Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21469, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277591

RESUMEN

In general, defects are crucial in designing the different properties of two-dimensional materials. Therefore large variations in the electric and optical characteristics of two-dimensional layered molybdenum disulphide might be attributed to defects. This study presents the design of a temperature and nitrogen sensor based on few-layer molybdenum disulfide sheets (FLMS), which was developed from bulk MoS2 (BMS) through an exfoliation approach. The produced sulfur defect, molybdenum defect, line defect, and plane defect were characterized by scanning transmission electron microscopy (STEM), which substantially impacts the sensing characteristics of the resulting FLMS. Our theoretical analysis validates that the sulfur vacancies of the MoS2 lattice improve sensing performance by promoting effective charge transfer and surface interactions with target analytes. The FLMS-based sensor showed a high sensitivity for detecting nitrogen gas with a detection limit (LOD) of ~ 0.18 ppm. Additionally, temperature-detecting capabilities were assessed over various temperatures, showing outstanding stability and repeatability. To the best of our knowledge, this material is the first of its kind, demonstrating visible N2 gas sensing with chromic behaviour.

2.
Nanotechnology ; 35(46)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39154655

RESUMEN

Copper indium selenide (CISe) is a prototype infrared semiconductor with low toxicity and unique optical characteristics. Its quantum dots (QDs) accommodate ample intrinsic point defects which may actively participate in their rather complex photophysical processes. We synthesize CISe QDs with similar sizes but with distinct highly stoichiometry-deviating atomic ratios. The synthesis condition employing Se-rich precursors yields the Cu-deficient CISe QDs with special photophysical properties. The photoluminescence exhibits monotonic red shift from 680 to 775 nm when the ratio of Cu's proportion to In's decreases. The luminescence is found to stem from the copper vacancy and antisite defects. The CISe QDs exhibit Raman activity at 5.6, 6.9, and 8.7 THz that is separately assigned to Cu-Se and In-Se optical phonon modes and surface mode.

3.
ACS Nano ; 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39033511

RESUMEN

The development of tin-lead alloyed halide perovskite nanocrystals (PNCs) is highly desirable for creating ultrastable, eco-friendly optoelectronic applications. However, the current incorporation of tin into the lead matrix results in severe photoluminescence (PL) quenching. To date, the precise atomic-scale structural origins of this quenching are still unknown, representing a significant barrier to fully realizing the potential of these materials. Here, we uncover the distinctive defect-related microstructures responsible for PL quenching using atomic-resolution scanning transmission electron microscopy and theoretical calculations. Our findings reveal an increase in point defects and Ruddlesden-Popper (RP) planar faults with increasing tin content. Notably, the point defects include a spectrum of vacancies and previously overlooked antisite defects with bromide vacancies and cation antisite defects emerging as the primary contributors to deep-level defects. Furthermore, the RP planar faults exhibit not only the typical rock-salt stacking pattern found in pure Pb-based PNCs but also previously undocumented microstructures rich in bromide vacancies and deep-level cation antisite defects. Direct strain imaging uncovers severe lattice distortion and significant inhomogeneous strain distributions caused by point defect aggregation, potentially breaking the local force balance and driving RP planar fault formation via lattice slippage. Our work illuminates the nature and evolution of defects in tin-lead alloyed halide perovskite nanocrystals and their profound impact on PL quenching, providing insights that support future material strategies in the development of less toxic tin-lead alloyed perovskite nanocrystals.

4.
ACS Nano ; 18(9): 6927-6935, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38374663

RESUMEN

Point defects dictate various physical, chemical, and optoelectronic properties of two-dimensional (2D) materials, and therefore, a rudimentary understanding of the formation and spatial distribution of point defects is a key to advancement in 2D material-based nanotechnology. In this work, we performed the demonstration to directly probe the point defects in 2H-MoTe2 monolayers that are tactically exposed to (i) 200 °C-vacuum-annealing and (ii) 532 nm-laser-illumination; and accordingly, we utilize a deep learning algorithm to classify and quantify the generated point defects. We discovered that tellurium-related defects are mainly generated in both 2H-MoTe2 samples; but interestingly, 200 °C-vacuum-annealing and 532 nm-laser-illumination modulate a strong n-type and strong p-type 2H-MoTe2, respectively. While 200 °C-vacuum-annealing generates tellurium vacancies or tellurium adatoms, 532 nm-laser-illumination prompts oxygen atoms to be adsorbed/chemisorbed at tellurium vacancies, giving rise to the p-type characteristic. This work significantly advances the current understanding of point defect engineering in 2H-MoTe2 monolayers and other 2D materials, which is critical for developing nanoscale devices with desired functionality.

5.
ACS Appl Mater Interfaces ; 16(9): 11678-11685, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38386610

RESUMEN

Bi2Te3-based alloys, as the sole commercial thermoelectric (TE) material, play an irreplaceable role in the thermoelectric field. However, the low TE efficiency, poor mechanical properties, and high cost have limited its large-scale applications. Here, high-performance p-type Bi2Te3-based materials were successfully prepared by ball milling and hot pressing. The optimized p-type Bi0.55Sb1.45Te3 + 2.5 wt % Bi shows a peak zT value of 1.45 at 360 K, and the average zT value of up to 1.24 at 300-480 K, which is completely comparable with previously reported Bi2Te3-based alloys with excellent performance. Such performance mainly results from the enhanced electrical conductivity and decreased lattice thermal conductivity via regulating carrier and phonon transport. Furthermore, this material shows good mechanical properties, in which the Vickers hardness and compressive strength are up to 0.95 GPa and 94.6 MPa, respectively. Overall, both the thermoelectric and mechanical performance of the materials fabricated by our processing technology are quite competitive. This may enlighten researchers concentrating on Bi2Te3-based alloys, thus further promoting their industrial applications.

6.
ACS Appl Mater Interfaces ; 16(4): 4836-4846, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38234104

RESUMEN

Transition-metal dichalcogenide WSe2 has attracted increasing interest due to its large thermopower (S), low-cost, and environment-friendly constituents. However, its thermoelectric figure of merit, ZT, of WSe2 is limited due to its large lattice thermal conductivity (κL) and low electrical conductivity. In view of WSe2 and MoS2 having the same crystal structure, here we designed and prepared Nb-doped quarternary mixed crystal (MC) Nb0.05W0.95-xMox(Se1-xSx)2 (0 ≤ x ≤ 0.095). The results indicate that the κL of the MC can reach as low as 0.12 W m K-1 at 850 K, being 93% smaller than that of WSe2. Our analysis reveals that its low κL originates chiefly from intense scattering of both high-frequency phonons from point defects (mainly alloying elements) and mid/low-frequency phonons from MoS2 inclusions residual within MC. In addition, the alloying of WSe2 with MoS2 causes a 5-fold increase in cation vacancies (VW‴'), leading to a large increase in hole concentration and electrical conductivity, which gives rise to a ∼7.5 times increase in power factor (reaching 4.2 µ W cm-1 K-2 at 850 K). As a result, a record high ZTmax = 0.63 is achieved at 850 K for the MC sample with x = 0.076, which is 20 times larger than that of WSe2, demonstrating that MC Nb0.05W0.95-xMox(Se1-xSx)2 is a promising thermoelectric material.

7.
J Phys Condens Matter ; 36(13)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38064742

RESUMEN

The current study presents the electronic and magnetic properties of monolayer ZrSe2nanoribbons. The impact of various point defects in the form of Zr or Se vacancies, and their combinations, on the nanoribbon electronic and magnetic properties are investigated using density functional theory calculations in hydrogen-terminated zigzag and armchair ZrSe2nanoribbons. Although pristine ZrSe2is non-magnetic, all the defective ZrSe2structures exhibit ferromagnetic behavior. Our calculated results also show that the Zr and Se vacancy defects alter the total spin magnetic moment with D6Se,leading to a significant amount of 6.34µB in the zigzag nanoribbon, while the largest magnetic moment of 5.52µB is induced by D2Se-2in the armchair structure, with the spin density predominantly distributed around the Zr atoms near the defect sites. Further, the impact of defects on the performance of the ZrSe2nanoribbon-based devices is investigated. Our carrier transport calculations reveal spin-polarized current-voltage characteristics for both the zigzag and armchair devices, revealing negative differential resistance (NDR) feature. Moreover, the current level in the zigzag-based nanoribbon devices is ∼10 times higher than the armchair devices, while the peak-to-valley ratio is more pronounced in the armchair-based nanoribbon devices. It is also noted that defects increase the current level in the zigzag devices while they lead to multiple NDR peaks with rather negligible change in the current level in the armchair devices. Our results on the defective ZrSe2structures, as opposed to the pristine ones that are previously studied, provide insight into ZrSe2material and device properties as a promising nanomaterial for spintronics applications and can be considered as practical guidance to experimental work.

8.
Nanomaterials (Basel) ; 13(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37836371

RESUMEN

Cu3SbSe4 is a potential p-type thermoelectric material, distinguished by its earth-abundant, inexpensive, innocuous, and environmentally friendly components. Nonetheless, the thermoelectric performance is poor and remains subpar. Herein, the electrical and thermal transport properties of Cu3SbSe4 were synergistically optimized by S alloying. Firstly, S alloying widened the band gap, effectively alleviating the bipolar effect. Additionally, the substitution of S in the lattice significantly increased the carrier effective mass, leading to a large Seebeck coefficient of ~730 µVK-1. Moreover, S alloying yielded point defect and Umklapp scattering to significantly depress the lattice thermal conductivity, and thus brought about an ultralow κlat ~0.50 Wm-1K-1 at 673 K in the solid solution. Consequently, multiple effects induced by S alloying enhanced the thermoelectric performance of the Cu3SbSe4-Cu3SbS4 solid solution, resulting in a maximum ZT value of ~0.72 at 673 K for the Cu3SbSe2.8S1.2 sample, which was ~44% higher than that of pristine Cu3SbSe4. This work offers direction on improving the comprehensive TE in solid solutions via elemental alloying.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37889474

RESUMEN

Donor and acceptor ions serving as extrinsic defects in piezoelectrics are mostly used to improve the performance merits to satisfy the industrial application. However, the conventional doping strategy is unable to overcome the inherent trade-off between the piezoelectric coefficient (d33) and mechanical quality factor (Qm). Herein, inspired by the valence state variation observed in manganese oxides during sintering, this study focuses on manipulating intrinsic oxygen vacancies and extrinsic manganese defects in potassium sodium niobate (KNN) ceramics via heat treatment. The annealing process results in a simultaneous improvement in both d33 (20%) and Qm (80%), leading to comparable performance with commercial PZT-5A ceramics and enabling their application in atomizer components. Moreover, the mechanism of manganese occupation and diffusion is proposed by an extended X-ray absorption fine structure and density functional theory analysis. The improved electromechanical performance in the annealed KNN ceramic is associated with the optimized redistribution of acceptor and donor manganese defects, which is facilitated by the recombination of oxygen vacancies. This work breaks longstanding obstacles in comprehending the existing forms of manganese in KNN and offers potential in popularizing KNN-based piezoceramics to replace traditional PZT lead-based counterparts in the industrial market.

10.
Nanomaterials (Basel) ; 13(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37764598

RESUMEN

In this work, we report on the efficiency of single InGaN/GaN quantum wells (QWs) grown on thin (<1 µm) GaN buffer layers on silicon (111) substrates exhibiting very high threading dislocation (TD) densities. Despite this high defect density, we show that QW emission efficiency significantly increases upon the insertion of an In-containing underlayer, whose role is to prevent the introduction of point defects during the growth of InGaN QWs. Hence, we demonstrate that point defects play a key role in limiting InGaN QW efficiency, even in samples where their density (2-3 × 109 cm-2) is much lower than that of TD (2-3 × 1010 cm-2). Time-resolved photoluminescence and cathodoluminescence studies confirm the prevalence of point defects over TDs in QW efficiency. Interestingly, TD terminations lead to the formation of independent domains for carriers, thanks to V-pits and step bunching phenomena.

11.
Nanomaterials (Basel) ; 13(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37513111

RESUMEN

This work presents a comprehensive numerical study for designing a lead-free, all-inorganic, and high-performance solar cell based on Cs2TiI6 halide perovskite with all-inorganic carrier transport layers. A rigorous ab initio density-functional theory (DFT) calculation is performed to identify the electronic and optical properties of Cs2TiI6 and, upon extraction of the existing experimental data of the material, the cell is designed and optimized to the degree of practical feasibility. Consequently, a theoretical power conversion efficiency (PCE) of 21.17% is reported with inorganic TiO2 and CuI as carrier transport layers. The calculated absorption coefficient of Cs2TiI6 reveals its enormous potential as an alternative low-bandgap material for different solar cell applications. Furthermore, the role of different point defects and the corresponding defect densities on cell performance are investigated. It is found that the possible point defects in Cs2TiI6 can form both the shallow and deep defect states, with deep defect states having a prominent effect on cell performance. For both defect states, the cell performance deteriorates significantly as the defect density increases, which signifies the importance of high-quality material processing for the success of Cs2TiI6-based perovskite solar cell technology.

12.
Adv Mater ; 35(35): e2304666, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37327066

RESUMEN

One of the key challenges in battery research is to quantitatively describe the intercalation storage capacity as a function of the reversible cell voltage. The reason that such endeavors are not yet very successful, lies in the lack of an adequate charge carrier treatment. Using the most challenging example of nanocrystalline lithium iron phosphate, where the full range from FePO4 to LiFePO4 is accessible without miscibility gap, this study shows how a quantitative description of literature results can be achieved even for such a huge window. For this purpose, point-defect thermodynamics is applied and the problem is tackled from the two end-member sides including saturation effects. A first, rather heuristic treatment interpolates in-between using the safe thermodynamic criterion of local phase stability. Already this straightforward approach works very satisfactorily. In order to also gain mechanistic insight, interactions among and between ions and electrons have to be taken account of. This study shows how to implement them into the analysis.

13.
J Mol Model ; 29(7): 214, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37347314

RESUMEN

CONTEXT: Through experimental observations and reports, various challenges have been identified in carbon nanotubes (CNT), including Stone Wales (SW) flaws and position flaws. Among these imperfections, point vacancies are the most prevalent in the CNT lattice. However, there is currently no established method for detecting these issues, and the influence of these flaws on the vibrational properties of three-walled carbon nanotubes (TWCNTs) remains uncertain. This research paper introduces a novel approach that utilizes vibrational analysis to detect flaws in TWCNTs. By conducting the first investigation into the impact of point vacancies on the vibrational modal frequencies of TWCNTs, our study bridges these knowledge gaps. METHODS: This study examines the impact of defect quantity on various types of TWCNTs and investigates the vibrational properties of TWCNTs with point vacancies using a molecular structural mechanics technique. A total of 432 TWCNT models were simulated using molecular structural mechanics (MSM), and their modes were identified through finite element (FE) analysis. The fundamental vibration's natural frequency in TWCNTs with defects was then determined. The findings indicate that the depth of the mode shape is influenced by the TWCNTs' diameter, the extent of point vacancy defects, and the boundary condition. It was observed that as the number of vacancy defects increases from 0 to 4%, the natural frequency decreases. The study also establishes the order of TWCNTs with the highest natural vibrational frequency at 0%-point vacancy and [Formula: see text] a given attached mass, which follows the sequence of chiral, armchair, and zigzag TWCNTs.


Asunto(s)
Nanotubos de Carbono , Vibración , Incertidumbre
14.
ACS Appl Mater Interfaces ; 15(18): 22167-22175, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37125742

RESUMEN

Transition-metal dichalcogenide WSe2 is a potentially good thermoelectric (TE) material due to its high thermopower (S). However, the low electrical conductivity (σ), power factor (PF), and relatively large lattice thermal conductivity (κL) of pristine WSe2 degenerate its TE performance. Here, we show that through proper substitution of Nb for W in WSe2, its PF can be increased by ∼10 times, reaching 5.44 µW cm-1 K-2 (at 850 K); simultaneously, κL lowers from 1.70 to 0.80 W m-1 K-1. Experiments reveal that the increase of PF originates from both increased hole concentration due to the replacement of W4+ by Nb3+ and elevated thermopower (S) caused by the enhanced density of states effective mass, while the reduced κL comes mainly from phonon scattering at point defects NbW. As a result, a record high figure of merit ZTmax ∼0.42 is achieved at 850 K for the doped sample W0.95Nb0.05Se2, which is ∼13 times larger than that of pristine WSe2, demonstrating that Nb doping at the W site is an effective approach to improve the TE performance of WSe2.

15.
Small ; 19(24): e2208012, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36899451

RESUMEN

Acetamide- or formamide-assisted in situ strategy is designed to synthesize carbon atom self-doped g-C3 N4 (AHCNx ) or nitrogen vacancy-modified g-C3 N4 (FHCNx ). Different from the direct copolymerization route that suffers from the problem of mismatched physical properties of acetamide (or formamide) with urea, the synthesis of AHCNx (or FHCNx ) starts from a crucial preorganization step of acetamide (or formamide) with urea via freeze drying-hydrothermal treatment so that the chemical structures as well as C-doping level in AHCNx and N-vacancy concentration in FHCNx can be precisely regulated. By using various structural characterization methods, well-defined AHCNx and FHCNx structures are proposed. At the optimal C-doping level in AHCNx or N-vacancy concentration in FHCNx , both AHCNx and FHCNx exhibit remarkably improved visible-light photocatalytic performance in oxidation of emerging organic pollutants (acetaminophen and methylparaben) and reduction of proton to H2 in comparison of unmodified g-C3 N4 . Combination of the experimental results with theoretical calculations, it is confirmed that AHCNx and FHCNx show different charge separation and transfer mechanisms, while the enhanced visible-light harvesting capacity and the localized charge distributions on HOMO and LUMO are responsible for this excellent photocatalytic redox performance of AHCNx and FHCNx .

16.
Nanotechnology ; 34(18)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36724503

RESUMEN

The quantum transport properties of defective two-dimensional (2D) GeP semiconductor nanodevice consisting of typical point defects, such as antisite defect, substitutional defect, and Schottky defect, have been studied by using density functional theory combined with non-equilibrium Green's function calculation. The antisite defect has indistinctive influences on electron transport. However, both substitutional and Schottky defect have introduced promising defect state at the Fermi level, indicating the possibility of improvement on the carrier transport. Our quantitative quantum transport calculations ofI-Vbbehavior have revealed that the electrical characters are enhanced. Moreover, the P atom vacancy could induce significant negative differential resistance phenomenon, and the physical mechanism is unveiled by detailed analysis. The transfer characteristic properties could be prominently improved by substitutional defect and vacancy defect. Most importantly, we have proposed a computational design of GeP-based electronic device with improved electrical performance by introducing vacancy defect. Our findings could be helpful to the practical application of novel 2D GeP semiconductor nanodevice in future.

17.
Nano Lett ; 22(17): 6936-6941, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36041122

RESUMEN

Metal oxide nanoparticles exhibit outstanding catalytic properties, believed to be related to the presence of oxygen vacancies at the particle's surface. However, little quantitative information is known about concentrations of point defects inside and at surfaces of these nanoparticles, due to the challenges in achieving an atomically resolved experimental access. By employing off-axis electron holography, we demonstrate, using MgO nanoparticles as an example, a methodology that discriminates between mobile charge induced by electron beam irradiation and immobile charge associated with deep traps induced by point defects as well as distinguishes between bulk and surface point defects. Counting the immobile charge provides a quantification of the concentration of F2+ centers induced by oxygen vacancies at the MgO nanocube surfaces.


Asunto(s)
Holografía , Nanopartículas del Metal , Electrones , Holografía/métodos , Óxido de Magnesio , Óxidos , Oxígeno
18.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 4): 678-684, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35975833

RESUMEN

The structural stability of hexagonal tungsten mononitride (WN) has been studied combining scanning transmission electron microscopy and first-principles calculations. The results show that the WC-type WN with vacancies of 6∼8 at% is more stable than the previously proposed MnP-type and NiAs-type structures. Due to the larger vibrational entropy of the WC-type WN, the vacancy concentration required to stabilize the WC-type structure is lower at high temperatures. The results demonstrate the importance of vacancies and configurational and vibrational entropies in the structural stability of compounds synthesized at high temperatures.

19.
Materials (Basel) ; 15(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806848

RESUMEN

In this paper, first principles method was adopted to investigate the point defects, Vanadium-related defects and defect combinations (vacancy (V), substitutional (S) and/or interstitial (I)) in molybdenum ß-Mo2C and explore the use of first principles calculation data in analysing the link between different carbides and the effects of doping elements. Supercell models with different defect types were established and optimized, and the formation energy data of defects was developed. The structure evolution during the optimization process is analysed in detail to establish the main characteristics of changes and the relevant electronic properties. The data for different types of intrinsic defects and combined defects complexes was developed and key results is analysed. The results show that carbon vacancy (VC) is stable but does not inevitably exist in pure ß-Mo2C. Interstitial site II is a very unstable position for any type of atoms (Mo, V and C), and analysis of the structure evolution shows that the atom always moves to the interface area near the interstitial site I between two layers. In particular, a C atom can expand the lattice structure when it exists between the layer interfaces. One type of the defects studied, the substitution of Mo with V (designated as 'SV-Mo'), is the most stable defect among all single point defects. The data for defect complexes shows that the combination of multiple SV-Mo defects in the super cell being more stable than the combination of other defects (e.g., 'VMo+IC', 'SV-Mo+VC'). The data with increasing SV-Mo in (Mo, V)2C system is developed, and typical data (e.g., formation energy) for Mo-rich carbides and V carbides are correlated and the potential of the data in analysing transition of different carbides is highlighted. The relevance of using first principles calculation data in the studying of V-doping and the complex carbides (V- and Mo-rich carbides) evolution in different materials systems and future focus of continuous work is also discussed.

20.
Small ; 18(23): e2201352, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35429134

RESUMEN

Bi2 Te3 -related alloys dominate the commercial thermoelectric market, but the layered crystal structure leads to the dissociation and intrinsic brittle fracture, especially for single crystals that may worsen the practical efficiency. In this work, point defect configuration by S/Te/I defects engineering is engaged to boost thermoelectric and mechanical properties of n-type Bi2 Te3 alloy, which, coupled with p-type BiSbTe, shows a competitive conversion efficiency for the fabricated module. First, as S alloying suppresses the intrinsic B i T e , antisite defects and forms a donor-like effect, electronic transport properties are optimized, associated with the decreased thermal conductivity due to the point defect scattering. The periodide compound TeI4 is afterward adopted to further tune carrier concentration for the realization of an optimal ZT. Finally, an advanced average ZT of 1.05 with ultra-high compressive strength of 230 MPa is achieved for Bi2 Te2.9 S0.1 (TeI4 )0.0012 . Based on this optimum composition, a fabricated 17-pair module demonstrates a maximum conversion efficiency of 5.37% under the temperature difference of 250 K, rivaling the current state-of-the-art Bi2 Te3 modules. This work reveals the novel mechanism of point defect reconfiguration in synergistic enhancement of thermoelectric and mechanical properties for durably commercial application, which may be applicable to other thermoelectric systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA