Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(5): e0024224, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38690890

RESUMEN

Ralstonia solanacearum species complex (RSSC) is a phytopathogenic bacterial group that causes bacterial wilt in several crops, being potato (Solanum tuberosum) one of the most important hosts. The relationship between the potato plant ionome (mineral and trace elements composition) and the resistance levels to this pathogen has not been addressed until now. Mineral content of xylem sap, roots, stems and leaves of potato genotypes with different levels of resistance to bacterial wilt was assessed in this work, revealing a positive correlation between divalent calcium (Ca) cation concentrations and genotype resistance. The aim of this study was to investigate the effect of Ca on bacterial wilt resistance, and on the growth and virulence of RSSC. Ca supplementation significantly decreased the growth rate of Ralstonia pseudosolanacearum GMI1000 in minimal medium and affected several virulence traits such as biofilm formation and twitching motility. We also incorporate for the first time the use of microfluidic chambers to follow the pathogen growth and biofilm formation in conditions mimicking the plant vascular system. By using this approach, a reduction in biofilm formation was observed when both, rich and minimal media, were supplemented with Ca. Assessment of the effect of Ca amendments on bacterial wilt progress in potato genotypes revealed a significant delay in disease progress, or a complete absence of wilting symptoms in the case of partially resistant genotypes. This work contributes to the understanding of Ca effect on virulence of this important pathogen and provides new strategies for an integrated control of bacterial wilt on potato. IMPORTANCE: Ralstonia solanacearum species complex (RSSC) includes a diverse group of bacterial strains that cause bacterial wilt. This disease is difficult to control due to pathogen aggressiveness, persistence, wide range of hosts, and wide geographic distribution in tropical, subtropical, and temperate regions. RSSC causes considerable losses depending on the pathogen strain, host, soil type, environmental conditions, and cultural practices. In potato, losses of $19 billion per year have been estimated for this pathogen worldwide. In this study, we report for the first time the mineral composition found in xylem sap and plant tissues of potato germplasm with different levels of resistance to bacterial wilt. This study underscores the crucial role of calcium (Ca) concentration in the xylem sap and stem in relation to the resistance of different genotypes. Our in vitro experiments provide evidence of Ca's inhibitory effect on the growth, biofilm formation, and twitching movement of the model RSSC strain R. pseudosolanacearum GMI1000. This study introduces a novel element, the Ca concentration, which should be included into the integrated disease control management strategies for bacterial wilt in potatoes.


Asunto(s)
Calcio , Enfermedades de las Plantas , Ralstonia solanacearum , Solanum tuberosum , Solanum tuberosum/microbiología , Enfermedades de las Plantas/microbiología , Calcio/metabolismo , Ralstonia solanacearum/fisiología , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidad , Ralstonia solanacearum/crecimiento & desarrollo , Virulencia , Biopelículas/crecimiento & desarrollo , Ralstonia/genética , Ralstonia/fisiología , Raíces de Plantas/microbiología , Xilema/microbiología
2.
FEMS Microbiol Ecol ; 98(2)2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35150249

RESUMEN

Plastic mulch film residues have been accumulating in agricultural soils for decades, but so far, little is known about its consequences on soil microbial communities and functions. Here, we tested the effects of plastic residues of low-density polyethylene and biodegradable mulch films on soil suppressiveness and microbial community composition. We investigated how plastic residues in a Fusarium culmorum suppressive soil affect the level of disease suppressiveness, plant biomass, nutrient status, and microbial communities in rhizosphere using a controlled pot experiment. The addition of 1% plastic residues to the suppressive soil did not affect the level of suppression and the disease symptoms index. However, we did find that plant biomasses decreased, and that plant nutrient status changed in the presence of plastic residues. No significant changes in bacterial and fungal rhizosphere communities were observed. Nonetheless, bacterial and fungal communities closely attached to the plastisphere were very different from the rhizosphere communities with overrepresentation of potential plant pathogens. The plastisphere revealed a high abundance of specific bacterial phyla (Actinobacteria, Bacteroidetes, and Proteobacteria) and fungal genera (Rhizoctonia and Arthrobotrys). Our work revealed new insights and raises emerging questions for further studies on the impact of microplastics on the agroecosystems.


Asunto(s)
Ascomicetos , Microbiota , Agricultura , Plásticos , Rizosfera , Suelo/química , Microbiología del Suelo
3.
J Hazard Mater ; 405: 124225, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33121855

RESUMEN

Because of their high content in toxic metals, steel slag dumps are potential threats for the environment and public health. Among management methods that could mitigate their hazard, aided-phytostabilization is a relevant, though challenging, option. Indeed, steel slags are very unfavorable for plant growth, due to metal toxicity and very alkaline pH (>10). In this work, we investigated how composted sewage sludge could alleviate slag's toxicity while improving its nutritional status. A pot experiment was performed to study biomass production and leaf ionome composition of five herbaceous species (Achillea millefolium, Bromus erectus, Festuca arundinacea, Melilotus officinalis and Medicago sativa), in relation to soil pore water's pH, concentration of trace and major elements and their chemical speciation. Results showed that pH had a clear-cut effect on plant development. Above pH 8.6, plant biomass was severely affected, due to accumulation of Cr above toxic threshold and deficiencies in Mn, Zn and P. Below pH 8.6, biomass increased significantly, together with a decrease in leaf Cr below toxic level, and an increase in Mn, Zn and P above deficiency levels. Thus, these results bring new insights into the causes of slag phytotoxicity and allow considering aided-pytostabilization as a realistic and efficient approach for the remediation of steel slag dumps, provided soil pH is carefully monitored before seeding.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cromo , Concentración de Iones de Hidrógeno , Manganeso , Metales Pesados/análisis , Fósforo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Acero , Zinc/análisis
4.
J Exp Bot ; 68(13): 3643-3656, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28859376

RESUMEN

Zinc (Zn) is an essential nutrient for plants, with a crucial role as a cofactor for many enzymes. Approximately one-third of the global arable land area is Zn deficient, leading to reduced crop yield and quality. To improve crop tolerance to Zn deficiency, it is important to understand the mechanisms plants have adopted to tolerate suboptimal Zn supply. In this study, physiological and molecular aspects of traits related to Zn deficiency tolerance were examined in a panel of 19 Arabidopsis thaliana accessions. Accessions showed a larger variation for shoot biomass than for Zn concentration, indicating that they have different requirements for their minimal Zn concentration required for growth. Accessions with a higher tolerance to Zn deficiency showed an increased expression of the Zn deficiency-responsive genes ZIP4 and IRT3 in comparison with Zn deficiency-sensitive accessions. Changes in the shoot ionome, as a result of the Zn treatment of the plants, were used to build a multinomial logistic regression model able to distinguish plants regarding their Zn nutritional status. This set of biomarkers, reflecting the A. thaliana response to Zn deficiency and Zn deficiency tolerance, can be useful for future studies aiming to improve the performance and Zn status of crop plants grown under suboptimal Zn concentrations.


Asunto(s)
Arabidopsis/fisiología , Biomasa , Expresión Génica , Zinc/deficiencia , Arabidopsis/genética , Biomarcadores/metabolismo , Variación Genética , Iones/metabolismo , Brotes de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA