Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Gen Virol ; 105(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39292505

RESUMEN

Arabidopsis thaliana is more susceptible to certain viruses during its later developmental stages. The differential responses and the mechanisms behind this development-dependent susceptibility to infection are still not fully understood. Here we explored the outcome of a viral infection at different host developmental stages by studying the response of A. thaliana to infection with turnip mosaic virus at three developmental stages: juvenile vegetative, bolting, and mature flowering plants. We found that infected plants at later stages downregulate cell wall biosynthetic genes and that this downregulation may be one factor facilitating viral spread and systemic infection. We also found that, despite being more susceptible to infection, infected mature flowering plants were more fertile (i.e. produce more viable seeds) than juvenile vegetative and bolting infected plants; that is, plants infected at the reproductive stage have greater fitness than plants infected at earlier developmental stages. Moreover, treatment of mature plants with salicylic acid increased resistance to infection at the cost of significantly reducing fertility. Together, these observations support a negative trade-off between viral susceptibility and plant fertility. Our findings point towards a development-dependent tolerance to infection.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Potyvirus , Enfermedades de las Plantas/virología , Arabidopsis/virología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Potyvirus/fisiología , Ácido Salicílico/metabolismo , Interacciones Huésped-Patógeno/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica
2.
Front Microbiol ; 15: 1451285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188317

RESUMEN

Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine (Vitis spp.), were recently identified. GFLV VSRs include the RNA1-encoded protein 1A and the putative helicase protein 1BHel, as well as their fused form (1ABHel). Key characteristics underlying the suppression function of the GFLV VSRs are unknown. In this study, we explored the role of the conserved tryptophan-glycine (WG) motif in protein 1A and glycine-tryptophan (GW) motif in protein 1BHel in their systemic RNA silencing suppression ability by co-infiltrating Nicotiana benthamiana 16c line plants with a GFP silencing construct and a wildtype or a mutant GFLV VSR. We analyzed and compared wildtype and mutant GFLV VSRs for their (i) efficiency at suppressing RNA silencing, (ii) ability to limit siRNA accumulation, (iii) modulation of the expression of six host genes involved in RNA silencing, (iv) impact on virus infectivity in planta, and (v) variations in predicted protein structures using molecular and biochemical assays, as well as bioinformatics tools such as AlphaFold2. Mutating W to alanine (A) in WG of proteins 1A and 1ABHel abolished their ability to induce systemic RNA silencing suppression, limit siRNA accumulation, and downregulate NbAGO2 expression by 1ABHel. This mutation in the GFLV genome resulted in a non-infectious virus. Mutating W to A in GW of proteins 1BHel and 1ABHel reduced their ability to suppress systemic RNA silencing and abolished the downregulation of NbDCL2, NbDCL4,, and NbRDR6 expression by 1BHel. This mutation in the GFLV genome delayed infection at the local level and inhibited systemic infection in planta. Double mutations of W to A in WG and GW of protein 1ABHel abolished its ability to induce RNA silencing suppression, limit siRNA accumulation, and downregulate NbDCL2 and NbRDR6 expression. Finally, in silico protein structure prediction indicated that a W to A substitution potentially modifies the structure and physicochemical properties of the three GFLV VSRs. Together, this study provided insights into the specific roles of WG/GW not only in GFLV VSR functions but also in GFLV biology.

3.
Plant Cell Rep ; 43(8): 197, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014054

RESUMEN

Reactive oxygen species (ROS) play a complex role in interactions between plant viruses and their host plants. They can both help the plant defend against viral infection and support viral infection and spread. This review explores the various roles of ROS in plant-virus interactions, focusing on their involvement in symptom development and the activation of plant defense mechanisms. The article discusses how ROS can directly inhibit viral infection, as well as how they can regulate antiviral mechanisms through various pathways involving miRNAs, virus-derived small interfering RNAs, viral proteins, and host proteins. Additionally, it examines how ROS can enhance plant resistance by interacting with hormonal pathways and external substances. The review also considers how ROS might promote viral infection and transmission, emphasizing their intricate role in plant-virus dynamics. These insights offer valuable guidance for future research, such as exploring the manipulation of ROS-related gene expression through genetic engineering, developing biopesticides, and adjusting environmental conditions to improve plant resistance to viruses. This framework can advance research in plant disease resistance, agricultural practices, and disease control.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Virus de Plantas , Plantas , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Virus de Plantas/fisiología , Virus de Plantas/patogenicidad , Enfermedades de las Plantas/virología , Resistencia a la Enfermedad/genética , Plantas/virología , Plantas/metabolismo , Interacciones Huésped-Patógeno , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant Sci ; 346: 112165, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38925477

RESUMEN

Agriculture and global food security encounter significant challenges due to viral threats. In the following decades, several molecular studies have focused on discovering biosynthetic pathways of numerous defensive and signaling compounds, as key regulators of plant interactions, either with viruses or their associated vectors. Nevertheless, the complexities of specialized metabolites mediated plant-virus-vector tripartite viewpoint and the identification of their co-evolutionary crossroads toward antiviral defense system, remain elusive. The current study reviews the various roles of plant-specialized metabolites (PSMs) and how plants use these metabolites to defend against viruses. It discusses recent examples of specialized metabolites that have broad-spectrum antiviral properties. Additionally, the study presents the co-evolutionary basis of metabolite-mediated plant-virus-insect interactions as a potential bioinspired approach to combat viral threats. The prospects also show promising metabolic engineering strategies aimed at discovering a wide range of PSMs that are effective in fending off viruses and their related vectors. These advances in understanding the potential role of PSMs in plant-virus interactions not only serve as a cornerstone for developing plant antiviral systems, but also highlight essential principles of biological control.


Asunto(s)
Enfermedades de las Plantas , Virus de Plantas , Plantas , Virus de Plantas/fisiología , Plantas/virología , Plantas/metabolismo , Enfermedades de las Plantas/virología , Animales , Interacciones Huésped-Patógeno , Evolución Biológica
5.
Microorganisms ; 12(5)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38792717

RESUMEN

Bemisia tabaci is distributed globally and incurs considerable economic and ecological costs as an agricultural pest and viral vector. The entomopathogenic fungus Metarhizium anisopliae has been known for its insecticidal activity, but its impacts on whiteflies are understudied. We investigated how infection with the semi-persistently transmitted Cucurbit chlorotic yellows virus (CCYV) affects whitefly susceptibility to M. anisopliae exposure. We discovered that viruliferous whiteflies exhibited increased mortality when fungus infection was present compared to non-viruliferous insects. High throughput 16S rRNA sequencing also revealed significant alterations of the whitefly bacterial microbiome diversity and structure due to both CCYV and fungal presence. Specifically, the obligate symbiont Portiera decreased in relative abundance in viruliferous whiteflies exposed to M. anisopliae. Facultative Hamiltonella and Rickettsia symbionts exhibited variability across groups but dominated in fungus-treated non-viruliferous whiteflies. Our results illuminate triangular interplay between pest insects, their pathogens, and symbionts-dynamics which can inform integrated management strategies leveraging biopesticides This work underscores the promise of M. anisopliae for sustainable whitefly control while laying the groundwork for elucidating mechanisms behind microbe-mediated shifts in vector competence.

6.
Planta ; 259(2): 38, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227024

RESUMEN

MAIN CONCLUSION: Silencing of an ascorbate oxidase (AO) gene in N. benthamiana enhanced disease severity from cucumber mosaic virus (CMV), showing higher accumulation and expansion of the spreading area of CMV. A Nicotiana benthamiana ascorbate oxidase (NbAO) gene was found to be induced upon cucumber mosaic virus (CMV) infection. Virus-induced gene silencing (VIGS) was employed to elucidate the function of AO in N. benthamiana. The tobacco rattle virus (TRV)-mediated VIGS resulted in an efficient silencing of the NbAO gene, i.e., 97.5% and 78.8% in relative quantification as compared to the control groups (TRV::eGFP- and the mock-inoculated plants), respectively. In addition, AO enzymatic activity decreased in the TRV::NtAO-silenced plants as compared to control. TRV::NtAO-mediated NbAO silencing induced a greater reduction in plant height by 15.2% upon CMV infection. CMV titer at 3 dpi was increased in the systemic leaves of NbAO-silenced plants (a 35-fold change difference as compared to the TRV::eGFP-treated group). Interestingly, CMV and TRV titers vary in different parts of systemically infected N. benthamiana leaves. In TRV::eGFP-treated plants, CMV accumulated only at the top half of the leaf, whereas the bottom half of the leaf was "occupied" by TRV. In contrast, in the NbAO-silenced plants, CMV accumulated in both the top and the bottom half of the leaf, suggesting that the silencing of the NbAO gene resulted in the expansion of the spreading area of CMV. Our data suggest that the AO gene might function as a resistant factor against CMV infection in N. benthamiana.


Asunto(s)
Cucumovirus , Infecciones por Citomegalovirus , Nicotiana/genética , Ascorbato Oxidasa , Hojas de la Planta/genética
7.
New Phytol ; 241(4): 1415-1420, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38058221

RESUMEN

Stem cells are vital for plant development and reproduction. The stem cells within shoot apical meristems are known to possess exceptionally effective antiviral defenses against pathogenic viruses which preclude their infection, yet how this is achieved remains poorly understood and scarcely investigated. In this Tansley Insight, we connect very recent experimental results with previous work to summarize the known molecular mechanisms determining stem cell antiviral immunity. More broadly, we attempt to define the viral features triggering immunity and the global consequences of virus infection in these essential cells. This brief article will highlight how these phenomena are fascinating, complex and often crucial for virus-host interactions, while emphasizing the potential for discovery in their investigation.


Asunto(s)
Meristema , Plantas , Desarrollo de la Planta , Células Madre
8.
EMBO J ; 42(18): e113378, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37431920

RESUMEN

In virus-host interactions, nucleic acid-directed first lines of defense that allow viral clearance without compromising growth are of paramount importance. Plants use the RNA interference pathway as a basal antiviral immune system, but additional RNA-based mechanisms of defense also exist. The infectivity of a plant positive-strand RNA virus, alfalfa mosaic virus (AMV), relies on the demethylation of viral RNA by the recruitment of the cellular N6-methyladenosine (m6 A) demethylase ALKBH9B, but how demethylation of viral RNA promotes AMV infection remains unknown. Here, we show that inactivation of the Arabidopsis cytoplasmic YT521-B homology domain (YTH)-containing m6 A-binding proteins ECT2, ECT3, and ECT5 is sufficient to restore AMV infectivity in partially resistant alkbh9b mutants. We further show that the antiviral function of ECT2 is distinct from its previously demonstrated function in the promotion of primordial cell proliferation: an ect2 mutant carrying a small deletion in its intrinsically disordered region is partially compromised for antiviral defense but not for developmental functions. These results indicate that the m6 A-YTHDF axis constitutes a novel branch of basal antiviral immunity in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Virus ARN , Antivirales , Proteínas de Plantas/metabolismo , Proteínas de Unión al ARN/metabolismo , Arabidopsis/metabolismo , ARN Viral/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
9.
Viruses ; 15(4)2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37112899

RESUMEN

RNA-dependent RNA polymerases (RDRs) are key players in the antiviral defence mediated by RNA silencing in plants. RDR6 is one of the major components of the process, regulating the infection of certain RNA viruses. To better clarify its function against DNA viruses, we analyzed the effect of RDR6 inactivation (RDR6i) in N. benthamiana plants on two phloem-limited begomoviruses, the bipartite Abutilon mosaic virus (AbMV) and the monopartite tomato yellow leaf curl Sardinia virus (TYLCSV). We observed exacerbated symptoms and DNA accumulation for the New World virus AbMV in RDR6i plants, varying with the plant growth temperature (ranging from 16 °C to 33 °C). However, for the TYLCSV of Old World origin, RDR6 depletion only affected symptom expression at elevated temperatures and to a minor extent; it did not affect the viral titre. The accumulation of viral siRNA differed between the two begomoviruses, being increased in RDR6i plants infected by AbMV but decreased in those infected by TYLCSV compared to wild-type plants. In situ hybridization revealed a 6.5-fold increase in the number of AbMV-infected nuclei in RDR6i plants but without egress from the phloem tissues. These results support the concept that begomoviruses adopt different strategies to counteract plant defences and that TYLCSV evades the functions exerted by RDR6 in this host.


Asunto(s)
Begomovirus , Nicotiana , Begomovirus/fisiología , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Plantas , Interferencia de ARN , Enfermedades de las Plantas
10.
Plants (Basel) ; 12(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36987082

RESUMEN

Susceptibility to the severe Citrus tristeza virus (CTV), T36, is higher for Citrus macrophylla (CM) than for C. aurantium (CA). How host-virus interactions are reflected in host physiology is largely unknown. In this study, the profile of metabolites and the antioxidant activity in the phloem sap of healthy and infected CA and CM plants were evaluated. The phloem sap of quick decline (T36) and stem pitting (T318A) infected citrus, and control plants was collected by centrifugation, and the enzymes and metabolites analyzed. The activity of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), in infected plants increased significantly in CM and decreased in CA, compared to the healthy controls. Using LC-HRMS2 a metabolic profile rich in secondary metabolites was assigned to healthy CA, compared to healthy CM. CTV infection of CA caused a drastic reduction in secondary metabolites, but not in CM. In conclusion, CA and CM have a different response to severe CTV isolates and we propose that the low susceptibility of CA to T36 may be related to the interaction of the virus with the host's metabolism, which reduces significantly the synthesis of flavonoids and antioxidant enzyme activity.

12.
Philos Trans R Soc Lond B Biol Sci ; 378(1873): 20220005, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36744567

RESUMEN

Viruses are obligate pathogens that entirely rely on their hosts to complete their infectious cycle. The outcome of viral infections depends on the status of the host. Host developmental stage is an important but sometimes overlooked factor impacting host-virus interactions. This impact is especially relevant in a context where climate change and human activities are altering plant development. To better understand how different host developmental stages shape virus evolution, we experimentally evolved turnip mosaic virus (TuMV) on Arabidopsis thaliana at three different developmental stages: vegetative (juvenile), bolting (transition) and reproductive (mature). After infecting plants with an Arabidopsis-naive or an Arabidopsis-well-adapted TuMV isolate, we observed that hosts in later developmental stages were prone to faster and more severe infections. This observation was extended to viruses belonging to different genera. Thereafter, we experimentally evolved lineages of the naive and the well-adapted TuMV isolates in plants from each of the three developmental stages. All evolved viruses enhanced their infection traits, but this increase was more intense in viruses evolved in younger hosts. The genomic changes of the evolved viral lineages revealed mutation patterns that strongly depended on the founder viral isolate as well as on the developmental stage of the host wherein the lineages were evolved. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.


Asunto(s)
Arabidopsis , Virus de Plantas , Potyvirus , Humanos , Arabidopsis/genética , ARN de Planta , Potyvirus/genética , Virus de Plantas/genética , Enfermedades de las Plantas
13.
Plant Signal Behav ; 18(1): 2163869, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36635991

RESUMEN

Control of hazardous indoor particles using plants has attracted interest due to the increasing worldwide air pollution and spread of pandemic-causing viruses. However, the interaction between human pathogenic viruses (HPVs) and live plants has not been examined largely due to issues in detecting tiny amounts of infectious viruses in a carrier (such as an aerosol) and the lack of suitable examination methods. In this study, as a novel evaluation method, the effect of submerged leaves of live plants on HPVs in water was examined, using the H1N1 influenza virus as a model. Selected plant foliage of a live plant was immersed in a small bag containing HPV water suspension. In an initial screening test, the activities of 20 different plant species on the virus suspension were evaluated using a rapid virus detection kit. Ten plant species had the capability to decrease virus concentrations in the water suspension within 72 h. Among the experimental plant species, Epipremnum aureum showed the highest virus decreasing characteristics when examined using both the kit and quantitative real time polymerase chain reaction. The capacity of immersed leaf of live E. aureum to decrease viral content was enhanced when the plant-containing pot was electrically grounded to the earth (approximately 70% decrease in virus concentration). The foliage sample analysis showed that virus adsorption to the plant foliage surface could be the major reason for the decrease in the suspension. These results suggest that the proposed method can be applied to select plants to further investigate plant-HPV interactions.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Infecciones por Papillomavirus , Humanos , Plantas , Hojas de la Planta , Agua
14.
New Phytol ; 237(4): 1071-1073, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36478567
15.
Front Plant Sci ; 13: 1041867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438111

RESUMEN

Plant viruses use a variety of strategies to infect their host. During infection, viruses cause symptoms of varying severity, which are often associated with altered leaf pigmentation due to structural and functional damage to chloroplasts that are affected by viral proteins. Here we demonstrate that Nicotiana benthamiana Kunitz peptidase inhibitor-like protein (KPILP) gene is induced in response to potato virus X (PVX) infection. Using reverse genetic approach, we have demonstrated that KPILP downregulates expression of LHCB1 and LHCB2 genes of antenna light-harvesting complex proteins, HEMA1 gene encoding glutamyl-tRNA reductase, which participates in tetrapyrrole biosynthesis, and RBCS1A gene encoding RuBisCO small subunit isoform involved in the antiviral immune response. Thus, KPILP is a regulator of chloroplast retrograde signaling system during developing PVX infection. Moreover, KPILP was demonstrated to affect carbon partitioning: reduced glucose levels during PVX infection were associated with KPILP upregulation. Another KPILP function is associated with plasmodesmata permeability control. Its ability to stimulate intercellular transport of reporter 2xGFP molecules indicates that KPILP is a positive plasmodesmata regulator. Moreover, natural KPILP glycosylation is indispensable for manifestation of this function. During PVX infection KPILP increased expression leads to the reduction of plasmodesmata callose deposition. These results could indicate that KPILP affects plasmodesmata permeability via callose-dependent mechanism. Thus, virus entering a cell and starting reproduction triggers KPILP expression, which leads to downregulation of nuclear-encoded chloroplast genes associated with retrograde signaling, reduction in photoassimilates accumulation and increase in intercellular transport, creating favorable conditions for reproduction and spread of viral infection.

16.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232831

RESUMEN

Plants produce glutathione as a response to the intercellular redox state. Glutathione actively participates in the reactive oxygen species (ROS)-dependent signaling pathway, especially under biotic stress conditions. Most of the glutathione S-transferases (GSTs) are induced in cells during the defense response of plants not only through highly specific glutathione-binding abilities but also by participating in the signaling function. The tau class of GSTs has been reported to be induced as a response under stress conditions. Although several studies have focused on the role of the tau class of GSTs in plant-pathogen interactions, knowledge about their contribution to the response to virus inoculation is still inadequate. Therefore, in this study, the response of Atgstu19 and Atgstu24 knockout mutants to mechanical inoculation of Turnip mosaic virus (TuMV) was examined. The systemic infection of TuMV was more dynamically promoted in Atgstu19 mutants than in wild-type (Col-0) plants, suggesting the role of GSTU19 in TuMV resistance. However, Atgstu24 mutants displayed virus limitation and downregulation of the relative expression of TuMV capsid protein, accompanied rarely by TuMV particles only in vacuoles, and ultrastructural analyses of inoculated leaves revealed the lack of virus cytoplasmic inclusions. These findings indicated that Atgstu24 mutants displayed a resistance-like reaction to TuMV, suggesting that GSTU24 may suppress the plant resistance. In addition, these findings confirmed that GSTU1 and GSTU24 are induced and contribute to the susceptible reaction to TuMV in the Atgstu19-TuMV interaction. However, the upregulation of GSTU19 and GSTU13 highly correlated with virus limitation in the resistance-like reaction in the Atgstu24-TuMV interaction. Furthermore, the highly dynamic upregulation of GST and glutathione reductase (GR) activities resulted in significant induction (between 1 and 14 days post inoculation [dpi]) of the total glutathione pool (GSH + GSSG) in response to TuMV, which was accompanied by the distribution of active glutathione in plant cells. On the contrary, in Atgstu19, which is susceptible to TuMV interaction, upregulation of GST and GR activity only up to 7 dpi symptom development was reported, which resulted in the induction of the total glutathione pool between 1 and 3 dpi. These observations indicated that GSTU19 and GSTU24 are important factors in modulating the response to TuMV in Arabidopsis thaliana. Moreover, it was clear that glutathione is an important component of the regulatory network in resistance and susceptible response of A. thaliana to TuMV. These results help achieve a better understanding of the mechanisms regulating the Arabidopsis-TuMV pathosystem.


Asunto(s)
Arabidopsis , Potyvirus , Arabidopsis/metabolismo , Proteínas de la Cápside/metabolismo , Disulfuro de Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Enfermedades de las Plantas/genética , Potyvirus/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transferasas/metabolismo
17.
Pathogens ; 11(7)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35890032

RESUMEN

Transcription factors (TFs) play an important role in plant development; however, their role during viral infection largely remains unknown. The present study was designed to uncover the role transcription factors play in Cucumber mosaic virus (CMV) infection. During the screening of an Arabidopsis thaliana (Col-0) transcription factor library, using the CMV 2b protein as bait in the yeast two-hybrid system, the 2b protein interacted with Homeobox protein 27 (HB27). HB27 belongs to the zinc finger homeodomain family and is known to have a regulatory role in flower development, and responses to biotic and abiotic stress. The interaction between CMV 2b and HB27 proteins was further validated using in planta (bimolecular fluorescence complementation assay) and in vitro far-Western blotting (FWB) methods. In the bimolecular fluorescence complementation assay, these proteins reconstituted YFP fluorescence in the nucleus and the cytoplasmic region as small fluorescent dots. In FWB, positive interaction was detected using bait anti-MYC antibody on the target HB27-HA protein. During CMV infection, upregulation (~3-fold) of the HB27 transcript was observed at 14 days post-infection (dpi) in A. thaliana plants, and expression declined to the same as healthy plants at 21 dpi. To understand the role of the HB27 protein during CMV infection, virus accumulation was determined in HB27-overexpressing (HB27 OE) and knockout mutants. In HB27-overexpressing lines, infected plants developed mild symptoms, accumulating a lower virus titer at 21 dpi compared to wild-type plants. Additionally, knockout HB27 mutants had more severe symptoms and a higher viral accumulation than wild-type plants. These results indicate that HB27 plays an important role in the regulation of plant defense against plant virus infection.

18.
Methods Mol Biol ; 2536: 381-394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35819615

RESUMEN

More than 80 viral species, many of which are not associated with a clear disease or symptomatology, can infect grapevine. The study of grapevine-virus interactions in recent years is playing an increasingly important role and these studies have shown that the molecular and physiological responses to a virus greatly vary depending on the viral strains, the presence of multiple viral infections, the grapevine genotype, and the environment. Moreover, due to the characteristics of the grapevine cultivation and its vegetative propagation, it is very difficult to find healthy plants in vineyards to use them as control in the experiments. Starting from these considerations, in order to investigate the plant-virus interaction in an unbiased way, it is important to set up an experimental system able to control as much of these variables as possible. The protocol here proposed provides the overcome some of these factors by: (i) the production of healthy plants by somatic embryogenesis; (ii) the virus transmission using in vitro micrografting, and (iii) the transfer of in vitro plants to ex-vitro conditions for the analysis of interest.


Asunto(s)
Enfermedades de las Plantas , Técnicas de Embriogénesis Somática de Plantas , Virus de Plantas , Vitis , Interacciones Microbiota-Huesped , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Vitis/virología
19.
Virus Res ; 319: 198879, 2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-35882265

RESUMEN

Cucumber mosaic virus (CMV) is one of the most devastating plant viruses, with more than 1,200 species of host plants. The host range and economic importance of peanut stunt virus (PSV) are mostly limited to legumes, despite the similar taxonomy and genome structure with CMV. Since no data are available on the background of the limited host range of PSV, RNA 3 recombinant and reassortant viruses were generated (C12P3, P12C3, C12CP3, C12PC3, C12PΔC3) to study their infection phenotype on a common host (Nicotiana benthamiana) and on a selective host (Capsicum annuum cv. Brody). The PSV movement protein (MP) was not able to function with the coat protein (CP) of CMV unless the C-terminal 42 amino acids were deleted from the PSV MP. As a result of the inoculation experiments, MP was considered the protein influencing symptom phenotypes on N. benthamiana and responsible for the host range difference on the pepper. Since plasmodesmata (PD) localization of viral MPs is essential for cell-to-cell movement, subcellular localization of GFP-tagged MPs (CMV-MP-eGFP, PSV-MP-eGFP) was observed. In the case of CMV-MP-eGFP, clear colocalization with PD was detected in both hosts, but PSV-MP-eGFP was not tightly connected to the PD in N. benthamiana and barely localized to the PD in C. annuum epidermal cells. Measuring Pearson correlation coefficients (PCCs) also supported the visual observation.


Asunto(s)
Capsicum , Cucumovirus , Infecciones por Citomegalovirus , Cucumovirus/genética , Cucumovirus/metabolismo , Proteínas de Movimiento Viral en Plantas/genética , Proteínas de Movimiento Viral en Plantas/metabolismo , Nicotiana
20.
Mol Plant Pathol ; 23(10): 1555-1564, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35700092

RESUMEN

Proteins of the alkylation B (AlkB) superfamily show RNA demethylase activity removing methyl adducts from N6 -methyladenosine (m6 A). m6 A is a reversible epigenetic mark of RNA that regulates human virus replication but has unclear roles in plant virus infection. We focused on Potyvirus-the largest genus of plant RNA viruses-and report here the identification of AlkB domains within P1 of endive necrotic mosaic virus (ENMV) and an additional virus of a putative novel species within Potyvirus. We show that Nicotiana benthamiana m6 A levels are reduced by infection of plum pox virus (PPV) and potato virus Y (PVY). The two potyviruses lack AlkB and the results suggest a general involvement of RNA methylation in potyvirus infection and evolution. Methylated RNA immunoprecipitation sequencing of virus-infected samples showed that m6 A peaks are enriched in plant transcript 3' untranslated regions and in discrete internal and 3' terminal regions of PPV and PVY genomes. Down-regulation of N. benthamiana AlkB homologues of the plant-specific ALKBH9 clade caused a significant decrease in PPV and PVY accumulation. In summary, our study provides evolutionary and experimental evidence that supports the m6 A implication and the proviral roles of AlkB homologues in Potyvirus infection.


Asunto(s)
Virus de Plantas , Virus Eruptivo de la Ciruela , Potyvirus , Alquilación , Humanos , Enfermedades de las Plantas , Virus de Plantas/genética , Virus Eruptivo de la Ciruela/genética , Potyvirus/genética , ARN de Planta , Nicotiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA