Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1968-1978, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39233427

RESUMEN

Pollination is one of the important ecosystem services related to sustainable development of human society. However, the population diversity and abundance of wild bees, important pollinators, have been significantly reduced by climate change, agricultural intensification, and landscape transformation. Re-establishment of pollinator habitat by planting nectar-producing plants is an important way to maintain pollination service. In this study, we investigated the status of wild bees and the traits of flowering plants in 22 apple orchards during flowering stage in Changping District, Beijing in 2019. We analyzed the response of wild bee diversity to the flowering plant richness, flower color richness, inflorescence type richness, flowering plant coverage, herbaceous layer coverage and different flower color coverage in apple orchards, aiming to provide guidance for the selection of nectar-producing plants to establish the habitat of wild bees. A total of 3517 wild bees were captured during the apple flowering season, representing 49 species, 13 genera, and 5 families. We identified 21 flowering plants species that shared a similar flo-wering period with apple, exhibiting a range of 5 colors and 9 inflorescence types. The Shannon diversity index, evenness index, and social bee richness of wild bee community were positively correlated with flowering plant richness. The total wild bee community richness, social bee richness, underground nesting bee richness were positively correlated with the richness of flowering plant color, but Halictidae bee abundance was negatively correlated with the richness of flowering plant color. The Shannon diversity index and evenness index of wild bee community were positively correlated with the richness of inflorescence types. Megachilidae bee richness was negative correlated with the white flower coverage. Megachilidae bee richness, social bee abundance, and ground nesting bee richness were positively correlated with the purple flower coverage. There was no significant correlation between wild bees and flowering plant richness, flower color richness, inflorescence type richness, flowering plant coverage, herbaceous layer coverage and different flower color coverage in other communities of different families, lifestyles and nesting types. Maintaining diverse ground flowering plants with various traits in orchards is important to improve the diversity of wild bees. In particular, increasing the coverage of purple flower during apple flowering period is helpful to promote the diversity of Megachilidae bee, social bees, and ground nesting bees.


Asunto(s)
Biodiversidad , Flores , Malus , Polinización , Abejas/fisiología , Abejas/crecimiento & desarrollo , Abejas/clasificación , Malus/crecimiento & desarrollo , Malus/clasificación , Animales , Flores/crecimiento & desarrollo , Ecosistema , China
2.
Microorganisms ; 12(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39203391

RESUMEN

Excessive use of chemical fertilizer is a global concern. Arbuscular mycorrhizal fungi (AMF) are considered a potential solution due to their symbiotic association with crops. This study assessed AMF's effects on maize yield, fertilizer efficiency, plant traits, and soil nutrients under different reduced-fertilizer regimes in medium-low fertility fields. We found that phosphorus supplementation after a 30% fertilizer reduction enhanced AMF's positive impact on grain yield, increasing it by 3.47% with pure chemical fertilizers and 6.65% with mixed fertilizers. The AMF inoculation did not significantly affect the nitrogen and phosphorus fertilizer use efficiency, but significantly increased root colonization and soil mycelium density. Mixed fertilizer treatments with phosphorus supplementation after fertilizer reduction showed greater mycorrhizal effects on plant traits and soil nutrient contents compared to chemical fertilizer treatments. This study highlights that AMF inoculation, closely linked to fertilization regimes, can effectively reduce fertilizer use while sustaining or enhancing maize yields.

3.
New Phytol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867470
4.
Ecol Evol ; 14(5): e11292, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725827

RESUMEN

Plant trait data are used to quantify how plants respond to environmental factors and can act as indicators of ecosystem function. Measured trait values are influenced by genetics, trade-offs, competition, environmental conditions, and phenology. These interacting effects on traits are poorly characterized across taxa, and for many traits, measurement protocols are not standardized. As a result, ancillary information about growth and measurement conditions can be highly variable, requiring a flexible data structure. In 2007, the TRY initiative was founded as an integrated database of plant trait data, including ancillary attributes relevant to understanding and interpreting the trait values. The TRY database now integrates around 700 original and collective datasets and has become a central resource of plant trait data. These data are provided in a generic long-table format, where a unique identifier links different trait records and ancillary data measured on the same entity. Due to the high number of trait records, plant taxa, and types of traits and ancillary data released from the TRY database, data preprocessing is necessary but not straightforward. Here, we present the 'rtry' R package, specifically designed to support plant trait data exploration and filtering. By integrating a subset of existing R functions essential for preprocessing, 'rtry' avoids the need for users to navigate the extensive R ecosystem and provides the functions under a consistent syntax. 'rtry' is therefore easy to use even for beginners in R. Notably, 'rtry' does not support data retrieval or analysis; rather, it focuses on the preprocessing tasks to optimize data quality. While 'rtry' primarily targets TRY data, its utility extends to data from other sources, such as the National Ecological Observatory Network (NEON). The 'rtry' package is available on the Comprehensive R Archive Network (CRAN; https://cran.r-project.org/package=rtry) and the GitHub Wiki (https://github.com/MPI-BGC-Functional-Biogeography/rtry/wiki) along with comprehensive documentation and vignettes describing detailed data preprocessing workflows.

5.
Plants (Basel) ; 13(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38592931

RESUMEN

The deterioration of water quality caused by human activities has triggered significant impacts on aquatic ecosystems. Submerged macrophytes play an important role in freshwater ecosystem restoration. Understanding the relative contributions of the sources and environment to the adaptive strategies of submerged macrophytes is crucial for freshwater restoration and protection. In this study, the perennial submerged macrophyte Myriophyllum spicatum was chosen as the experimental material due to its high adaptability to a variable environment. Through conducting reciprocal transplant experiments in two different artificial environments (oligotrophic and eutrophic), combined with trait network and redundancy analysis, the characteristics of the plant functional traits were examined. Furthermore, the adaptive strategies of M. spicatum to the environment were analyzed. The results revealed that the plant source mainly influenced the operational pattern among the traits, and the phenotypic traits were significantly affected by environmental factors. The plants cultured in high-nutrient water exhibited a higher plant height, longer leaves, and more branches and leaves. However, their physiological functions were not significantly affected by the environment. Therefore, the adaptation strategy of M. spicatum to the environment mainly relies on its phenotypic plasticity to ensure the moderate acquisition of resources in the environment, thereby ensuring the stable and efficient operation of plant physiological traits. The results not only offered compelling evidence on the adaptation strategies of M. spicatum in variable environments but also provided theoretical support for the conservation of biodiversity and sustainable development.

6.
New Phytol ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600040

RESUMEN

Integrating traits across above- and belowground organs offers comprehensive insights into plant ecology, but their various functions also increase model complexity. This study aimed to illuminate the interspecific pattern of whole-plant trait correlations through a network lens, including a detailed analysis of the root system. Using a network algorithm that allows individual traits to belong to multiple modules, we characterize interrelations among 19 traits, spanning both shoot and root phenology, architecture, morphology, and tissue properties of 44 species, mostly herbaceous monocots from Northern Ontario wetlands, grown in a common garden. The resulting trait network shows three distinct yet partially overlapping modules. Two major trait modules indicate constraints of plant size and form, and resource economics, respectively. These modules highlight the interdependence between shoot size, root architecture and porosity, and a shoot-root coordination in phenology and dry-matter content. A third module depicts leaf biomechanical adaptations specific to wetland graminoids. All three modules overlap on shoot height, suggesting multifaceted constraints of plant stature. In the network, individual-level traits showed significantly higher centrality than tissue-level traits do, demonstrating a hierarchical trait integration. The presented whole-plant, integrated network suggests that trait covariation is essentially function-driven rather than organ-specific.

7.
Integr Zool ; 19(4): 753-762, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38488176

RESUMEN

Species functional traits can influence seed dispersal processes and consequently affect species' role in the mutualistic network. Although the effect of animal traits on the structure of the seed dispersal network is well explored, it remains poorly understood how plant and fruit traits contribute to the structure. We here studied the effects of plant and fruit traits on the structure of bird seed dispersal networks across different disturbed habitats in the Meihua Mountain National Nature Reserve, Southeastern China. During the study period, 16, 20, 13, and 15 bird species were recorded foraging on 10, 11, 12, and 8 plant species, resulting in 511, 312, 265, and 201 foraging events in the protected forest, natural forest, village, and bamboo forest, respectively. The composition of these seed dispersal networks is not primarily influenced by a specific group of bulbul species, but rather by the presence of an endangered plant species, Taxus chinensis. As we expected, the structure of the four networks was different among the four disturbed habitats. Furthermore, our results also showed tree height and canopy density were the most important plant traits for structuring the seed dispersal network, while sugar, amylase, dry matter, and alkaloids were identified as significant fruit traits. Overall, our findings highlight the value of integrating trait-based ecology into the framework of the seed dispersal network and provide new insights for mutualistic network conservation in disturbed habitats.


Asunto(s)
Aves , Ecosistema , Frutas , Dispersión de Semillas , Animales , Aves/fisiología , China , Conducta Alimentaria/fisiología , Semillas/fisiología
8.
Ecol Evol ; 13(9)2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37664491

RESUMEN

Understanding patterns of intraspecific trait variation can help us understand plant adaptability to environmental changes. To explore the underlying adaptation mechanisms of zonal plant species, we selected seven populations of Stipa krylovii, a dominant species in the Inner Mongolia Steppe of China, and evaluated the effects of phenotypic plasticity and genetic differentiation, the effects of climate variables on population trait differentiation, and traits coordinated patterns under each soil moisture treatment. We selected seeds from seven populations of S. krylovii in the Inner Mongolia Steppe, China, and carried out a soil moisture (2) × population origin (7) common garden experiment at Tianjin City, China, and measured ten plant traits of S. krylovii. General linear analyses were used to analyze how soil moisture and population origin affected each trait variation, Mantel tests were used to analyze population trait differentiation-geographic distance (or climatic difference) relationships, regression analyses were used to evaluate trait-climatic variable relationships, and plant trait networks (PTNs) were used to evaluate traits coordinated patterns. Both soil moisture and population origin showed significant effects on most of traits. Aboveground biomass, root-shoot ratio, leaf width, specific leaf area, and leaf nitrogen (N) content were significantly correlated with climate variables under the control condition. Specific leaf area and leaf N content were significantly correlated with climate variables under the drought condition. By PTNs, the hub trait(s) was plant height under the control condition and were aboveground biomass, root length, and specific leaf area under the drought condition. This study indicates that both phenotypic plasticity and genetic differentiation can significantly affect the adaptability of S. krylovii. In addition, soil moisture treatments show significant effects on trait-climate relationships and traits coordinated patterns. These findings provide new insights into the adaptive mechanisms of zonal species in the semiarid grassland region.

9.
Am J Bot ; 110(8): e16211, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37459470

RESUMEN

PREMISE: Variation in fruit and seed traits could originate from selection pressures exerted by frugivores or other ecological factors (adaptive hypotheses) and developmental constraints (by-product hypotheses) or chance. METHODS: We evaluated fruit and leaf traits for nearly 850 plant species from a rainforest in Tinigua Park, Colombia. Through a series of linear regressions controlling for the phylogenetic signal of the traits (minimum N = 542), we tested (1) whether the allometry between seed width and length depends on seed dispersal system (Mazer and Wheelwright's adaptive hypothesis of allometry for species dispersed in the guts of animals = endozoochory) and (2) whether fruit length is associated with leaf length (i.e., Herrera's by-product hypothesis derived from the assumption that both organs develop from homologous structures). RESULTS: We found a strong negative allometric association between seed width and length for seeds of endozoochorous species, as expected; but also, for anemochorous species. We found a positive relationship between fruit and leaf length, but this relationship was not evident for zoochorous species. Fruit size was highly correlated with seed size. CONCLUSIONS: The allometry between seed length and width varied among dispersal systems, supporting that fruit and seed morphology has been modified by interactions with frugivores and by the possibility to rotate for some wind dispersed species. We found some support for the hypothesis on developmental constraints because fruit and leaf size were positively correlated, but the predictive power of the relationship was low (10-15%).


PREMISA: La variación en los rasgos de frutos y semillas de las plantas podría tener su origen en las presiones de selección ejercidas por los frugívoros u otros factores ecológicos (hipótesis adaptativas), así como en limitaciones del desarrollo (hipótesis de subproductos) o en el azar. MÉTODOS: Nosotros evaluamos rasgos de frutos y hojas en cerca de 850 especies de plantas de un bosque húmedo tropical en el Parque Nacional Natural Tinigua, Colombia. Usando una serie de regresiones lineales que controlan por la señal filogenética de dichos rasgos (mínimo N = 542), nosotros probamos (1) si la alometría entre el ancho y largo de la semilla depende del sistema de dispersión de la semilla (i.e., hipótesis adaptativa de Mazer y Wheelwright; en la que se espera una alometría negativa para especies dispersadas por endozoocoria) y (2) si el largo del fruto está asociado con el largo de la hoja (i.e., la hipótesis del subproducto de Herrera derivada de la suposición de que ambos órganos se desarrollan a partir de estructuras homólogas). RESULTADOS: Nosotros encontramos una fuerte asociación alométrica negativa entre el ancho y el largo de las semillas para las semillas de las especies endozoócoras, como era de esperar; pero también, para las especies anemócoras. Nosotros también hallamos una relación positiva entre el largo del fruto y de la hoja, pero esta relación no fue evidente para las especies endozoócoras. Detectamos que el tamaño del fruto esta altamente correlacionado con el tamaño de la semilla. CONCLUSIONES: La alometría entre el largo y el ancho de la semilla varió entre sistemas de dispersión, lo que sugiere que la morfología de frutos y semillas ha sido moldeada por interacciones con frugívoros en el caso de las semillas endozoócoras y por la posibilidad de rotar para algunas especies dispersadas por el viento. Aunque el poder predictivo de la relación entre el tamaño del fruto y de la hoja fue bajo (10-15%), nosotros encontramos un apoyo moderado a la hipótesis sobre las limitaciones del desarrollo, ya que el tamaño del fruto y de la hoja estaban correlacionados positivamente.


Asunto(s)
Frutas , Dispersión de Semillas , Animales , Frutas/anatomía & histología , Bosque Lluvioso , Filogenia , Semillas/anatomía & histología , Hojas de la Planta
10.
New Phytol ; 240(1): 399-411, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37482960

RESUMEN

Nitrogen (N) enrichment is widely known to affect the root-associated arbuscular mycorrhizal fungal (AMF) community in different ways, for example, via altering soil properties and/or shifting host plant functional structure. However, empirical knowledge of their relative importance is still lacking. Using a long-term N addition experiment, we measured the AMF community taxonomic and phylogenetic diversity at the single plant species (roots of 15 plant species) and plant community (mixed roots) levels. We also measured four functional traits of 35 common plant species along the N addition gradient. We found divergent responses of AMF diversity to N addition for host plants with different innate heights (i.e. plant natural height under unfertilized treatment). Furthermore, our data showed that species-specific responses of AMF diversity to N addition were negatively related to the change in maximum plant height. When scaling up to the community level, N addition affected AMF diversity mainly through increasing the maximum plant height, rather than altering soil properties. Our results highlight the importance of plant height in driving AMF community dynamics under N enrichment at both species and community levels, thus providing important implications for understanding the response of AMF diversity to anthropogenic N deposition.


Asunto(s)
Micobioma , Micorrizas , Micorrizas/fisiología , Raíces de Plantas/microbiología , Nitrógeno/farmacología , Filogenia , Plantas/microbiología , Suelo/química , Microbiología del Suelo
11.
BMC Plant Biol ; 23(1): 257, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37189097

RESUMEN

BACKGROUND: Wild apple (Malus sieversii) is under second-class national protection in China and one of the lineal ancestors of cultivated apples worldwide. In recent decades, the natural habitation area of wild apple trees has been seriously declining, resulting in a lack of saplings and difficulty in population regeneration. Artificial near-natural breeding is crucial for protecting and restoring wild apple populations, and adding nitrogen (N) and phosphorous (P) is one of the important measures to improve the growth performance of saplings. In this study, field experiments using N (CK, N1, N2, and N3: 0, 10, 20, and 40 g m- 2 yr- 1, respectively), P (CK, P1, P2, and P3: 0, 2, 4, and 8 g m- 2 yr- 1, respectively), N20Px (CK, N2P1, N2P2, and N2P3: N20P2, N20P4 and N20P8 g m- 2 yr- 1, respectively), and NxP4 (CK, N1P2, N2P2, and N3P2: N10P4, N20P4, and N40P4 g m- 2 yr- 1, respectively) treatments (totaling 12 levels, including one CK) were conducted in four consecutive years. The twig traits (including four current-year stem, 10 leaf, and three ratio traits) and comprehensive growth performance of wild apple saplings were analyzed under different nutrient treatments. RESULTS: N addition had a significantly positive effect on stem length, basal diameter, leaf area, and leaf dry mass, whereas P addition had a significantly positive effect on stem length and basal diameter only. The combination of N and P (NxP4 and N20Px) treatments evidently promoted stem growth at moderate concentrations; however, the N20Px treatment showed a markedly negative effect at low concentrations and a positive effect at moderate and high concentrations. The ratio traits (leaf intensity, leaf area ratio, and leaf to stem mass ratio) decreased with the increase in nutrient concentration under each treatment. In the plant trait network, basal diameter, stem mass, and twig mass were tightly connected to other traits after nutrient treatments, indicating that stem traits play an important role in twig growth. The membership function revealed that the greatest comprehensive growth performance of saplings was achieved after N addition alone, followed by that under the NxP4 treatment (except for N40P4). CONCLUSIONS: Consequently, artificial nutrient treatments for four years significantly but differentially altered the growth status of wild apple saplings, and the use of appropriate N fertilizer promoted sapling growth. These results can provide scientific basis for the conservation and management of wild apple populations.


Asunto(s)
Malus , Malus/genética , Fitomejoramiento , Nitrógeno , Hojas de la Planta , Fenotipo
12.
Environ Sci Technol ; 57(21): 8002-8014, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37204768

RESUMEN

Eutrophication and exotic species invasion are key drivers of the global loss of biodiversity and ecosystem functions in lakes. We selected two exotic plants (Alternanthera philoxeroides and Myriophyllum aquaticum) and two native plants (Myriophyllum spicatum and Vallisneria spinulosa) to elucidate the effect of eutrophication on exotic plant invasiveness. We found that (1) elevated nutrient favored invasion of exotic species and inhibited growth of native plants. Species combinations and plant densities of native plants had limited effects on the resistance to invasion of the exotics. (2) A. philoxeroides featured the tightest connectivity among traits, which is consistent with its high competitive ability. Although eutrophication caused physiological stress to A. philoxeroides, it could effectively regulate enzyme activity and alleviate the stress. (3) M. aquaticum possessed strong tolerance to habitat disturbance and was highly disruptive to the surrounding plants. Eutrophication will exacerbate the adverse effects of M. aquaticum on the littoral ecosystem. (4) Nutrient enrichment reduced the biomass and relative growth rates of V. spinulosa and lowered phenolics and starch contents of M. spicatum, thereby making them more susceptible to habitat fluctuations. Overall, our study highlights how eutrophication alters the invasiveness of exotic plants and the resistance of native plants in the littoral zone, which is of relevance in a world with intensified human activities.


Asunto(s)
Ecosistema , Lagos , Humanos , Especies Introducidas , Plantas , Eutrofización
13.
Water Res ; 229: 119403, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446174

RESUMEN

Extreme precipitation events caused by climate change leads to large variation of nitrogen input to aquatic ecosystems. Our previous study demonstrated the significant effect of different ammonium pulse patterns (differing in magnitude and frequency) on submersed macrophyte growth based on six plant morphological traits. However, how connectivity among plant traits responds to nitrogen pulse changes, which in turn affects plant performance, has not yet been fully elucidated. The response of three common submersed macrophytes (Myriophyllum spicatum, Vallisneria natans and Potamogeton maackianus) to three ammonium pulse patterns was tested using plant trait network (PTN) analysis based on 18 measured physiological and morphological traits. We found that ammonium pulses enhanced trait connectivity in PTN, which may enable plants to assimilate ammonium and/or mitigate ammonium toxicity. Large input pulses with low frequency had stronger effects on PTNs compared to low input pulses with high frequency. Due to the cumulative and time-lagged effect of the plant response to the ammonium pulse, there was a profound and prolonged effect on plant performance after the release of the pulse. The highly connected traits in PTN were those related to biomass allocation (e.g., plant biomass, stem ratio, leaf ratio and ramet number) rather than physiological traits, while phenotype-related traits (e.g., plant height, root length and AB ratio) and energy storage-related traits (e.g., stem starch) were least connected. V. natans showed clear functional divergence among traits, making it more flexible to cope with unfavorable habitats (i.e., high input pulses with low frequencies). M. spicatum with high RGR revealed strong correlations among traits and thus supported nitrogen accumulation from favourable environments (i.e., low input pulses with high frequencies). Our study highlights the responses of PTN for submerged macrophytes to ammonium pulses depends on their intrinsic metabolic rates, the magnitude, frequency and duration of the pulses, and our results contribute to the understanding of the impact of resource pulses on the population dynamics of submersed macrophytes within the context of global climate change.


Asunto(s)
Compuestos de Amonio , Hydrocharitaceae , Ecosistema , Compuestos de Amonio/metabolismo , Biomasa , Hydrocharitaceae/metabolismo , Nitrógeno/metabolismo
14.
Plants (Basel) ; 11(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36297816

RESUMEN

Variability in traits forming the Leaf Economics Spectrum (LES) among and within crop species plays a key role in governing agroecosystem processes. However, studies evaluating the extent, causes, and consequences of within-species variation in LES traits for some of the world's most common crops remain limited. This study quantified variations in nine leaf traits measured across 90 vines of five common wine grape (Vitis vinifera L.) varieties at two growth stages (post-flowering and veraison). Grape traits in these varieties covary along an intraspecific LES, in patterns similar to those documented in wild plants. Across the five varieties evaluated here, high rates of photosynthesis (A) and leaf nitrogen (N) concentrations were coupled with low leaf mass per area (LMA), whereas the opposite suite of traits defined the "resource-conserving end" of this intraspecific LES in grape. Variety identity was the strongest predictor of leaf physiological (A) and morphological traits (i.e., leaf area and leaf mass), whereas leaf chemical traits and LMA were best explained by growth stage. All five varieties expressed greater resource-conserving trait syndromes (i.e., higher LMA, lower N, and lower Amass) later in the growing season. Traits related to leaf hydraulics, including instantaneous water-use efficiency (WUE), were unrelated to LES and other resource capture traits, and were better explained by spatial location. These results highlight the relative contributions of genetic, developmental, and phenotypic factors in structuring trait variation in the five wine grape varieties evaluated here, and point to a key role of domestication in governing trait relationships in the world's crops.

15.
J Exp Bot ; 73(22): 7552-7563, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36103721

RESUMEN

Microbial inoculations or 'biofertilizers' represent novel contributions to sustainable agriculture. While belowground mechanisms surrounding how biofertilizers enhance crop production are well described, their role in aboveground trait expression remains less well explored. We quantified infraspecific variation in leaf economics spectrum (LES) traits in response to 10 biofertilizer treatments in basil (Ocimum basiclicum) cultivated under hydroponic conditions. Multiple physiological (i.e. maximum photosynthesis rates (A), dark respiration (R), and leaf-level light compensation points) and morphological (i.e. leaf mass per area (LMA) and leaf thickness) traits varied significantly across microbial treatments. Following treatments, basil plants differentiated from one another along an infraspecific LES, with certain plants expressing more resource-acquiring LES trait values (i.e. high A, R, leaf N, and low LMA), versus others that expressed the opposite suite of resource-conserving LES trait values. Infraspecific trait covariation largely matched LES patterns observed among plants globally. Bivariate and multivariate trait analyses further revealed that certain treatments-namely those including closely related Bacillus and Brevibacillus species strains-increased leaf resource capture traits such as A and leaf N. Biofertilizers influence plant performance through a role in moderating infraspecific leaf trait variation, thereby suggesting aboveground leaf traits may be used to diagnose optimal biofertilizer formulations in basil and other crops.


Asunto(s)
Hojas de la Planta
16.
Environ Microbiome ; 17(1): 29, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681245

RESUMEN

BACKGROUND: Phyllosphere microbes play important roles in host plant performance and fitness. Recent studies have suggested that tropical and temperate forests harbor diverse phyllosphere bacterial and fungal communities and their assembly is driven by host species identity and plant traits. However, no study has yet examined how seasonality (e.g. dry vs. wet seasons) influences phyllosphere microbial community assembly in natural forests. In addition, in subtropical forests characterized as the transitional zonal vegetation type from tropical to temperate forests, how tree phyllosphere microbial communities are assembled remains unknown. In this study, we quantified bacterial and fungal community structure and diversity on the leaves of 45 tree species with varying phylogenetic identities and importance values within a 20-ha lower subtropical evergreen broad-leaved forest plot in dry and wet seasons. We explored if and how the microbial community assembly varies with host species identity, plant traits and seasonality. RESULTS: Phyllosphere microbial communities in the subtropical forest are more abundant and diverse than those in tropical and temperate forests, and the tree species share a "core microbiome" in either bacteria or fungi. Variations in phyllosphere bacterial and fungal community assembly are explained more by host species identity than by seasonality. There is a strong clustering of the phyllosphere microbial assemblage amongst trees by seasonality, and the seasonality effects are more pronounced on bacterial than fungal community assembly. Host traits have different effects on community compositions and diversities of both bacteria and fungi, and among them calcium concentration and importance value are the most powerful explaining variables for bacteria and fungi, respectively. There are significant evolutionary associations between host species and phyllosphere microbiome. CONCLUSIONS: Our results suggest that subtropical tree phyllosphere microbial communities vary with host species identity, plant traits and seasonality. Host species identity, compared to seasonality, has greater effects on phyllosphere microbial community assembly, and such effects differ between bacterial and fungal communities. These findings advance our understanding of the patterns and drivers of phyllosphere microbial community assembly in zonal forests at a global scale.

17.
Am J Bot ; 109(5): 689-705, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35435240

RESUMEN

PREMISE: Digitized collections can help illuminate the mechanisms behind the establishment and spread of invasive plants. These databases provide a record of traits in space and time that allows for investigation of abiotic and biotic factors that influence invasive species. METHODS: Over 1100 digitized herbarium records were examined to investigate the invasion history and trait variation of Microstegium vimineum. Presence-absence of awns was investigated to quantify geographic patterns of this polymorphic trait, which serves several functions in grasses, including diaspore burial and dispersal to germination sites. Floret traits were further quantified, and genomic analyses of contemporary samples were conducted to investigate the history of M. vimineum's introduction and spread into North America. RESULTS: Herbarium records revealed similar patterns of awn polymorphism in native and invaded ranges of M. vimineum, with awned forms predominating at higher latitudes and awnless forms at lower latitudes. Herbarium records and genomic data suggested initial introduction and spread of the awnless form in the southeastern United States, followed by a putative secondary invasion and spread of the awned form from eastern Pennsylvania. Awned forms have longer florets, and floret size varies significantly with latitude. There is evidence of a transition zone with short-awned specimens at mid-latitudes. Genomic analyses revealed two distinct clusters corresponding to awnless and awned forms, with evidence of admixture. CONCLUSIONS: Our results demonstrate the power of herbarium data to elucidate the invasion history of a problematic weed in North America and, together with genomic data, reveal a possible key trait in introduction success: presence or absence of an awn.


Asunto(s)
Estructuras de las Plantas , Poaceae , Germinación , Especies Introducidas , Fenotipo , Poaceae/genética
18.
Environ Pollut ; 292(Pt A): 118331, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637833

RESUMEN

Significant differences in the morphological and physiological characteristics of submerged macrophytes have been studied following nutrient addition, but little research has investigated the changes in plant trait network topology structures and trait interactions at the whole-plant perspective along nutrient gradients. Plant trait interactions and coordination strongly determine ecosystem structure and functioning. Thirty plant traits were collected from a three-month experiment to construct plant trait networks to clarify the variations in trait connections and network organization arising from five total phosphorus (TP) addition concentrations in water, including a control (CK), 0.1 (TP1), 0.2 (TP2), 0.4 (TP3), and 0.8 (TP4) mg L-1. Nonmetric multidimensional scaling analysis showed a clear difference in the distribution of plant trait space among the different TP treatments. Distinct network structures showed that water TP-deficiency and TP-repletion changed the plant trait network into loose assemblages of more modules, which was related to low plant carbohydrate levels. Most plant functions involving biomass accumulation and carbohydrate synthesis were reduced under high TP conditions compared to moderate TP enrichment. Moreover, the percentage of significant relationships between plant functions and corresponding network modules was lower in the CK and TP4 treatments. These results suggested that low plant carbohydrates in high TP environments induced by high water chlorophyll a and tissue phosphorus could not support rapid resource transport among organs and thus inefficiently performed plant functions. Plant carbohydrates were a vital variable that impacted the network edge density, trait interactions, and plant growth. In summary, we demonstrated that high water TP enrichment reduces plant trait network connectedness and plant functional potentials, which may be correlated with reducing tissue carbohydrates. This study explores the correlations between plant trait network topology and functions to improve our understanding of physiological and ecological rules regulating trait interactions among organs and plant growth under eutrophic conditions.


Asunto(s)
Ecosistema , Fósforo , Biomasa , Clorofila A , Agua
19.
Ann Bot ; 129(3): 343-356, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-34918027

RESUMEN

BACKGROUND AND AIMS: Determining within-species large-scale variation in phenotypic traits is central to elucidate the drivers of species' ranges. Intraspecific comparisons offer the opportunity to understand how trade-offs and biogeographical history constrain adaptation to contrasted environmental conditions. Here we test whether functional traits, ecological strategies from the CSR scheme and phenotypic plasticity in response to abiotic stress vary along a latitudinal or a center- margins gradient within the native range of Arabidopsis thaliana. METHODS: We experimentally examined the phenotypic outcomes of plant adaptation at the center and margins of its geographic range using 30 accessions from southern, central and northern Europe. We characterized the variation of traits related to stress tolerance, resource use, colonization ability, CSR strategy scores, survival and fecundity in response to high temperature (34 °C) or frost (- 6 °C), combined with a water deficit treatment. KEY RESULTS: We found evidence for both a latitudinal and a center-margins differentiation for the traits under scrutiny. Age at maturity, leaf dry matter content, specific leaf area and leaf nitrogen content varied along a latitudinal gradient. Northern accessions presented a greater survival to stress than central and southern accessions. Leaf area, C-scores, R-scores and fruit number followed a center-margins differentiation. Central accessions displayed a higher phenotypic plasticity than northern and southern accessions for most studied traits. CONCLUSIONS: Traits related to an acquisitive/conservative resource-use trade-off followed a latitudinal gradient. Traits associated with a competition/colonization trade-off differentiated along the historic colonization of the distribution range and then followed a center-margins differentiation. Our findings pinpoint the need to consider the joint effect of evolutionary history and environmental factors when examining phenotypic variation across the distribution range of a species.


Asunto(s)
Arabidopsis , Aclimatación , Adaptación Fisiológica , Arabidopsis/genética , Nitrógeno , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA