RESUMEN
BACKGROUND: Highly polar herbicides, such as imidazolinones, are used for weed control to increase agricultural productivity and crop quality. However, their misapplication can lead to residues in ready-to-eat food with a potential health risk for consumers. Hence, the fast determination of these herbicides is necessary for timely action. In this work, an eco-friendly method based on capillary zone electrophoresis combined with chemometrics was used for the determination of imazapyr and imazamox in vegetable-based beverages such as soy and quinoa milk. RESULTS: The analytical strategy consisted of only three steps: (i) protein precipitation prior to sample injection (ii) data pre-processing to reduce the background and make corrections on electrophoretic times shift, and (iii) resolution of fully overlapped capillary electrophoresis (CE) peaks by the well-known partial least square (PLS) algorithm, which extracts quantitative information attributed to the analytes. The method was successfully applied in the concentration range between 1.00 and 100 µg L-1 with coefficient of determination of the calibration (R2 cal) and prediction (R2 pred) > 0.90, residual prediction deviation of calibration (RPDcal) and of prediction (RPDpred) > 3, and relative error of prediction (REP) > 11 in the analyzed sample matrices, in the three built methods (quinoa samples, soy samples, and joint quinoa and soy samples). CONCLUSION: The proposed methodology offers a simple and quick alternative for determining imidazolinones at trace concentrations in vegetable beverages, such as quinoa and soy milk, without complex sample preparation. The results were consistent with those obtained using more complex techniques, confirming the applicability of this method. © 2024 Society of Chemical Industry.
RESUMEN
Despite being one of the most remote areas on the planet, the Antarctic continent is subject to anthropogenic influences. The presence of various groups of contaminants, including persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs), has been documented in the region over the past decades. However, a significant knowledge gap remains regarding the detection of new pollutants, such as emerging contaminants (ECs), in Antarctic coastal environments. This study analyzed the occurrence and levels of selected POPs, PAHs, ECs in surface sediments from Admiralty Bay, Antarctica Peninsula. Non-target screening was employed to identify potential novel contaminants in the region. Samples (n = 17) were extracted using an accelerated solvent extraction (ASE) system and instrumental analyses were performed using gas chromatography coupled to a triple-quadrupole mass spectrometer (GC/MS-MS). Regarding regulated contaminants, concentrations of Σ5PCBs ranged from
RESUMEN
Liquid chromatography-mass spectrometry (LC-MS) has emerged as a powerful analytical technique for analyzing complex biological samples. Among various chromatographic stationary phases, porous graphitic carbon (PGC) columns have attracted significant attention due to their unique properties-such as the ability to separate both polar and non-polar compounds and their stability through all pH ranges and to high temperatures-besides the compatibility with LC-MS. This review discusses the applicability of PGC for SPE and separation in LC-MS-based analyses of human biological samples, highlighting the diverse applications of PGC-LC-MS in analyzing endogenous metabolites, pharmaceuticals, and biomarkers, such as glycans, proteins, oligosaccharides, sugar phosphates, and nucleotides. Additionally, the fundamental principles underlying PGC column chemistry and its advantages, challenges, and advances in method development are explored. This comprehensive review aims to provide researchers and practitioners with a valuable resource for understanding the capabilities and limitations of PGC columns in LC-MS-based analysis of human biological samples, thereby facilitating advancements in analytical methodologies and biomedical research.
Asunto(s)
Grafito , Espectrometría de Masas , Humanos , Grafito/química , Cromatografía Liquida/métodos , Porosidad , Espectrometría de Masas/métodos , Extracción en Fase Sólida/métodos , Biomarcadores/análisis , Proteínas/análisis , Polisacáridos/análisis , Cromatografía Líquida con Espectrometría de MasasRESUMEN
This study characterized cultivable fungi present in sediments obtained from Boeckella Lake, Hope Bay, in the north-east of the Antarctic Peninsula, and evaluated their production of enzymes and biosurfactants of potential industrial interest. A total of 116 fungal isolates were obtained, which were classified into 16 genera within the phyla Ascomycota, Basidiomycota and Mortierellomycota, in rank. The most abundant genera of filamentous fungi included Pseudogymnoascus, Pseudeurotium and Antarctomyces; for yeasts, Thelebolales and Naganishia taxa were dominant. Overall, the lake sediments exhibited high fungal diversity and moderate richness and dominance. The enzymes esterase, cellulase and protease were the most abundantly produced by these fungi. Ramgea cf. ozimecii, Holtermanniella wattica, Leucosporidium creatinivorum, Leucosporidium sp., Mrakia blollopis, Naganishia sp. and Phenoliferia sp. displayed enzymatic index > 2. Fourteen isolates of filamentous fungi demonstrated an Emulsification Index 24% (EI24%) ≥ 50%; among them, three isolates of A. psychrotrophicus showed an EI24% > 80%. Boeckella Lake itself is in the process of drying out due to the impact of regional climate change, and may be lost completely in approaching decades, therefore hosts a threatened community of cultivable fungi that produce important biomolecules with potential application in biotechnological processes.
Asunto(s)
Hongos , Sedimentos Geológicos , Lagos , Regiones Antárticas , Sedimentos Geológicos/microbiología , Lagos/microbiología , Hongos/enzimología , Hongos/aislamiento & purificación , Hongos/metabolismo , Tensoactivos/metabolismo , Proteínas Fúngicas/metabolismo , Celulasa/metabolismo , Esterasas/metabolismoRESUMEN
Depression will be the disease with the highest incidence worldwide by 2030. Data indicate that postmenopausal women have a higher incidence of mood disorders, and this high vulnerability seems to be related to hormonal changes and weight gain. Although research evaluating the profile of metabolites in mood disorders is advancing, further research, maintaining consistent methodology, is necessary to reach a consensus. Therefore, the objective of the present study was to carry out an exploratory analysis of the plasma polar metabolites of pre- and postmenopausal women to explore whether the profile is affected by depression. The plasma analysis of 50 polar metabolites was carried out in a total of 67 postmenopausal women, aged between 50 and 65 years, either without depression (n = 25) or with depression symptoms (n = 42), which had spontaneous onset of menopause and were not in use of hormone replacement therapy, insulin, or antidepressants; and in 42 healthy premenopausal women (21 without depression and 21 with depression symptoms), aged between 40 and 50 years and who were not in use of contraceptives, insulin, or antidepressants. Ten metabolites were significantly affected by depression symptoms postmenopause, including adenosine (FDR = 3.778 × 10-14), guanosine (FDR = 3.001 × 10-14), proline (FDR = 1.430 × 10-6), citrulline (FDR = 0.0001), lysine (FDR = 0.0004), and carnitine (FDR = 0.0331), which were down-regulated, and dimethylglycine (FDR = 0.0022), glutathione (FDR = 0.0048), creatine (FDR = 0.0286), and methionine (FDR = 0.0484) that were up-regulated. In premenopausal women with depression, oxidized glutathione (FDR = 0.0137) was down-regulated, and dimethylglycine (FDR = 0.0406) and 4-hydroxyproline (FDR = 0.0433) were up-regulated. The present study provided new data concerning the consequences of depression on plasma polar metabolites before and after the establishment of menopause. The results demonstrated that the postmenopausal condition presented more alterations than the premenopausal period and may indicate future measures to treat the disturbances involved in both menopause and depression.
RESUMEN
We studied the culturable fungal community recovered from deep marine sediments in the maritime Antarctic, and assessed their capabilities to produce exoenzymes, emulsifiers and metabolites with phytotoxic activity. Sixty-eight Ascomycota fungal isolates were recovered and identified. The most abundant taxon recovered was the yeast Meyerozyma guilliermondii, followed by the filamentous fungi Penicillium chrysogenum, P. cf. palitans, Pseudeurotium cf. bakeri, Thelebolus balaustiformis, Antarctomyces psychrotrophicus and Cladosporium sp. Diversity indices displayed low values overall, with the highest values obtained at shallow depth, decreasing to the deepest location sampled. Only M. guilliermondii and P. cf. palitans were detected in the sediments at all depths sampled, and were the most abundant taxa at all sample sites. The most abundant enzymes detected were proteases, followed by invertases, cellulases, lipases, carrageenases, agarases, pectinases and esterases. Four isolates showed good biosurfactant activity, particularly the endemic species A. psychrotrophicus. Twenty-four isolates of P. cf. palitans displayed strong phytotoxic activities against the models Lactuca sativa and Allium schoenoprasum. The cultivable fungi recovered demonstrated good biosynthetic activity in the production of hydrolytic exoenzymes, biosurfactant molecules and metabolites with phytotoxic activity, reinforcing the importance of documenting the taxonomic, ecological and biotechnological properties of fungi present in deep oceanic sediments of the Southern Ocean.
Asunto(s)
Ascomicetos , Regiones Antárticas , Cladosporium , Sedimentos GeológicosRESUMEN
The mangrove oyster Crassostrea rhizophorae is identified as a potentially valuable species for tropical aquaculture, however, information on the physiological mechanisms of reproduction under laboratory conditions for this species is limited. This study investigated the effects of salinity at different concentrations (15, 20, 25, 30, 35, and 40 g/L) on the induction of germinal vesicle breakdown (GVBD) of oocytes obtained through stripping, the release of polar bodies (PB1 and PB2), and the larval development of the mangrove oyster. The results revealed a relationship between salinity and the percentage of GVBD, with the most effective range being 30-40 g/L within the hydration time frame between 70 and 120 min. The release of 50 % of PB1 was detected within this salinity range, while for the release of 50 % of PB2, the saline treatments of 35 and 40 g/L showed the best results. Overall, the salinity range of 30-40 g/L is suggested as the most suitable of polyploidy induction methodologies through the retention of PB1 or PB2. Regarding larval hatching, while salinities between 25 and 40 g/L presented similar percentages, at 15 g/L no hatching was observed. This study demonstrated that salinity is a key factor in early pre- and post-fertilization stages for the successful reproduction of mangrove oyster in hatcheries and that the percentages of oocyte maturation and artificial fertilization can be optimized by adjusting salinity.
Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Salinidad , Acuicultura , Larva , FertilizaciónRESUMEN
The renal arteries arise from the lateral side of the abdominal aorta at the L2 vertebral level, just below the origin of the superior mesenteric artery. Multiple aberrant renal arteries can pose difficulties in renal transplantation, interventional radiological and urological procedures, renal artery embolization, angioplasty, or vascular reconstruction for congenital and acquired lesions. We present a case of a left kidney supplied by the left renal artery along with superior and inferior polar arteries, arising from the aorta and inferior mesenteric artery respectively. The inferior mesenteric artery was crossed by the left ureter and inferior mesenteric vein. The superior polar artery gave rise to an inferior suprarenal artery making the variation important for clinicians and surgeons.
As artérias renais originam-se do lado lateral da aorta abdominal, no nível da vértebra L2, logo abaixo da origem da artéria mesentérica superior. A presença de múltiplas artérias renais aberrantes pode representar dificuldades para transplante renal, procedimentos radiológicos e urológicos intervencionistas, embolização da artéria renal, angioplastia e reconstrução vascular para lesões congênitas e adquiridas. Apresentamos um caso de rim esquerdo vascularizado pela artéria renal esquerda e pelas artérias polares superior e inferior, as quais se originavam da aorta e da artéria mesentérica inferior, respectivamente. A artéria mesentérica inferior era cruzada pelo ureter esquerdo e pela veia mesentérica inferior. A artéria polar superior dava origem à artéria suprarrenal inferior, o que torna essa variação importante para clínicos e cirurgiões.
RESUMEN
BACKGROUND: Polar microalgae contain unique compounds that enable them to adapt to extreme environments. As the skin barrier is our first line of defense against external threats, polar microalgae extracts may possess restorative properties for damaged skin, but the potential of microalgae extracts as skin protective agents remains unknown. PURPOSE: This study aimed to analyze compound profiles from polar microalgae extracts, evaluate their potential as skin epithelial protective agents, and examine the underlying mechanisms. METHODS: Six different polar microalgae, Micractinium sp. (KSF0015 and KSF0041), Chlamydomonas sp. (KNM0029C, KSF0037, and KSF0134), and Chlorococcum sp. (KSF0003), were collected from the Antarctic or Arctic regions. Compound profiles of polar and non-polar microalgae extracts were analyzed using gas chromatography-mass spectrometry (GC-MS). The protective activities of polar microalgae extracts on human keratinocyte cell lines against oxidative stress, radiation, and psoriatic cytokine exposure were assessed. The potential anti-inflammatory mechanisms mediated by KSF0041, a polar microalga with protective properties against oxidative stress, ultraviolet (UV) B, and an inflammatory cytokine cocktail, were investigated using RNA-sequencing analysis. To evaluate the therapeutic activity of KSF0041, an imiquimod-induced murine model of psoriatic dermatitis was used. RESULTS: Polar microalgae contain components comparable to those of their non-polar counterparts, but also showed distinct differences, particularly in fatty acid composition. Polar microalgae extracts had a greater ability to scavenge free radicals than did non-polar microalgae and enhanced the viability of HaCaT cells, a human keratinocyte cell line, following exposure to UVB radiation or psoriatic cytokines. These extracts also reduced barrier integrity damage and decreased mRNA levels of inflammatory cytokines in psoriatic HaCaT cells. Treatment with KSF0041 extract altered the transcriptome of psoriatic HaCaT cells toward a more normal state. Furthermore, KSF0041 extract had a therapeutic effect in a mouse model of psoriasis. CONCLUSIONS: Bioactive compounds from polar microalgae extracts could provide novel therapeutics for damaged and/or inflamed skin.
Asunto(s)
Dermatitis , Microalgas , Humanos , Animales , Ratones , Queratinocitos , Citocinas , Sustancias Protectoras , Inflamación , Extractos Vegetales/farmacologíaRESUMEN
The knowledge about the effect of salinity on the physiological mechanism of bivalve reproduction is fundamental to improve production strategies in hatcheries. The present work evaluated the influence of different salinity concentrations (15, 20, 25, 30, 35 and 40 gâ L-1) on pre- and post-fertilization development processes in the clam, Anomalocardia flexuosa, oocytes obtained by stripping. Salinity directly interfered with the germinal vesicle breakdown (GVBD) rate and in the cellular stability of unfertilized oocytes. Salinity concentrations between 30 and 35 gâ L-1 provided better percentages of stable GVBD within 120 min, and incubation of oocytes in the salinity range of 30-35 gâ L-1 for a time interval of 80-120 min provided > 80% GVBD. In the post-fertilization analysis, salinity affected the rate of the extrusion of the first and second polar bodies (PB1 and PB2). The release of 50% of the PBs was faster at a salinity of 35 gâ L-1, with an estimated time of 10 min for PB1 and 30 min for PB2. Thus, chromosome manipulation methodologies aiming triploids should be applied at 35 gâ L-1 salinity, with application of post-fertilization shock before 10 min for PB1 retention or before 30 min for PB2 retention.
RESUMEN
Global warming has a strong impact on the polar regions, in particular, the Antarctic Peninsula and nearby islands. Methane (CH4) is a major factor in climate change and mitigation of CH4 emissions can be accomplished through microbial oxidation by methanotrophic bacteria. Understanding this biological process is crucial given the shortage of research carried out in this geographical area. The aim of this study was to characterise psychrophilic enrichment cultures of aerobic methanotrophs obtained from lake sediments of the Fildes Peninsula (King George Island, South Shetland Islands) and revealing the distribution of the genus Methylobacter in different lake sediments of the peninsula. Four stable methanotrophic enrichment cultures were obtained and analysed by metagenome-assembled genomes (MAGs). The phylogeny of methanotroph MAGs recovered from these enrichment cultures based on the 16S rRNA gene showed that K-2018 MAG008 and D1-2020 MAG004Ts clustered within the Methylobacter clade 2, with high similarity to Methylobacter tundripaludum SV96T (97.88 and 98.56% respectively). However, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values with M. tundripaludum were < 95% (84.8 and 85.0%, respectively) and < 70% (30.2 and 30.3%, respectively), suggesting that they represent a putative novel species for which the name 'Ca. Methylobacter titanis' is proposed. This is the first species of clade 2 of the genus Methylobacter obtained from Antarctica. The bacterial diversity assessed by 16S rRNA gene sequencing of 21 samples of different lakes (water column and sediments) revealed 54 ASVs associated with methanotrophs and the genus Methylobacter as the most abundant. These results suggest that aerobic methanotrophs belonging to the Methylobacter clade 2 would be the main responsible for CH4 oxidation in these sediments.
Asunto(s)
Lagos , Methylococcaceae , Lagos/microbiología , Regiones Antárticas , ARN Ribosómico 16S/genética , Metano , Oxidación-Reducción , ADN , Filogenia , Methylococcaceae/genéticaRESUMEN
Chemotaxis in Bacteria and Archaea depends on the presence of hexagonal polar arrays composed of membrane-bound chemoreceptors that interact with rings of baseplate signaling proteins. In the alphaproteobacterium Azospirillum brasilense, chemotaxis is controlled by two chemotaxis signaling systems (Che1 and Che4) that mix at the baseplates of two spatially distinct membrane-bound chemoreceptor arrays. The subcellular localization and organization of transmembrane chemoreceptors in chemotaxis signaling clusters have been well characterized but those of soluble chemoreceptors remain relatively underexplored. By combining mutagenesis, microscopy, and biochemical assays, we show that the cytoplasmic chemoreceptors AerC and Tlp4b function in chemotaxis and localize to and interact with membrane-bound chemoreceptors and chemotaxis signaling proteins from both polar arrays, indicating that soluble chemoreceptors are promiscuous. The interactions of AerC and Tlp4b with polar chemotaxis signaling clusters are not equivalent and suggest distinct functions. Tlp4b, but not AerC, modulates the abundance of chemoreceptors within the signaling clusters through an unknown mechanism. The AerC chemoreceptor, but not Tlp4b, is able to traffic in and out of chemotaxis signaling clusters depending on its level of expression. We also identify a role of the chemoreceptor composition of chemotaxis signaling clusters in regulating their polar subcellular organization. The organization of chemotaxis signaling proteins as large membrane-bound arrays underlies chemotaxis sensitivity. Our findings suggest that the composition of chemoreceptors may fine-tune chemotaxis signaling not only through their chemosensory specificity but also through their role in the organization of polar chemotaxis signaling clusters. IMPORTANCE Cytoplasmic chemoreceptors represent about 14% of all chemoreceptors encoded in bacterial and archaeal genomes, but little is known about how they interact with and function in large polar assemblies of membrane-bound chemotaxis signaling clusters. Here, we show that two soluble chemoreceptors with a role in chemotaxis are promiscuous and interact with two distinct membrane-bound chemotaxis signaling clusters that control all chemotaxis responses in Azospirillum brasilense. We also found that any change in the chemoreceptor composition of chemotaxis signaling clusters alters their polar organization, suggesting a dynamic interplay between the sensory specificity of chemotaxis signaling clusters and their polar membrane organization.
Asunto(s)
Azospirillum brasilense , Quimiotaxis , Quimiotaxis/fisiología , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas Bacterianas/metabolismo , Células Quimiorreceptoras , Citoplasma/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/genéticaRESUMEN
The Arctic and the Antarctic Continent correspond to two eco-regions with extreme climatic conditions. These regions are exposed to the presence of contaminants resulting from human activity (local and global), which, in turn, represent a challenge for life forms in these environments. Anthropogenic pollution by semi-volatile organic compounds (SVOCs) in polar ecosystems has been documented since the 1960s. Currently, various studies have shown the presence of SVOCs and their bioaccumulation and biomagnification in the polar regions with negative effects on biodiversity and the ecosystem. Although the production and use of these compounds has been regulated, their persistence continues to threaten biodiversity and the ecosystem. Here, we summarize the current literature regarding microbes and SVOCs in polar regions and pose that bioremediation by native microorganisms is a feasible strategy to mitigate the presence of SVOCs. Our systematic review revealed that microbial communities in polar environments represent a wide reservoir of biodiversity adapted to extreme conditions, found both in terrestrial and aquatic environments, freely or in association with vegetation. Microorganisms adapted to these environments have the potential for biodegradation of SVOCs through a variety of genes encoding enzymes with the capacity to metabolize SVOCs. We suggest that a comprehensive approach at the molecular and ecological level is required to mitigate SVOCs presence in these regions. This is especially patent when considering that SVOCs degrade at slow rates and possess the ability to accumulate in polar ecosystems. The implications of SVOC degradation are relevant for the preservation of polar ecosystems with consequences at a global level.
Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Compuestos Orgánicos Volátiles , Humanos , Ecosistema , Biodiversidad , Contaminación Ambiental , Bioacumulación , Hidrocarburos Policíclicos Aromáticos/análisisRESUMEN
Antarctic camps pose psychophysiological challenges related to isolated, confined, and extreme (ICE) conditions, including meals composed of sealed food. ICE conditions can influence the microbiome and inflammatory responses. Seven expeditioners took part in a 7-week Antarctic summer camp (Nelson Island) and were evaluated at Pre-Camp (i.e., at the beginning of the ship travel), Camp-Initial (i.e., 4th and 5th day in camp), Camp-Middle (i.e., 19th-20th, and 33rd-34th days), Camp-Final (i.e., 45th-46th day), and at the Post-Camp (on the ship). At the Pre-Camp, Camp-Initial, and Camp-Final, we assessed microbiome and inflammatory markers. Catecholamines were accessed Pre- and Post-Camp. Heart rate variability (HRV), leptin, thyroid stimulating hormone (TSH), and thyroxine (T4) were accessed at all time points. Students' t-tests or repeated-measures analysis of variance (one or two-way ANOVA) followed by Student-Newman-Keuls (post hoc) were used for parametric analysis. Kruskal-Wallis test was applied for non-parametric analysis. Microbiome analysis showed a predominance of Pseudomonadota (34.01%), Bacillota (29.82%), and Bacteroidota (18.54%), followed by Actinomycetota (5.85%), and Fusobacteria (5.74%). Staying in a long-term Antarctic camp resulted in microbiome fluctuations with a reduction in Pseudomonadota-a "microbial signature" of disease. However, the pro-inflammatory marker leptin and IL-8 tended to increase, and the angiogenic factor VEGF was reduced during camp. These results suggest that distinct Antarctic natural environments and behavioral factors modulate oral microbiome and inflammation.
RESUMEN
SCOPE: The purpose of the study is to characterize the chemical diversity in rice bran (RB) lipidome and determines whether daily RB consumption for 4 weeks may modulate plasma lipid profiles in children. METHODS AND RESULTS: Untargeted and targeted lipidomics via ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UPLC-MS/MS) are applied to identify bioactive RB lipids from a collection of 17 rice varieties. To determine the impact of RB (Calrose-USA variety) supplementation on plasma lipid profile, a secondary analysis of plasma lipidome is conducted on data recorded in a clinical study (NCT01911390, n = 18 moderately hypercholesterolemic children) before and after 4 weeks of dietary intervention with a control or RB supplemented (15 g day-1 ) snack. Untargeted lipidomic reveals 118 lipids as the core of lipidome across all varieties among which phospholipids are abundant and oxylipins present. Phytoprostanes and phytofurans are quantified and characterized. Lipidome analysis of the children plasma following RB consumption reveals the presence of polar lipids and oxylipins alongside putative modulations in endocannabinoids associated with RB consumption. CONCLUSION: The investigation of novel polar lipids, oxylipins, phytoprostanes, and phytofurans in RB extracts provides support for new health-promoting properties interesting for people at risk for cardiometabolic disease.
Asunto(s)
Oryza , Fosfolípidos , Niño , Humanos , Cromatografía Liquida , Glucolípidos , Metabolismo de los Lípidos , Lipidómica , Oxilipinas , Fosfolípidos/análisis , Espectrometría de Masas en Tándem/métodosRESUMEN
Abstract The renal arteries arise from the lateral side of the abdominal aorta at the L2 vertebral level, just below the origin of the superior mesenteric artery. Multiple aberrant renal arteries can pose difficulties in renal transplantation, interventional radiological and urological procedures, renal artery embolization, angioplasty, or vascular reconstruction for congenital and acquired lesions. We present a case of a left kidney supplied by the left renal artery along with superior and inferior polar arteries, arising from the aorta and inferior mesenteric artery respectively. The inferior mesenteric artery was crossed by the left ureter and inferior mesenteric vein. The superior polar artery gave rise to an inferior suprarenal artery making the variation important for clinicians and surgeons.
Resumo As artérias renais originam-se do lado lateral da aorta abdominal, no nível da vértebra L2, logo abaixo da origem da artéria mesentérica superior. A presença de múltiplas artérias renais aberrantes pode representar dificuldades para transplante renal, procedimentos radiológicos e urológicos intervencionistas, embolização da artéria renal, angioplastia e reconstrução vascular para lesões congênitas e adquiridas. Apresentamos um caso de rim esquerdo vascularizado pela artéria renal esquerda e pelas artérias polares superior e inferior, as quais se originavam da aorta e da artéria mesentérica inferior, respectivamente. A artéria mesentérica inferior era cruzada pelo ureter esquerdo e pela veia mesentérica inferior. A artéria polar superior dava origem à artéria suprarrenal inferior, o que torna essa variação importante para clínicos e cirurgiões.
RESUMEN
The knowledge about the effect of salinity on the physiological mechanism of bivalve reproduction is fundamental to improve production strategies in hatcheries. The present work evaluated the influence of different salinity concentrations (15, 20, 25, 30, 35 and 40 gâ L−1) on pre- and post-fertilization development processes in the clam, Anomalocardia flexuosa, oocytes obtained by stripping. Salinity directly interfered with the germinal vesicle breakdown (GVBD) rate and in the cellular stability of unfertilized oocytes. Salinity concentrations between 30 and 35 gâ L−1 provided better percentages of stable GVBD within 120 min, and incubation of oocytes in the salinity range of 30-35 gâ L−1 for a time interval of 80-120 min provided > 80% GVBD. In the post-fertilization analysis, salinity affected the rate of the extrusion of the first and second polar bodies (PB1 and PB2). The release of 50% of the PBs was faster at a salinity of 35 gâ L−1, with an estimated time of 10 min for PB1 and 30 min for PB2. Thus, chromosome manipulation methodologies aiming triploids should be applied at 35 gâ L−1 salinity, with application of post-fertilization shock before 10 min for PB1 retention or before 30 min for PB2 retention.(AU)
Asunto(s)
Animales , Femenino , Cardiidae/química , Fertilización/efectos de los fármacos , SalinidadRESUMEN
Microalgae are photosynthetic microorganisms that stand out from conventional food sources and ingredients due to their high growth rate and adaptability. In addition to being highly sustainable, significant concentrations of proteins, lipids, and pigments accumulate in their cell structures from photosynthesis. Hence, this study sought to evaluate the food potential of Scenedesmus obliquus biomasses obtained from photosynthetic cultures enriched with 3, 5, 10, 15, 20, and 25% carbon dioxide (CO2) (v/v). Cultivations with 3, 5, and 10% CO2 showed greater amino acids and proteins synthesis; the protein content reached values above 56% of the dry biomass and high protein quality, due to the presence of most essential amino acids at recommended levels for the human diet. The highest concentrations of chlorophylls were found in cultures with 15, 20, and 25% CO2 (24.2, 23.1 and 30.8 mg g-1, respectively), although the profiles showed higher percentages of degradation compounds. Carotenoid concentrations were three times higher in cultures with 3, 5, and 10% CO2 (25.3, 22.7 and 18.1 mg g-1, respectively) and all-trans-ß-carotene was the major compound. Lipid synthesis was intensified at higher CO2 enrichment; the percentages obtained were 14.8% of lipids in the culture with 15% CO2, 15.0% with 20% CO2, and 13.7% with 25% CO2. In addition, greater polyunsaturated fatty acids accumulation and a significant reduction in the n6/n3 ratio were also observed at the highest CO2 concentrations. Our findings showed that CO2 treatments significantly altered all compounds concentrations in S. obliquus biomasses, which presented satisfactory composition for application in foods and as ingredients.
Asunto(s)
Chlorophyceae , Scenedesmus , Biomasa , Dióxido de Carbono/metabolismo , Chlorophyceae/metabolismo , Humanos , Lípidos , Fotosíntesis , Scenedesmus/metabolismoRESUMEN
La Oroya is a city in the Peruvian Andes that has suffered a serious deterioration in its air quality, especially due to the high rate of sulfur dioxide (SO2) emissions, which underlines the importance of knowing its sources of contamination and variation over the years. In this sense, this study aimed to evaluate the immission levels and determine the sources of SO2 contamination in La Oroya. This analysis was performed using the hourly concentration data of SO2, and meteorological variables (wind speed and direction), which were analyzed for a period of three years (2018-2020). Graphs of time series, wind and pollutant roses, bivariate polar graphs, clustering k-means, nonparametric statistical tests, and the application of the conditional bivariate probability function were performed to analyze the data and identify the emission sources. The mean concentration of SO2 was 264.2 µg m-3 for the study period, where 55.66 and 2.37% of the evaluated days exceeded the guideline values recommended by the World Health Organization and the Peruvian Environmental Quality Standard for air for 24 h, respectively. The results showed a defined pattern for the daily and monthly variations, with peaks in the morning hours (0900-1000 h LT) and at the end of the year (December), respectively. The main sources of SO2 emissions identified were light and heavy vehicles that travel through the Central Highway, the La Oroya Metallurgical Complex, the transit of vehicles within the city, and the diesel-electric locomotives that provide cargo transportation services and tourism passenger transportation. The article attempts to contribute to the development of adequate air quality management policies.