Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.813
Filtrar
1.
Nepal J Epidemiol ; 14(1): 1302-1309, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39280642

RESUMEN

Bisphenol A (BPA) is widely used around the world in the production of Polycarbonate (PC) plastics. Notably, the ubiquitous 5-gallon water bottles in the UAE are primarily made of PC plastic, making them a significant concern as bottled water is the region's main supply of drinking water. These bottles undergo temperature variations during storage and transportation, potentially leading to harmful BPA (Bisphenol A) leaching. This study analyzed 40 PC 5-gallon water bottles from two local brands A and B, with 20 bottles per brand, under two conditions: room temperature and outdoor sunlight exposure for a month. BPA levels were assessed at 0, 15, and 30 days, following ethical approval. Liquid-liquid extraction and ELISA assays were conducted, with comprehensive kit validation. The results revealed a significant increase in BPA concentration over time, particularly in bottles exposed to elevated temperatures (Day 30 outdoor-stored samples exhibited the highest concentration at 9.05 ± 2.30 µg/L). Brand B consistently exhibited higher BPA concentrations across different samples and environments. This study emphasizes the link between BPA content and storage time, highlighting the need for preventive measures to reduce BPA exposure. Individuals should be aware of potential health risks associated with prolonged storage in plastic containers and consider safer alternatives.

2.
Polymers (Basel) ; 16(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274072

RESUMEN

Enhancing interfacial adhesion in polypropylene (PP)/recycled polyethylene terephthalate (rPET) blends is crucial for the effective mechanical recycling of these commercial plastic wastes. This study investigates the reactive extrusion of PP/rPET blends using a dual compatibilizer system comprising maleic anhydride grafted polypropylene (PP-g-MA) and various glycidyl methacrylate (GMA)-based compatibilizers. The effects of backbone structure and reactive group on the morphological, mechanical, and thermal characteristics were systematically studied. This study sheds light on the effective compatibilization mechanisms using characterization methods such as Fourier Transform Infrared Spectroscopy (FTIR) and morphological analyses (SEM). The results indicate that GMA-based compatibilizers play a bridging role between rPET and PP-g-MA, resulting in improved compatibility between the blend components. A combination of 3 phr PP-g-MA and 3 phr ethylene-methyl acrylate glycidyl methacrylate terpolymer (EMA-GMA) significantly improves interfacial adhesion, leading to synergistic enhancements of mechanical performance of the blend, up to 217% and 116% increases in elongation at break and impact strength, respectively, compared to the uncompatibilized sample. Moreover, a significant improvement in onset temperature for degradation is observed for the dual compatibilized sample, with 40 °C and 33 °C increases in onset temperature relative to the uncompatibilized and the single compatibilized samples. These findings underscore the immense potential of tailored multi-component compatibilizer systems for upgrading recycled plastic waste materials.

3.
Polymers (Basel) ; 16(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274127

RESUMEN

To solve the problems on resource utilization and environmental pollution of waste concrete and waste polypropylene (PP) plastics, the recycling of them into asphalt pavement is a feasible approach. Considering the high melting temperature of waste PP, this study adopted a thermal-and-mechanochemical method to convert waste PP into high-performance warm-mix asphalt modifiers (PPMs) through the hybrid use of dicumyl peroxide (DCP), maleic anhydride (MAH), and epoxidized soybean oil (ESO) for preparing an asphalt mixture (RCAAM) containing recycled concrete aggregate (RCA). For the prepared RCAAM containing PPMs, the mixing temperature was about 30 °C lower than that of the hot-mix RCAAM containing untreated PP. Further, the high-temperature property, low-temperature crack resistance, moisture-induced damage resistance, and fatigue resistance of the RCAAM were characterized. The results indicated that the maximum flexural strain of the RCAAM increased by 7.8~21.4% after using PPMs, while the sectional fractures of the asphalt binder were reduced after damaging at low temperature. The use of ESO in PPMs can promote the cohesion enhancement of the asphalt binder and also improve the high-temperature deformation resistance and fatigue performance of the RCAAM. Notably, the warm-mix epoxidized PPMA mixture worked better close to the hot-mix untreated PPMA mixture, even after the mixing temperature was reduced by 30 °C.

4.
Polymers (Basel) ; 16(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39274169

RESUMEN

The amount of end-of-life electrical and electronic devices has been widely increased, globally. This emphasizes how recycling waste electric and electronic equipment (WEEE) is essential in order to reduce the amount of WEEE that is disposed of directly in the environment. Plastics account for a big percentage in WEEE, almost 20%. As a result, the application of recycling methods on plastics gathered from WEEE is of great importance since, in this way, landfill disposal can be reduced. Nevertheless, despite the advantages, there are a lot of difficulties, such as the variety of different plastics present in the plastic mix and the existence of various additives in the plastic parts, for instance, brominated flame retardants that need special attention during their treatments, which restricts their wide application. Considering all these, this review aims to provide readers with all the current techniques and perspectives that are available for both the thermal and the catalytic recycling of plastics retrieved from WEEE. Apart from the up-to-date information on the recycling methods, in this review, emphasis is also given on the advantages each method offers and also on the difficulties and the limitations that may prevent them from being applied on a large scale. Current challenges are critically examined, including the use of mechanical or thermo-chemical recycling, the treatment of individual polymers or polymer blends and the separation of harmful additives before recycling or not. Finally, emerging technologies are briefly discussed.

5.
Talanta ; 281: 126877, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39277933

RESUMEN

The ubiquity of plastic products has led to an increased exposure to micro and nano plastics across diverse environments, presenting a novel class of pollutants with substantial health implications. Emerging research indicates their capacity to infiltrate human organs, posing risks of tissue damage and carcinogenesis. Given the prevalent consumption of beverages as a primary vector for these plastics' entry into the human system, there is an imperative need for the advancement of precise detection methodologies in liquids. In this study, we introduce a substrate comprising a Nickel Oxide (NiO) nanosheet array decorated with Silver Nanoparticles (AgNPs) for the Surface-Enhanced Raman Spectroscopy (SERS) analysis of micro//nano plastics. This configuration, leveraging a unique nanowell architecture alongside silver plasmonic enhancement, demonstrates unparalleled sensitivity and repeatability in signal, facilitating the accurate quantification of these contaminants. Through the application of a portable Raman apparatus, this study successfully identifies prevalent micro/nano plastics including polystyrene (PS), polyethylene (PE), and polypropylene (PP), achieving detection sensitivities of 5 µg/mL, 25 µg/mL, and 25 µg/mL, respectively. Moreover, the substrate's efficacy extends to the detection of PS within commonly consumed beverages such as water, milk, and liquor with sensitivities of 25 µg/mL, 50 µg/mL, and 50 µg/mL, respectively. These findings highlight the substrate's potential as an expedient and effective sensor for the real-time monitoring of micro/nano plastic pollutants.

6.
Mar Pollut Bull ; 207: 116888, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39243467

RESUMEN

Using satellite remote sensing, we show the distribution, dominant type, and amounts of marine debris off the northeast coast of Japan after the Great East Japan Earthquake on 11 March 2011 and subsequent tsunami. Extensive marine debris was found on March 12, with the maximal amount found on March 13. The debris was found to be mainly wood (possibly lumber wood), with an estimated 1.5 million metric tons in an elongated water area of 6800 km2 (18 km E-W and 380 km N-S) near parallel to the coast between 36.75°N and 40.25°N. The amount decreased rapidly with time, with scattered debris patches captured in high-resolution satellite images up to April 6. These results provide new insights on the initial distribution of the Japanese Tsunami Marine Debris, which may be used to help find bottom deposition of debris and help refine numerical models to predict the debris trajectory and fate. SYNOPSIS: Marine debris induced by the 2011 Great East Japan Earthquake and Tsunami is found to be mainly composed of wood and possibly lumber wood from constructions, with maximum amount on 13 March 2011 distributed within a narrow band of ∼18 km near parallel to the northeast coast of Japan between 36.75°N and 40.25°N.


Asunto(s)
Terremotos , Monitoreo del Ambiente , Tecnología de Sensores Remotos , Tsunamis , Japón , Monitoreo del Ambiente/métodos , Residuos/análisis , Madera
7.
Mar Pollut Bull ; 207: 116919, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39243468

RESUMEN

Marine species raft on floating litter, including various plastics, potentially spreading non-native species and threatening global marine habitats. Despite limited attention, Didemnum vexillum, an invasive colonial tunicate in Europe, colonised coasts of southwest Scotland (2009) and northeast Ireland (2012), likely transported via rafting. We studied D. vexillum survival and performance on three plastic types (Polyethylene, Polypropylene and Polystyrene) finding high survival rates over 42 days, with colonies thriving best on PS. Using these data, hydrodynamic and particle tracking models simulated dispersal from existing Irish Sea colonies, projecting potential rafting distances of up to ∼150 km for surface particles influenced by tide and wind, and half that for neutrally-buoyant mid-depth particles driven by tidal currents alone. Hence, the modelling supports the potential for dispersion of this species within the Irish Sea via rafting. This study highlights marine plastics as a vector that may facilitate widespread dispersal of non-native species.


Asunto(s)
Especies Introducidas , Plásticos , Animales , Irlanda , Escocia , Ecosistema , Distribución Animal
8.
Artículo en Inglés | MEDLINE | ID: mdl-39279225

RESUMEN

OBJECTIVE: Otolaryngologists are at a significantly greater risk of being sued than most other physicians. To date, there is a lack of studies characterizing trends in otolaryngology malpractice claims. To assess these trends and risk variables, this study examined malpractice claims against otolaryngologists. STUDY DESIGN: Retrospective database review. SETTING: LexisNexis Jury Verdicts and Settlements. METHODS: The LexisNexis legal database was used to locate jury verdicts and settlements related to medical malpractice in otolaryngology, from 2018 to 2024. The study did not include any claims covered by the Social Security Disability Insurance, Workers' Compensation, Healthcare Law, or Criminal Law and Procedure categories. Temporal trends were evaluated, and logistic regression was used to identify independent risk factors. RESULTS: Out of 903 items, 79 reported malpractice cases were included (mean age 44.5; 60.3% female). The most sued subspecialty was head and neck oncology (32.5%). Negligence (93.7%) was the primary cause of action. Of cases sent to the jury, 87.7% of them resulted in a verdict in favor of the defendant. The mean plaintiff verdict payout was $7,432,508.06 and the mean identified settlement amount was $1,562,500.00. Physical injury (62.0%) was the highest type of harm. Regional analysis indicated a higher percentage of cases from New York favored the defendant (21.1% vs 13.6%; P = .034). CONCLUSION: This study highlights key trends in otolaryngology malpractice claims, emphasizing the prevalence in cases of head and neck surgery, primarily attributed to negligence. By identifying trends and risk factors, otolaryngologists can get a better understanding of the dynamics surrounding malpractice.

9.
Sci Total Environ ; 953: 176225, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270873

RESUMEN

Understanding the stability of NPs in different aqueous environments, related with their size is crucial for assessing their potential risks. This is influenced by several factors, including pH, ionic strength, and the presence of biomolecules, or dissolved organic matter (DOM). In this study, dispersions of NPs derived from common plastic waste materials, including polystyrene (PS), polyethylene terephthalate (PET), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), and polycarbonate (PC), were synthesized by a nanoprecipitation method with sizes: 189 ± 7, 58 ± 3, 123 ± 4, 151 ± 7 and 182 ± 6 nm, respectively. Stability for a period of 14 days of these NPs was assessed in various natural water matrices. Different analytical techniques were used, including Asymmetric Flow Field-Flow Fractionation (AF4) coupled with UV-Vis and Dynamic Light Scattering (DLS) in series, batch DLS, Fourier-Transform Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR), and Transmission Electron Microscopy (TEM). None of the studied NPs was stable in seawater and NPs were transformed in microplastics (MPs) by aggregation. PET was more prone to aggregation in all waters and PS was the most stable followed for PC, PVC and PMMA. However, bottle and tap waters maintained better the original size of NPs. For the most stable dispersion PS, the influence of heteroaggregation in tap and lagoon waters and aging from exposure to UV light in sea water were tested. In both cases, the stability over time was worse for PS. The results can contribute to a more comprehensive understanding of the fate and behaviour of NPs in natural aquatic environments, emphasizing the importance of studying a wide range of polymers.

10.
Heliyon ; 10(16): e36299, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253233

RESUMEN

The world faces an alarming plastic waste problem. The volume of plastic waste is rapidly and continuously increasing, mainly due to the single-use plastics overconsumption, whereas its recycling and utilization leave much to be desired. Despite the negative effects of plastic on the environment and public health, the COVID-19 outbreak shifted the public attention away from the environmental issues, potentially giving space for extended lobbyism by interest groups and industry to delay or even prevent legislation to combat plastic pollution. Our study aims to understand how the media discourse on single-use plastic (SUP) in particular, evolves in the course of the pandemic. How it vary across EU Member States? For this purpose, we specifically analyse plastic-related articles in major prestigious daily newspapers published between June 2019 and June 2021 in four EU Member States: Germany, France, Italy, and Poland, as countries with different levels of sustainable transition to form a representative model of an European context. Additionally, between November 2022 and January 2023, we conducted a series of interviews via Google Meet, with journalists who agreed to be asked on the plastic issues they upraised. Our analysis initially covered 1076 articles, out of which 198 articles were rejected due to non-compliance with the subject or repetition, leaving 878 articles forming the database for eventual analysis. Specifically, we outline a key impact of the COVID-19 pandemic followed by a clear evolution on the number of plastic-related articles, on related stakeholder engagement, and the focus on specific SUP items. Moreover, we address a research gap - presenting a media portrait of different types of SUP in more details and highlighting the significance based on several culturally and linguistically very different countries within a single supranational state (EU). A clear trend reversal towards an informed knowledge circulation across the circular economy model of single-use plastics is ultimately essential to develop sustainable solutions to reject the disposable culture, stop the waste of natural resources, and reduce the consumption of oil or gas for plastic production and thus protect the climate.

11.
Sci Total Environ ; 953: 176228, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270875

RESUMEN

Plastics, encompassing a wide range of polymeric materials, and their downstream products (micro- and nanoplastics, MNPs) are accumulating in the environment at an alarming rate, and they are linked to adverse human health outcomes. Considering that ingestion is a main source of MNPs exposure, the impact of plastics is particularly relevant towards intestinal inflammation and inflammatory bowel disease (IBD). However, the study of MNPs has been limited by obstacles relating to sample collection, preparation, and microplastics analysis based on optical microscopy and chemical analysis, which we detail in this review alongside potential solutions. We summarize available data on human exposure to MNPs and overall health outcomes, with particular focus on data pertaining to intestinal inflammation, microbiome perturbations, and related outcomes. We include ecologic perspectives, and human, in vitro, and animal model studies. We discuss the way forward in MNPs and IBD research, including knowledge gaps and future research.

12.
Environ Res ; 262(Pt 2): 119979, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270956

RESUMEN

Biodegradable plastics (BPs) are known to decompose into micro-nano plastics (BMNPs) more readily than conventional plastics (CPs). Given the environmental risks posed by BMNPs in soil ecosystems, their impact has garnered increasing attention. However, research focusing on the toxic effects of BMNPs on soils remains relatively limited. The degradation process and duration of BMNPs in soil are influenced by numerous factors, which directly impact the toxic effects of BMNPs. This highlights the urgent need for further research. In this context, this review delineates the classification of BPs, investigates the degradation processes of BPs along with their influencing factors, summarizes the toxic effects on soil ecosystems, and explores the potential mechanisms that underlie these toxic effects. Finally, it provides an outlook on related research concerning BMNPs in soil. The results indicate that specific BMNPs release additives at a faster rate during decomposition, degradation, and aging, with certain compounds exhibiting increased bioavailability. Importantly, a substantial body of research has shown that BMNPs generally manifest more pronounced toxic effects in comparison to conventional micro-nano plastics (CMNPs). The toxic effects associated with BMNPs encompass a decline in soil quality and microbial biomass, disruption of nutrient cycling, inhibition of plant root growth, and negative impacts on invertebrate reproduction, survival, and fertilization rates. The rough and complex surfaces of BMNPs contribute to increased mechanical damage to tested organisms, enhance absorption by microorganisms, and disrupt normal physiological functions. Notably, the toxic effects of BMNPs on soil ecosystems are influenced by factors including concentration, type of BMNPs, exposure conditions, degradation products, and the nature of additives used. Therefore, it is crucial to standardize detection technologies and toxicity testing conditions for BMNPs. In conclusion, this review provides scientific evidence that supports effective prevention and management of BMNP pollution, assessment of its ecological risks, and governance of BMNPs-related products.

13.
Waste Manag ; 189: 300-313, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226844

RESUMEN

The plastic industry needs to match the recycling goals set by the EU. Next to technological hurdles, the cost of plastics mechanical recycling is an important modality in this transition. This paper reveals how business economic cost calculation can expose significant pitfalls in the recycling process, by unravelling limitations and boundary conditions, such as scale. By combining the business economic methodology with a Material Flow Analysis, this paper shows the influence of mass retention of products, the capacity of the processing lines, scaling of input capacity, and waste composition on the recycling process and associated costs. Two cases were investigated: (i) the Initial Sorting in a medium size Material Recovery Facility and (ii) an improved mechanical recycling process for flexibles - known as the Quality Recycling Process - consisting of Additional Sorting and Improved Recycling. Assessing the whole recycling chain gives a more holistic insight into the influences of choices and operating parameters on subsequent costs in other parts of the chain and results in a more accurate cost of recycled plastic products. This research concluded that the cost of Initial Sorting of flexibles is 110,08-122,53 EUR/t, while the cost of subsequent Additional Sorting and Improved Recycling ranges from 566,26 EUR/t for rPE Flex to 735,47 EUR/t for rPP Film, these insights can be used to determine a fair price for plastic products. For the Quality Recycling Process it was shown that rationalisation according to the identified pitfalls can reduce the cost per tonne of product by 15-26%.


Asunto(s)
Plásticos , Reciclaje , Reciclaje/métodos , Reciclaje/economía , Costos y Análisis de Costo , Administración de Residuos/métodos , Administración de Residuos/economía
14.
Heliyon ; 10(16): e36547, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39258196

RESUMEN

Single treatment of metallised food packaging plastics waste (MFPW) has shown disappointing results with recycling rate <20 % due to its complex structure consisting of 10 % aluminium (Al) and 90 % mixed plastic films made of PE, PP, PS, PET, etc. Besides, it is generating many emissions and residues that must be landfilled making it difficult to integrate them into the circular economy. Therefore, a multi-stage recycling (MSR) approach has recently been developed using several sequential mechanical, thermal and chemical processes to recover energy and Al from MFPW with additional revenue for recycling plant operators. The thermal treatment helps to decompose the plastic fraction into wax or oil, gaseous, and solid residue (SR) composed of Al and coal, while the mechanical process can be used as a pre-treatment of MFPW feedstock and SR. Finally, the chemical treatment (leaching and functionalization) can be used to extract Al from SR and to refine coal into carbon microparticles (CPs), respectively. In order to investigate the environmental performance of the proposed MSR system, this research was developed. The investigation was performed using SimaPro life cycle analysis (LCA) tool according to ISO 14040/44 Standards and the impact assessment method is ReCiPe 2016. Five different scenarios were proposed in the constructed LCA layout, namely, conversion of MFPW to a) wax and gas (pyrolysis), b) wax, gas, and aluminium chloride (AlCl3) (pyrolysis and leaching), c) wax, gas, AlCl3, and CPs (pyrolysis, leaching, and functionalization), and d) oil, gas, AlCl3, and CPs (catalytic pyrolysis, leaching, and functionalization). Besides, the oil produced from catalytic pyrolysis is used for generation of electricity (scenario e). The results showed that wax and gas recovery scenario (a) has better environmental potential and environmental benefits compared to incineration practice. The results did not change much after extraction of Al and CPs (scenario b, c), with a few increasing by 2-4% in the total score. While a lot of environmental burdens from upgrading and utilization (Scenario d, e) were recorded, reaching 79 % due to the huge amount of the catalyst was used. Thus, MSR systems have bigger environmental benefits, however, the chemical and catalytic processes still need to be further improved to reduce the effect of terrestrial acidification.

15.
J Hazard Mater ; 479: 135554, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39232354

RESUMEN

Achieving circularity in the plastic economy predominantly depends on sourcing higher quality recyclates. Packaging plastic poses a significant challenge as it is often not prioritised for collection or recycling initiatives. The presence of additives, such as printing ink, impedes the quality of recyclates. Considering the volume of packaging plastics and the importance of branding (aesthetics and consumer information), ink removal is a critical pre-treatment step. However, the literature is limited, with only 14 studies exploring de-inking processes. Drawing parallels with the detergent laundering process, surfactants have been widely investigated in plastic de-inking, with cationic surfactants proving the most effective with a de-inking efficiency of up to 100%. However, concerns exist regarding the toxic and hazardous nature of the surfactants and chemicals. The average hazard quotient (AHQ) was developed, which compares de-inking chemicals as one of the key findings. AHQ provides a quantitative proxy for the hazards and toxicities, which are qualitatively presented as part of the globally harmonised system (GHS) classification of chemicals. To drive emerging packaging plastic de-inking, including the development of green surfactants (e.g. gamma-valerolactone), this work enables an informed chemical selection minimising potential hazards (rather than creating more adverse effects in plastic recycling processes) and toxicities from plastic waste, fulfilling the objectives of cleaner plastic waste recycling.

16.
Sci Total Environ ; 953: 176017, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236815

RESUMEN

The extensive use of plastic products has exacerbated micro/nanoplastic (MPs/NPs) pollution in the atmosphere, increasing the incidence of respiratory diseases and lung cancer. This study investigates the uptake and cytotoxicity mechanisms of polystyrene (PS) NPs in human lung epithelial cells. Transcriptional analysis revealed significant changes in cell adhesion pathways following PS-NPs exposure. Integrin α5ß1-mediated endocytosis was identified as a key promoter of PS-NPs entry into lung epithelial cells. Overexpression of integrin α5ß1 enhanced PS-NPs internalization, exacerbating mitochondrial Ca2+ dysfunction and depolarization, which induced reactive oxygen species (ROS) production. Mitochondrial dysfunction triggered by PS-NPs led to oxidative damage, inflammation, DNA damage, and necrosis, contributing to lung diseases. This study elucidates the molecular mechanism by which integrin α5ß1 facilitates PS-NPs internalization and enhances its cytotoxicity, offering new insights into potential therapeutic targets for microplastic-induced lung diseases.

17.
Talanta ; 281: 126792, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39241645

RESUMEN

Determination of olefins in pyrolysis oils from waste plastics and tires is crucial for optimizing the pyrolysis process and especially for the further advanced valorization of these oils in terms of the circular economy. Identifying olefins, even using high-resolution techniques like GC×GC, is challenging without TOF-MS, which allows modification of the ionization step. Currently, the only method for determining olefins in plastic pyrolysis oils is GC-VUV, recently standardized as ASTM D8519. However, TOF-MS and VUV are not affordable instruments for many research teams working on plastics recycling. This paper introduces a simple method for the selective micro-scale adsorption of olefins over AgNO3/SiO2, followed by the GC×GC-FID analysis. Olefins are determined indirectly from the loss of chromatographic area in respective hydrocarbon groups before and after removal. Only 50 µL sample and 15 min of sample separation are needed. Our method was extensively validated and provides a reliable determination of olefin content in a wide range of pyrolysis oils from plastics and tires and their products after mild hydrotreatment. It is affordable to all researchers and industrial companies working on plastics recycling by thermochemical processes as it does not require an MS detector.

18.
Eur Heart J ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240674

RESUMEN

Emerging evidence indicates that chemical exposures in the environment are overlooked drivers of cardiovascular diseases (CVD). Recent evidence suggests that micro- and nanoplastic (MNP) particles derived largely from the chemical or mechanical degradation of plastics might represent a novel CVD risk factor. Experimental data in preclinical models suggest that MNPs can foster oxidative stress, platelet aggregation, cell senescence, and inflammatory responses in endothelial and immune cells while promoting a range of cardiovascular and metabolic alterations that can lead to disease and premature death. In humans, MNPs derived from various plastics, including polyethylene and polyvinylchloride, have been detected in atherosclerotic plaques and other cardiovascular tissues, including pericardia, epicardial adipose tissues, pericardial adipose tissues, myocardia, and left atrial appendages. MNPs have measurable levels within thrombi and seem to accumulate preferentially within areas of vascular lesions. Their presence within carotid plaques is associated with subsequent increased incidence of cardiovascular events. To further investigate the possible causal role of MNPs in CVD, future studies should focus on large, prospective cohorts assessing the exposure of individuals to plastic-related pollution, the possible routes of absorption, the existence of a putative safety limit, the correspondence between exposure and accumulation in tissues, the timing between accumulation and CVD development, and the pathophysiological mechanisms instigated by pertinent concentrations of MNPs. Data from such studies would allow the design of preventive, or even therapeutic, strategies. Meanwhile, existing evidence suggests that reducing plastic production and use will produce benefits for the environment and for human health. This goal could be achieved through the UN Global Plastics Treaty that is currently in negotiation.

19.
Water Res ; 266: 122405, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39265217

RESUMEN

Researchers and practitioners have extensively utilized supervised Deep Learning methods to quantify floating litter in rivers and canals. These methods require the availability of large amount of labeled data for training. The labeling work is expensive and laborious, resulting in small open datasets available in the field compared to the comprehensive datasets for computer vision, e.g., ImageNet. Fine-tuning models pre-trained on these larger datasets helps improve litter detection performances and reduces data requirements. Yet, the effectiveness of using features learned from generic datasets is limited in large-scale monitoring, where automated detection must adapt across different locations, environmental conditions, and sensor settings. To address this issue, we propose a two-stage semi-supervised learning method to detect floating litter based on the Swapping Assignments between multiple Views of the same image (SwAV). SwAV is a self-supervised learning approach that learns the underlying feature representation from unlabeled data. In the first stage, we used SwAV to pre-train a ResNet50 backbone architecture on about 100k unlabeled images. In the second stage, we added new layers to the pre-trained ResNet50 to create a Faster R-CNN architecture, and fine-tuned it with a limited number of labeled images (≈1.8k images with 2.6k annotated litter items). We developed and validated our semi-supervised floating litter detection methodology for images collected in canals and waterways of Delft (the Netherlands) and Jakarta (Indonesia). We tested for out-of-domain generalization performances in a zero-shot fashion using additional data from Ho Chi Minh City (Vietnam), Amsterdam and Groningen (the Netherlands). We benchmarked our results against the same Faster R-CNN architecture trained via supervised learning alone by fine-tuning ImageNet pre-trained weights. The findings indicate that the semi-supervised learning method matches or surpasses the supervised learning benchmark when tested on new images from the same training locations. We measured better performances when little data (≈200 images with about 300 annotated litter items) is available for fine-tuning and with respect to reducing false positive predictions. More importantly, the proposed approach demonstrates clear superiority for generalization on the unseen locations, with improvements in average precision of up to 12.7%. We attribute this superior performance to the more effective high-level feature extraction from SwAV pre-training from relevant unlabeled images. Our findings highlight a promising direction to leverage semi-supervised learning for developing foundational models, which have revolutionized artificial intelligence applications in most fields. By scaling our proposed approach with more data and compute, we can make significant strides in monitoring to address the global challenge of litter pollution in water bodies.

20.
Mar Environ Res ; 202: 106742, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39265326

RESUMEN

The objective of this study is to investigate the effect of nano-plastics (NPs) on the growth, photosynthesis, oxidative stress and antioxidant enzymes in Grateloupia turuturu and Chondrus ocellatus. Difference of surface characteristics between G. turuturu and C. ocellatus may affect adherence of plastics to their surface. The seaweed samples were cultivated at 5 different NP concentrations (0, 20, 200, 2000, 20000 ng/L) for 21 days. The accumulation of nano-plastics on surface of C. ocellatus was higher than that of G. turuturu. The highest concentration of NPs (20000 ng/L) inhibited the growth and photosynthesis activity of C. ocellatus. At the same concentrations, oxidative stress was caused with increase of antioxidant enzyme activities. G. turuturu was not affected by NPs at all tested concentrations. Based on these results, toxic effects of nano-plastics may be species specific. Toxicity is dependent on the capacity of macroalgae to accumulate nano-plastics on their surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA