macro-scale fog chamber under controlled artificial fog conditions. We explore the effect of backscattering in each imaging channel, and the persistence of both polarization signals as a function of meteorological visibility. We confirm the presence of the polarization memory effect with circularly polarized light, and, as a consequence, the maintenance of helicity in backscattering. Moreover, the circular cross-polarized channel is found to be the imaging channel less affected by fog backscattering. These results are useful and should be taken into account when considering active polarimetric imaging techniques for outdoor applications under foggy conditions.

7.
Sensors (Basel) ; 23(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37420537

RESUMEN

In computational photography, high dynamic range (HDR) imaging refers to the family of techniques used to recover a wider range of intensity values compared to the limited range provided by standard sensors. Classical techniques consist of acquiring a scene-varying exposure to compensate for saturated and underexposed regions, followed by a non-linear compression of intensity values called tone mapping. Recently, there has been a growing interest in estimating HDR images from a single exposure. Some methods exploit data-driven models trained to estimate values outside the camera's visible intensity levels. Others make use of polarimetric cameras to reconstruct HDR information without exposure bracketing. In this paper, we present a novel HDR reconstruction method that employs a single PFA (polarimetric filter array) camera with an additional external polarizer to increase the scene's dynamic range across the acquired channels and to mimic different exposures. Our contribution consists of a pipeline that effectively combines standard HDR algorithms based on bracketing and data-driven solutions designed to work with polarimetric images. In this regard, we present a novel CNN (convolutional neural network) model that exploits the underlying mosaiced pattern of the PFA in combination with the external polarizer to estimate the original scene properties, and a second model designed to further improve the final tone mapping step. The combination of such techniques enables us to take advantage of the light attenuation given by the filters while producing an accurate reconstruction. We present an extensive experimental section in which we validate the proposed method on both synthetic and real-world datasets specifically acquired for the task. Quantitative and qualitative results show the effectiveness of the approach when compared to state-of-the-art methods. In particular, our technique exhibits a PSNR (peak signal-to-noise ratio) on the whole test set equal to 23 dB, which is 18% better with respect to the second-best alternative.


Asunto(s)
Compresión de Datos , Algoritmos , Redes Neurales de la Computación , Fotograbar , Relación Señal-Ruido
8.
Photodiagnosis Photodyn Ther ; 44: 103698, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37433425

RESUMEN

The polarimetry imaging technique as a promising technique for pathological diagnosis provides a handy tool for identifying and discriminating cancerous tissues. In this paper, the optical polarization properties of bulk bladder tissues without any further processing and Formalin-Fixed Paraffin-Embedded (FFPE) blocks of bladder tissues have been measured. The images of the Muller matrix for both normal and cancerous samples have been obtained and for quantitative analysis and to provide a more precise comparison, two methods have been applied; the Mueller matrix polar decomposition (MMPD), and the Mueller matrix transformation (MMT). The results have shown that some of the extracted parameters from these methods can be used to identify the microstructural differentiations between normal and cancerous tissues. The results revealed a good accord between the obtained optical parameters for bulk and FFPE bladder tissues. By measuring the polarimetric properties of the tissue right after resection, and also in the early stages of pathology (FFPE tissues), this method can be applied in vivo to perform an optical biopsy; Furthermore, this method has the potential to significantly shortens the duration of pathological diagnosis. The approach seems remarkable, simple, precise, and economical compared to the existing techniques for the detection of cancerous samples.


Asunto(s)
Neoplasias , Fotoquimioterapia , Vejiga Urinaria/diagnóstico por imagen , Adhesión en Parafina , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes , Formaldehído/química
9.
J Quant Spectrosc Radiat Transf ; 302: 108567, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36945203

RESUMEN

Objective: To conduct a proof-of-concept study of the detection of two synthetic models of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using polarimetric imaging. Approach: Two SARS-CoV-2 models were prepared as engineered lentiviruses pseudotyped with the G protein of the vesicular stomatitis virus, and with the characteristic Spike protein of SARS-CoV-2. Samples were prepared in two biofluids (saline solution and artificial saliva), in four concentrations, and deposited as 5-µL droplets on a supporting plate. The angles of maximal degree of linear polarization (DLP) of light diffusely scattered from dry residues were determined using Mueller polarimetry from87 samples at 405 nm and 514 nm. A polarimetric camera was used for imaging several samples under 380-420 nm illumination at angles similar to those of maximal DLP. Per-pixel image analysis included quantification and combination of polarization feature descriptors in 475 samples. Main results: The angles (from sample surface) of maximal DLP were 3° for 405 nm and 6° for 514 nm. Similar viral particles that differed only in the characteristic spike protein of the SARS-CoV-2, their corresponding negative controls, fluids, and the sample holder were discerned at 10-degree and 15-degree configurations. Significance: Polarimetric imaging in the visible spectrum may help improve fast, non-contact detection and identification of viral particles, and/or other microbes such as tuberculosis, in multiple dry fluid samples simultaneously, particularly when combined with other imaging modalities. Further analysis including realistic concentrations of real SARS-CoV-2 viral particles in relevant human fluids is required. Polarimetric imaging under visible light may contribute to a fast, cost-effective screening of SARS-CoV-2 and other pathogens when combined with other imaging modalities.

10.
Micromachines (Basel) ; 13(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35208316

RESUMEN

In this paper, a prototyped plenoptic camera based on a key electrically tunable liquid-crystal (LC) device for all-in-focus polarimetric imaging is proposed. By using computer numerical control machining and 3D printing, the proposed imaging architecture can be integrated into a hand-held prototyped plenoptic camera so as to greatly improve the applicability for outdoor imaging measurements. Compared with previous square-period liquid-crystal microlens arrays (LCMLA), the utilized hexagonal-period LCMLA has remarkably increased the light utilization rate by ~15%. Experiments demonstrate that the proposed imaging approach can simultaneously realize both the plenoptic and polarimetric imaging without any macroscopic moving parts. With the depth-based rendering method, both the all-in-focus images and the all-in-focus degree of linear polarization (DoLP) images can be obtained efficiently. Due to the large depth-of-field advantage of plenoptic cameras, the proposed camera enables polarimetric imaging in a larger depth range than conventional 2D polarimetric cameras. Currently, the raw light field images with three polarization states including I0 and I60 and I120 can be captured by the proposed imaging architecture, with a switching time of several tens of milliseconds. Some local patterns which are selected as interested target features can be effectively suppressed or obviously enhanced by switching the polarization state mentioned. According to experiments, the visibility in scattering medium can also be apparently improved. It can be expected that the proposed polarimetric imaging approach will exhibit an excellent development potential.

11.
Adv Mater ; 34(2): e2107206, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34676919

RESUMEN

2D materials have been attracting high interest in recent years due to their low structural symmetry, excellent photoresponse, and high air stability. However, most 2D materials can only respond to specific light, which limits the development of wide-spectrum photodetectors. Proper bandgap and the regulation of Fermi level are the foundations for realizing electronic multichannel transition, which is an effective method to achieve a wide spectral response. Herein, a noble 2D material, palladium phosphide sulfide (PdPS), is designed and synthesized. The bandgap of PdPS is around 2.1 eV and the formation of S vacancies, interstitial Pd and P atoms promote the Fermi level very close to the conduction band. Therefore, the PdPS-based photodetector shows impressive wide spectral response from solar-blind ultraviolet to near-infrared based on the multichannel transition. It also exhibits superior optoelectrical properties with photoresponsivity (R) of 1 × 103 A W-1 and detectivity (D*) of 4 × 1011 Jones at 532 nm. Moreover, PdPS exhibits good performance of polarization detection with dichroic ratio of ≈3.7 at 808 nm. Significantly, it achieves polarimetric imaging and hidden-target detection in complex environments through active detection.

12.
J Biophotonics ; 14(5): e202000475, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33533565

RESUMEN

Polarimetric imaging and image analysis have gained increased interest in soft tissue analysis at the cellular level. However, polarimetric imaging has widely been tested on thin tissue sections to provide reliable information correlated with histopathological findings. Polarimetric bulk tissue analysis always offered an overall assessment of various tissue optical properties for diagnosis. In this study, the histopathological correlation of bulk tissue polarimetry images for soft tissues is discussed. The first-hand information on the use of bulk tissue Mueller polarimetry and image analysis as an alternative to tissue histopathology is presented for surgically extracted colon and breast tissues.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen Óptica , Análisis Espectral
13.
Sensors (Basel) ; 20(18)2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32962218

RESUMEN

Infrared (IR) polarimetric imaging has attracted attention as a promising technology in many fields. Generally, superpixels consisting of linear polarizer elements at different angles plus IR imaging array are used to obtain the polarized target signature by using the detected polarization-sensitive intensities. However, the spatial arrangement of superpixels across the imaging array may lead to an incorrect polarimetric signature of a target, due to the range of angles from which the incident radiation can be collected by the detector. In this article, we demonstrate the effect of the incident angle on the polarization performance of an alternative structure where a dielectric layer is inserted between the nanoimprinted subwavelength grating layers. The well-designed spacer creates the Fabry-Perot cavity resonance, and thereby, the intensity of transverse-magnetic I-polarized light transmitted through two metal grating layers is increased as compared with a single-layer metal grating, whereas transverse-electric (TE)-transmitted light intensity is decreased. TM-transmittance and polarization extinction ratio (PER) of normally incident light of wavelength 4.5 µm are obtained with 0.49 and 132, respectively, as the performance of the stacked subwavelength gratings. The relative change of the PERs for nanoimprint-lithographically fabricated double-layer grating samples that are less than 6% at an angle of incidence up to 25°, as compared to the normal incidence. Our work can pave the way for practical and efficient polarization-sensitive elements, which are useful for many IR polarimetric imaging applications.

14.
Sensors (Basel) ; 20(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32244850

RESUMEN

Polarimetric dehazing methods can significantly enhance the quality of hazy images. However, current methods are not robust enough under different imaging conditions. In this paper, we propose a generalized polarimetric dehazing method based on low-pass filtering in the frequency domain. This method can accurately estimate the polarized state of the scattering light automatically without adjusting bias parameters. Experimental results show the effectiveness and robustness of our proposed method in different hazy weather and scattering underwater environments with different densities. Furthermore, computational efficiency is enhanced more than 70% compared to the polarimetric dehazing method we proposed previously.

15.
Quant Imaging Med Surg ; 9(5): 757-768, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31281772

RESUMEN

BACKGROUND: The roles of the retinal microvasculature and the retinal pigment epithelium (RPE) in maintaining the health and metabolic activity of the retina lend great clinical value to their high-resolution visualization. METHODS: By integrating polarization diversity detection (PDD) into multi-scale and -contrast sensorless adaptive optics optical coherence tomography (MSC-SAO-OCT), we have developed a novel multi-contrast SAO OCT system for imaging pigment in the RPE as well as flow in the retinal capillaries using OCT angiography (OCTA). Aberration correction was performed based on the image quality using transmissive deformable optical elements. RESULTS: MSC-SAO-OCTA imaging was performed at multiple fields-of-view (FOVs) with adjustable numerical aperture (NA). Retinal flow and RPE structural images for in vivo healthy and pathological human posterior eyes were demonstrated to show clinical feasibility of the system. CONCLUSIONS: High-resolution imaging of retinal vasculature at both large and small FOVs, as well as characterization of RPE topology and deformation, enables more sophisticated and concise investigation of retinal pathologies for in vivo human imaging. MSC imaging may permit detection and analysis of even subtle deformations in the RPE layer using a single instrument.

16.
Sensors (Basel) ; 19(7)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974823

RESUMEN

A demand for division of focal plane (DoFP) polarization image sensors grows rapidly as nanofabrication technologies become mature. The DoFP sensor can output real time data of polarization information. In this paper, a novel visualization method for angle of polarization (AoP) is proposed for DoFP polarization image sensors. The data characteristics of AoP are analyzed, and strategies for a visualization method are proposed which conforms to the characteristics of AoP data. According to these strategies, we propose a visualization method for AoP data based on three dimensional HSI color space. This method uses intensity and saturation to characterize the magnitude of the angle between the polarization direction and the horizontal direction wherein the hue indicates the deflection direction. It is shown by the numerical simulation that the noise in the AoP image can be suppressed by our visualization method. In addition, the real-world experiment results are consistent with the numerical simulation and verify that the AoP image obtained by our method can suppress the influence of characterization noise, and the image is simple and intuitive, which is advantageous to human vision. The proposed method can be directly used for the commercialized DoFP polarization image sensor to display real-time AoP data.

17.
Biomed Opt Express ; 9(7): 3220-3243, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29984095

RESUMEN

A pixel-by-pixel tissue classification framework using multiple contrasts obtained by Jones matrix optical coherence tomography (JM-OCT) is demonstrated. The JM-OCT is an extension of OCT that provides OCT, OCT angiography, birefringence tomography, degree-of-polarization uniformity tomography, and attenuation coefficient tomography, simultaneously. The classification framework consists of feature engineering, k-means clustering that generates a training dataset, training of a tissue classifier using the generated training dataset, and tissue classification by the trained classifier. The feature engineering process generates synthetic features from the primary optical contrasts obtained by JM-OCT. The tissue classification is performed in the feature space of the engineered features. We applied this framework to the in vivo analysis of optic nerve heads of posterior eyes. This classified each JM-OCT pixel into prelamina, lamina cribrosa (lamina beam), and retrolamina tissues. The lamina beam segmentation results were further utilized for birefringence and attenuation coefficient analysis of lamina beam.

18.
Laser Photon Rev ; 12(8)2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30899335

RESUMEN

Optical anisotropy measurement is essential for material characterization and biological imaging. In order to achieve single-shot mapping of the birefringence parameters of anisotropic samples, a novel polarized light imaging concept is proposed, namely quantitative polarization interference microscopy (QPIM). QPIM can be realized through designing a compact polarization-resolved interference microscopy system that captures interferograms bearing sample's linear birefringence information. To extract the retardance and the orientation angle maps from a single-shot measurement, a mathematical model for QPIM is further developed. The QPIM system is validated by measuring a calibrated quarter-wave plate, whose fast-axis orientation angle and retardance are determined with great accuracies. The single-shot nature of QPIM further allows to measure the transient dynamics of birefringence changes in material containing anisotropic structures. This application is demonstrated by capturing transient retardance changes in a custom-designed parallel-aligned nematic liquid crystal-based device.

19.
Optica ; 5(10): 1329-1337, 2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-31214632

RESUMEN

Birefringence offers an intrinsic contrast mechanism related to the microstructure and arrangement of fibrillary tissue components. Here we present a reconstruction strategy to recover not only the scalar amount of birefringence but also its optic axis orientation as a function of depth in tissue from measurements with catheter-based polarization sensitive optical coherence tomography. A polarization symmetry constraint, intrinsic to imaging in the backscatter direction, facilitates the required compensation for wavelength-dependent transmission through system elements, the rotating catheter, and overlying tissue layers. Applied to intravascular imaging of coronary atherosclerosis in human patients, the optic axis affords refined interpretation of plaque architecture.

20.
Biomed Opt Express ; 9(9): 4413-4428, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30615708

RESUMEN

Mueller matrix polarimetry is a potentially powerful tool for biomedical diagnosis. Recently, the transmission Mueller matrix microscope and backscattering Mueller matrix endoscope were developed and applied to various pathological samples. However, a comparative study of imaging contrasts of Mueller matrix derived parameters between transmission and backscattering measurements is still needed to help decide which information obtained from transmission Mueller matrix microscope can be directly applied to in vivo Mueller matrix imaging. Here, to compare the imaging contrasts of Mueller matrix derived parameters between transmission and backscattering polarimetry, we measure porcine liver tissue samples and human breast carcinoma tissue specimens. The experiments and corresponding Monte Carlo stimulation results demonstrate that the backscattering and transmission retardance-related Mueller matrix parameters have very similar contrasts to characterize the anisotropic and isotropic structures of pathological tissues, meaning that the conclusions made from Mueller matrix microscopic imaging based on retardance can also be helpful to guide the in situ backscattering Mueller matrix polarimetric diagnosis. However, the values and contrasts of depolarization-related Mueller matrix parameters have some differences between transmission and backscattering polarimetry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA