Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Integr Plant Biol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041957

RESUMEN

Magnaporthe oryzae (M. oryzae) is a devastating hemibiotrophic pathogen. Its biotrophic invasive hyphae (IH) are enclosed in the extrainvasive hyphal membrane produced by plant cells, thus generating a front line of the battlefield between the pathogen and the host plants. In plants, defense-related complexes such as proteins, callose-rich materials and vesicles, are directionally secreted to this interface to confer defense responses, but the underlying molecular mechanism is poorly understood. In this study, we found that a Myosin gene, Myosin A1 (OsMYA1), contributed to rice defense. The OsMYA1 knockout mutant exhibited decreased resistance to M. oryzae infection. OsMYA1 localizes to the actin cytoskeleton and surrounds the IH of M. oryzae. OsMYA1 interacts with an exocyst subunit, OsExo70H1, and regulates its accumulation at the plasma membrane (PM) and pathogen-plant interface. Furthermore, OsExo70H1 interacted with the rice syntaxin of the plants121 protein (OsSyp121), and the distribution of OsSyp121 to the PM or the pathogen-plant interface was disrupted in both the OsMYA1 and OsExo70H1 mutants. Overall, these results not only reveal a new function of OsMYA1 in rice blast resistance, but also uncover a molecular mechanism by which plants regulate defense against M. oryzae by OsMYA1-initiated vesicle secretory pathway, which originates from the actin cytoskeleton to the PM.

2.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1030545

RESUMEN

Aims@#Melon Manis Terengganu, MMT is one of the economically important fruits in Terengganu, which contains numerous nutritional values and bioactive compounds that benefit human health. The major problem is MMT has been affected by Fusarium sp., which is the common fungus in the Cucurbitaceae family resulting in Fusarium wilt disease and lowering melon production. It may also affect the antioxidant value of MMT; however, limited study has been conducted on this issue. Hence, the objective of this study was to determine the non-enzymatic as well as enzymatic activities in response to Fusarium sp. (S2 and S4) infection. @*Methodology and results@#In this study, MMT leaves were incubated in culture filtrate (CF) obtained from Murashige and Skoog (MS) liquid medium. The antioxidative responses were assayed at 0, 1, 3, 5, 7 and 9 days of treatment. In response to Fusarium infection, the ascorbic acid, α-tocopherol and carotenoid content were significantly stimulated at the early stages of the experiment and slowly reduced afterward. This current study also demonstrated that the CAT-specific activities were initially induced in S2 CF-treated leaves. Similar APX and gPOD specific activity patterns were observed in both S2 and S4 CFs treatments. The APX and gPOD-specific activities were induced at the later stages of infection in S4 CF-treated leaves. @*Conclusion, significance and impact of study: @#The results revealed that enzymatic and non-enzymatic antioxidants worked together to fight against stress caused by the fungal infection, with the activation of the plant defense system.

3.
Mol Plant Microbe Interact ; 37(4): 380-395, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38114195

RESUMEN

Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Hemípteros , Nicotiana , Animales , Nicotiana/genética , Nicotiana/microbiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Solanum lycopersicum/parasitología , Pseudomonas syringae/fisiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Fertilidad/genética
4.
Biology (Basel) ; 12(6)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37372094

RESUMEN

Fungi live different lifestyles-including pathogenic and symbiotic-by interacting with living plants. Recently, there has been a substantial increase in the study of phytopathogenic fungi and their interactions with plants. Symbiotic relationships with plants appear to be lagging behind, although progressive. Phytopathogenic fungi cause diseases in plants and put pressure on survival. Plants fight back against such pathogens through complicated self-defense mechanisms. However, phytopathogenic fungi develop virulent responses to overcome plant defense reactions, thus continuing their deteriorative impacts. Symbiotic relationships positively influence both plants and fungi. More interestingly, they also help plants protect themselves from pathogens. In light of the nonstop discovery of novel fungi and their strains, it is imperative to pay more attention to plant-fungi interactions. Both plants and fungi are responsive to environmental changes, therefore construction of their interaction effects has emerged as a new field of study. In this review, we first attempt to highlight the evolutionary aspect of plant-fungi interactions, then the mechanism of plants to avoid the negative impact of pathogenic fungi, and fungal strategies to overcome the plant defensive responses once they have been invaded, and finally the changes of such interactions under the different environmental conditions.

5.
Chemosphere ; 335: 139010, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37236281

RESUMEN

Heavy metals (HMs) and metalloids (Ms) such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) represent serious environmental threats due to their wide abundance and high toxicity. Contamination of water and soils by HMs and Ms from natural or anthropogenic sources is of great concern in agricultural production due to their toxic effects on plants, adversely affecting food safety and plant growth. The uptake of HMs and Ms by Phaseolus vulgaris L. plants depends on several factors including soil properties such as pH, phosphate, and organic matter. High concentrations of HMs and Ms could be toxic to plants due to the increased generation of reactive oxygen species (ROS) such as (O2•-), (•OH), (H2O2), and (1O2), and oxidative stress due to an imbalance between ROS generation and antioxidant enzyme activity. To minimize the effects of ROS, plants have developed a complex defense mechanism based on the activity of antioxidant enzymes such as SOD, CAT, GPX, and phytohormones, especially salicylic acid (SA) that can reduce the toxicity of HMs and Ms. This review focuses on evaluating the accumulation and translocation of As, Cd, Hg, and Pb in Phaseolus vulgaris L. plants and on their possible effects on the growth of Phaseolus vulgaris L. in soil contaminated with these elements. The factors that affect the uptake of HMs and Ms by bean plants, and the defense mechanisms under oxidative stress caused by the presence of As, Cd, Hg, and Pb are also discussed. Furthermore, future research on mitigating HMs and Ms toxicity in Phaseolus vulgaris L. plants is highlighted.


Asunto(s)
Arsénico , Mercurio , Metaloides , Metales Pesados , Phaseolus , Contaminantes del Suelo , Cadmio/toxicidad , Especies Reactivas de Oxígeno/farmacología , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Plomo/farmacología , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Arsénico/análisis , Mercurio/toxicidad , Plantas , Suelo/química
6.
Plant Methods ; 15: 40, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31049073

RESUMEN

BACKGROUND: Glandular trichomes found in vascular plants are called natural cell factories because they synthesize and store secondary metabolites in glandular cells. To systematically understand the metabolic processes in glandular cells, it is indispensable to analyze cellular proteome dynamics. The conventional proteomics methods based on mass spectrometry have enabled large-scale protein analysis, but require a large number of trichome samples for in-depth analysis and are not suitable for rapid and sensitive quantification of targeted proteins. RESULTS: Here, we present a high-throughput strategy for quantifying targeted proteins in specific trichome glandular cells, using selected reaction monitoring (SRM) assays. The SRM assay platform, targeting proteins in type VI trichome gland cells of tomato as a model system, demonstrated its effectiveness in quantifying multiple proteins from a limited amount of sample. The large-scale SRM assay uses a triple quadrupole mass spectrometer connected online to a nanoflow liquid chromatograph, which accurately measured the expression levels of 221 targeted proteins contained in the glandular cell sample recovered from 100 glandular trichomes within 120 min. Comparative quantitative proteomics using SRM assays of type VI trichome gland cells between different organs (leaves, green fruits, and calyx) revealed specific organ-enriched proteins. CONCLUSIONS: We present a targeted proteomics approach using the established SRM assays which enables quantification of proteins of interest with minimum sampling effort. The remarkable success of the SRM assay and its simple experimental workflow will increase proteomics research in glandular trichomes.

7.
Plant Physiol Biochem ; 123: 149-159, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29245030

RESUMEN

Plants are prone to a number of pathogens and abiotic stresses that cause various disorders. However, plants possess a defense mechanism to cope with these stresses. The osmotin protein belongs to the PR-5 family of Pathogenesis-related (PR) proteins, which are produced in response to diseases caused by various biotic and abiotic stresses. Osmotin uses a signal transduction pathway to inhibit the activity of defensive cell wall barriers and increases its own cytotoxic efficiency. However, in response to cytotoxic effects, this pathway stimulates a mitogen-activated protein kinase (MAPK) cascade that triggers changes in the cell wall and enables osmotin's entrance into the plasma membrane. This mechanism involves cell wall binding and membrane perturbation, although the complete mechanism of osmotin activity has not been fully elucidated. Osmotin possesses an acidic cleft that is responsible for communication with its receptor in the plasma membrane of fungi. Osmotin is also involved in the initiation of apoptosis and programmed cell death, whereas its overexpression causes the accumulation of proline in transgenic plants. A higher concentration of osmotin can cause the lysis of hyphae tips. This review highlights the role of osmotin protein in the plant defense mechanism and its mode of action against numerous pathogens in wild and transgenic plants.


Asunto(s)
Resistencia a la Enfermedad/fisiología , Enfermedades de las Plantas , Proteínas de Plantas , Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Plantas/microbiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-28660700

RESUMEN

Plant protease inhibitors (PIs) are elements of a common plant defense mechanism induced in response to herbivores. The fall armyworm, Spodoptera frugiperda, a highly polyphagous lepidopteran pest, responds to various PIs in its diet by expressing genes encoding trypsins. This raises the question of whether the PI-induced trypsins are also inhibited by other PIs, which we posed as the hypothesis that Inga laurina trypsin inhibitor (ILTI) inhibits PI-induced trypsins in S. frugiperda. In the process of testing our hypothesis, we compared its properties with those of selected PIs, soybean Kunitz trypsin inhibitor (SKTI), Inga vera trypsin inhibitor (IVTI), Adenanthera pavonina trypsin inhibitor (ApTI), and Entada acaciifolia trypsin inhibitor (EATI). We report that ILTI is more effective in inhibiting the induced S. frugiperda trypsins than SKTI and the other PIs, which supports our hypothesis. ILTI may be more appropriate than SKTI for studies regarding adaptive mechanisms to dietary PIs.


Asunto(s)
Fabaceae/química , Control de Insectos , Proteínas de Insectos/antagonistas & inhibidores , Spodoptera/enzimología , Inhibidores de Tripsina/química , Animales , Proteínas de Insectos/aislamiento & purificación , Larva , Inhibidor de la Tripsina de Soja de Kunitz , Inhibidores de Tripsina/aislamiento & purificación
9.
Gigascience ; 5(1): 49, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27871309

RESUMEN

BACKGROUND: Ginkgo biloba L. (Ginkgoaceae) is one of the most distinctive plants. It possesses a suite of fascinating characteristics including a large genome, outstanding resistance/tolerance to abiotic and biotic stresses, and dioecious reproduction, making it an ideal model species for biological studies. However, the lack of a high-quality genome sequence has been an impediment to our understanding of its biology and evolution. FINDINGS: The 10.61 Gb genome sequence containing 41,840 annotated genes was assembled in the present study. Repetitive sequences account for 76.58% of the assembled sequence, and long terminal repeat retrotransposons (LTR-RTs) are particularly prevalent. The diversity and abundance of LTR-RTs is due to their gradual accumulation and a remarkable amplification between 16 and 24 million years ago, and they contribute to the long introns and large genome. Whole genome duplication (WGD) may have occurred twice, with an ancient WGD consistent with that shown to occur in other seed plants, and a more recent event specific to ginkgo. Abundant gene clusters from tandem duplication were also evident, and enrichment of expanded gene families indicates a remarkable array of chemical and antibacterial defense pathways. CONCLUSIONS: The ginkgo genome consists mainly of LTR-RTs resulting from ancient gradual accumulation and two WGD events. The multiple defense mechanisms underlying the characteristic resilience of ginkgo are fostered by a remarkable enrichment in ancient duplicated and ginkgo-specific gene clusters. The present study sheds light on sequencing large genomes, and opens an avenue for further genetic and evolutionary research.


Asunto(s)
Mapeo Contig/métodos , Ginkgo biloba/genética , Análisis de Secuencia de ADN/métodos , Evolución Molecular , Tamaño del Genoma , Genoma de Planta , Anotación de Secuencia Molecular , Filogenia , Retroelementos , Secuencias Repetidas Terminales
10.
Int J Mol Sci ; 16(12): 29134-47, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26690132

RESUMEN

Volatile allyl isothiocyanate (AITC) derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP)-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER), vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.


Asunto(s)
Actinas/metabolismo , Arabidopsis/metabolismo , Isotiocianatos/metabolismo , Proteínas de Plantas/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Actinas/ultraestructura , Arabidopsis/citología , Transporte Biológico , Proteínas de Plantas/ultraestructura
11.
Int J Mol Sci ; 16(12): 29120-33, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26690131

RESUMEN

Phytoalexins are inducible secondary metabolites possessing antimicrobial activity against phytopathogens. Rice produces a wide array of phytoalexins in response to pathogen attacks and environmental stresses. With few exceptions, most phytoalexins identified in rice are diterpenoid compounds. Until very recently, flavonoid sakuranetin was the only known phenolic phytoalexin in rice. However, recent studies have shown that phenylamides are involved in defense against pathogen attacks in rice. Phenylamides are amine-conjugated phenolic acids that are induced by pathogen infections and abiotic stresses including ultra violet (UV) radiation in rice. Stress-induced phenylamides, such as N-trans-cinnamoyltryptamine, N-p-coumaroylserotonin and N-cinnamoyltyramine, have been reported to possess antimicrobial activities against rice bacterial and fungal pathogens, an indication of their direct inhibitory roles against invading pathogens. This finding suggests that phenylamides act as phytoalexins in rice and belong to phenolic phytoalexins along with sakuranetin. Phenylamides also have been implicated in cell wall reinforcement for disease resistance and allelopathy of rice. Synthesis of phenolic phytoalexins is stimulated by phytopathogen attacks and abiotic challenges including UV radiation. Accumulating evidence has demonstrated that biosynthetic pathways including the shikimate, phenylpropanoid and arylmonoamine pathways are coordinately activated for phenolic phytoalexin synthesis, and related genes are induced by biotic and abiotic stresses in rice.


Asunto(s)
Oryza/fisiología , Fenoles/metabolismo , Sesquiterpenos/metabolismo , Vías Biosintéticas , Resistencia a la Enfermedad , Oryza/química , Fenoles/química , Sesquiterpenos/química , Estrés Fisiológico , Fitoalexinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA