Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(8): 3848-3863, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39046083

RESUMEN

Flexible piezoresistive sensors are in high demand in areas such as wearable devices, electronic skin, and human-machine interfaces due to their advantageous features, including low power consumption, excellent bending stability, broad testing pressure range, and simple manufacturing technology. With the advancement of intelligent technology, higher requirements for the sensitivity, accuracy, response time, measurement range, and weather resistance of piezoresistive sensors are emerging. Due to the designability of polymer porous materials and conductive phases, and with more multivariate combinations, it is possible to achieve higher sensitivity and lower detection limits, which are more promising than traditional flexible sensor materials. Based on this, this work reviews recent advancements in research on flexible pressure sensors utilizing polymer porous materials. Furthermore, this review examines sensor performance optimization and development from the perspectives of three-dimensional porous flexible substrate regulation, sensing material selection and composite technology, and substrate and sensing material structure design.


Asunto(s)
Polímeros , Dispositivos Electrónicos Vestibles , Porosidad , Polímeros/química , Humanos , Presión
2.
3D Print Addit Manuf ; 11(2): e548-e571, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689914

RESUMEN

Advancement in additive manufacturing (AM) allows the production of nanocomposites with complex and custom geometries not typically allowable with conventional manufacturing techniques. The benefits of AM have led to recent interest in producing multifunctional materials capable of being printed with current AM technologies. In this article, piezoresistive composites realized by AM and the matrices and fillers utilized to make such devices are introduced and discussed. Carbon-based nanoparticles (Carbon Nanotubes, Graphene/Graphite, and Carbon Black) are often the filler choice of most researchers and are heavily discussed throughout this review in combination with extrusion AM methods. Piezoresistive applications such as physiological and wearable sensors, structural health monitoring, and soft robotics are presented with an emphasis on material and AM selection to meet the demands of such applications.

3.
ACS Appl Mater Interfaces ; 16(10): 12996-13005, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38422506

RESUMEN

Flexible pressure sensors are intensively demanded in various fields such as electronic skin, medical and health detection, wearable electronics, etc. MXene is considered an excellent sensing material due to its benign metal conductivity and adjustable interlayer distance. Exhibiting both high sensitivity and long-term stability is currently an urgent pursuit in MXene-based flexible pressure sensors. In this work, high-strength methylcellulose was introduced into the MXene film to increase the interlayer distance of 2D nanosheets and fundamentally overcome the self-stacking problem. Thus, concurrent improvement of the sensing capability and mechanical strength was obtained. By appropriately modulating the ratio of methylcellulose and MXene, the obtained pressure sensor presents a high sensitivity of 19.41 kPa-1 (0.88-24.09 kPa), good stability (10000 cycles), and complete biodegradation in H2O2 solution within 2 days. Besides, the sensor is capable of detecting a wide range of human activities (pulse, gesture, joint movement, etc.) and can precisely recognize spatial pressure distribution, which serves as a good candidate for next-generation wearable electronic devices.


Asunto(s)
Peróxido de Hidrógeno , Metilcelulosa , Nitritos , Elementos de Transición , Humanos , Movimiento (Física) , Biodegradación Ambiental
4.
ACS Appl Mater Interfaces ; 16(7): 9532-9543, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38345942

RESUMEN

Flexible piezoresistive sensors with a porous structure that are used in the field of speech recognition are seldom characterized by both high sensitivity and ease of preparation. In this study, a piezoresistive sensor with a porous structure that is both highly sensitive and can be prepared by using a simple method is proposed for speech recognition. The preparation process utilizes the interaction of bubbles generated by ethanol evaporation and active agents with polydimethylsiloxane to produce a porous flexible substrate. This preparation process requires neither templates nor harsh experimental conditions such as a low temperature and a low pressure. Furthermore, the prepared piezoresistive sensor has excellent properties, such as a high sensitivity (27.6 kPa-1), a satisfactory response time (800 µs), and a good stability (10,000 cycles). When used for speech recognition, more than 1500 vocalizations and silent speech signals obtained from subjects saying numbers from "0" to "9" were collected by the sensor for training a convolutional neural network model. The average accuracy of the recognition reached 94.8%. The simple preparation process and the excellent performance of the prepared flexible piezoresistive sensor endow it with a wide application prospect in the field of speech recognition.


Asunto(s)
Percepción del Habla , Habla , Humanos , Porosidad , Frío , Etanol
5.
Biomimetics (Basel) ; 9(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38248592

RESUMEN

Engineering artificial mechanosensory hair cells offers a promising avenue for developing diverse biosensors spanning applications from biomedicine to underwater sensing. Unfortunately, current artificial sensory hair cells do not have the ability to simultaneously achieve ultrahigh sensitivity with low-frequency threshold detection (e.g., 0.1 Hz). This work aimed to solve this gap by developing an artificial sensory hair cell inspired by the vestibular sensory apparatus, which has such functional capabilities. For device characterization and response testing, the sensory unit was inserted in a 3D printed lateral semicircular canal (LSCC) mimicking the environment of the labyrinth. The sensor was fabricated based on platinum (Pt) thin film which was reinforced by carbon nanofibers (CNFs). A Pi-shaped hair cell sensor was created as the sensing element which was tested under various conditions of simulated head motion. Results reveal the hair cell sensor displayed markedly higher sensitivity compared to other reported artificial hair cell sensors (e.g., 21.47 mV Hz-1 at 60°) and low frequency detection capability, 0.1 Hz < f < 1.5 Hz. Moreover, like the LSCC hair cells in biology, the fabricated sensor was most sensitive in a given plane of rotational motion, demonstrating features of directional sensitivity.

6.
Polymers (Basel) ; 15(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139926

RESUMEN

The objective of this research was to develop highly effective conductive polymer composite (CPC) materials for flexible piezoresistive sensors, utilizing hollow three-dimensional graphitic shells as a highly conductive particulate component. Polystyrene (PS), a cost-effective and robust polymer widely used in various applications such as household appliances, electronics, automotive parts, packaging, and thermal insulation materials, was chosen as the polymer matrix. The hollow spherical three-dimensional graphitic shells (GS) were synthesized through chemical vapor deposition (CVD) with magnesium oxide (MgO) nanoparticles serving as a support, which was removed post-synthesis and employed as the conductive filler. Commercial multi-walled carbon nanotubes (CNTs) were used as a reference one-dimensional graphene material. The main focus of this study was to investigate the impact of the GS on the piezoresistive response of carbon/polymer composite thin films. The distribution and arrangement of GS and CNTs in the polymer matrix were analyzed using techniques such as X-ray diffraction and scanning electron microscopy, while the electrical, thermal, and mechanical properties of the composites were also evaluated. The results revealed that the PS composite films filled with GS exhibited a more pronounced piezoresistive response as compared to the CNT-based composites, despite their lower mechanical and thermal performance.

7.
Polymers (Basel) ; 15(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38006125

RESUMEN

Structural fiber-reinforced polymer (FRP) composite materials consisting of a polymer matrix reinforced with layers of high-strength fibers are used in numerous applications, including but not limited to spacecraft, vehicles, buildings, and bridges. Researchers in the past few decades have suggested the necessary integration of sensors (e.g., fiber optic sensors) in polymer composites to enable health monitoring of composites' performance over their service lives. This work introduces an innovative cognizant composite that can self-sense, compute, and implement decisions based on sensed values. It is a critical step towards smart, resilient infrastructure. We describe a method to fabricate textile sensors with flexible circuitry and a microcontroller within the polymer composite, enabling computational operations to take place in the composite without impacting its integrity. A microstructural investigation of the sensors showed that the amount of oxidative agent and soaking time of the fabric play a major role in the adsorption of polypyrrole (PPy) on fiberglass (FG). XPS results showed that the 10 g ferric chloride solution with 6 h of soaking time had the highest degree of protonation (28%) and, therefore, higher adsorption of PPy on FG. A strain range of 30% was achieved by examining different circuitry and sensor designs for their resistance and strain resolution under mechanical loading. A microcontroller was added to the circuit and then embedded within a composite material. This composite system was tested under flexural loading to demonstrate its self-sensing, computing, and actuation capabilities. The resulting cognizant composite demonstrated the ability to read resistance values and measure strain using the embedded microcontroller and autonomously actuate an LED light when the strain exceeds a predefined limit of 2000 µÎµ. The application of the proposed FRP system would provide in situ monitoring of structural composite components with autonomous response capabilities, as well as reduce manufacturing, production, and maintenance costs.

8.
ACS Appl Mater Interfaces ; 15(37): 44001-44011, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37671797

RESUMEN

The increased popularity of wearable electronic devices has led to a greater need for advanced sensors. However, fabricating pressure sensors that are flexible, highly sensitive, robust, and compatible with large-scale fabrication technology is challenging. This work investigates a piezoresistive sensor constructed from an MXene/MoS2 hierarchical nanostructure, which is obtained through an easy and inexpensive fabrication process. The sensor exhibits a high sensitivity of 0.42 kPa-1 (0-1.5 kPa), rapid response (∼36 ms), and remarkable mechanical durability (∼10,000 cycles at 13 kPa). The sensor has been demonstrated to be successful in detecting human motion, speech recognition, and physiological signals, particularly in analyzing human pulse. These data can be used to alert and identify irregularities in human health. Additionally, the sensing units are able to construct sensor arrays of various sizes and configurations, enabling pressure distribution imaging in a variety of application scenarios. This research proposes a cost-effective and scalable approach to fabricating piezoresistive sensors and sensor arrays, which can be utilized for monitoring human health and for use in human-machine interfaces.


Asunto(s)
Molibdeno , Nanoestructuras , Humanos , Frecuencia Cardíaca , Movimiento (Física)
9.
Small ; 19(36): e2301378, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37127873

RESUMEN

Flexible piezoresistive sensors with biological structures are widely exploited for high sensitivity and detection. However, the conventional bionic structure pressure sensors usually suffer from irreconcilable conflicts between high sensitivity and wide detection response range. Herein, a triple periodic minimum surface (TPMS) structure sensor is proposed based on parametric structural design and 3D printing techniques. Upon tailoring of the dedicated structural parameters, the resulting sensors exhibit superior compression durability, high sensitivity, and ultra-high detection range, that enabling it meets the needs of various scenes. As a model system, TPMS structure sensor with 40.5% porosity exhibits an ultra-high sensitivity (132 kPa-1 in 0-5.7 MPa), wide detection strain range (0-31.2%), high repeatability and durability (1000 cycles in 4.41 MPa, 10000 s in 1.32 MPa), and low detection limit (1% in 80 kPa). The stress/strain distributions have been identified using finite element analysis. Toward practical applications, the TPMS structural sensors can be applied to detect human activity and health monitoring (i.e., voice recognition, finger pressure, sitting, standing, walking, and falling down behaviors). The synergistic effects of MWCNTs and MXene conductive network also ensure the composite further being utilized for electromagnetic interference shielding applications.

10.
Adv Mater ; 35(30): e2301418, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37099393

RESUMEN

The development of a 3D carbon assembly with a combination of extraordinary electrochemical and mechanical properties is desirable yet challenging. Herein, an ultralight and hyperelastic nanofiber-woven hybrid carbon assembly (NWHCA) is fabricated by nanofiber weaving of isotropic porous and mechanical brittle quasi-aerogels. Upon subsequent pyrolysis, metallogel-derived quasi-aerogel hybridization and nitrogen/phosphorus co-doping are integrated into the NWHCA. Finite element simulation indicates that the 3D lamella-bridge architecture of NWHCA with the quasi-aerogel hybridization contributes to resisting plastic deformation and structural damage under high compression, experimentally demonstrated by complete deformation recovery at 80% compression and unprecedented fatigue resistance (>94% retention after 5000 cycles). Due to the superelasticity and quasi-aerogel integration, the zinc-air battery assembled based on NWHCA shows excellent electrochemical performance and flexibility. A proof-of-concept integrated device is presented, in which the flexible battery powers a piezoresistive sensor, using the NWHCA as the air cathode and the elastic conductor respectively, which can detect full-range and sophisticated motions while attached to human skin. The nanofiber weaving strategy allows the construction of lightweight, superelastic, and multifunctional hybrid carbon assemblies with great potential in wearable and integrated electronics.

11.
Artículo en Inglés | MEDLINE | ID: mdl-36912907

RESUMEN

Highly flexible, deformable, and ultralightweight structures are required for advanced sensing applications, such as wearable electronics and soft robotics. This study demonstrates the three-dimensional (3D) printing of highly flexible, ultralightweight, and conductive polymer nanocomposites (CPNCs) with dual-scale porosity and piezoresistive sensing functions. Macroscale pores are established by designing structural printing patterns with adjustable infill densities, while the microscale pores are developed by phase separation of the deposited polymer ink solution. A conductive polydimethylsiloxane solution is prepared by mixing polymer/carbon nanotubes with non-solvent and solvent phases. Silica nanoparticles are utilized to modify the rheological properties of the ink, making direct ink writing (DIW) feasible. 3D geometries with various structural infill densities and polymer concentrations are deposited using DIW. The solvent is evaporated during a stepping heat treatment, leading to non-solvent droplet nucleation and growth. The microscale cellular network is developed by removing the droplets and curing the polymer. Up to 83% tunable porosity is achieved by independently controlling the macro- and microscale porosity. The effect of macroscale/microscale porosity and printing nozzle sizes on the mechanical and piezoresistive behavior of the CPNC structures is explored. The electrical and mechanical tests demonstrate a durable, extremely deformable, and sensitive piezoresistive response without sacrificing mechanical performance. The flexibility and sensitivity of the CPNC structure are enhanced up to 900 and 67% with the development of dual-scale porosity. The application of the developed porous CPNCs as piezoresistive sensors for detecting human motion is also evaluated.

12.
Small ; 19(21): e2207384, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36734203

RESUMEN

Biomechanical and nanomechanical energy harvesting systems have gained a wealth of interest, resulting in a plethora of research into the development of biopolymeric-based devices as sustainable alternatives. Piezoelectric, triboelectric, and hybrid nanogenerator devices for electrical applications are engineered and fabricated using innovative, sustainable, facile-approach flexible composite films with high performance based on bacterial cellulose and BaTiO3 , intrinsically and structurally enhanced by Pluronic F127, a micellar cross-linker. The voltage and current outputs of the modified versions with multiwalled carbon nanotube as a conductivity enhancer and post-poling effect are 38 V and 2.8 µA cm-2 , respectively. The multiconnective devices' power density can approach 10 µW cm-2 . The rectified output power is capable of charging capacitors, driving light-emitting diode lights, powering a digital watch and interfacing with a commercial microcontroller board to operate as a piezoresistive force sensor switch as a proof of concept. Magnetoelectric studies show that the composites have the potential to be incorporated into magnetoelectric systems. The biopolymeric composites prove to be desirable candidates for multifunctional energy harvesters and electronic devices.

13.
Sensors (Basel) ; 24(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38203083

RESUMEN

This article focuses on the design of a sensor system for a non-planar surface, in particular a cylindrical shape, such as a kayak paddle. The main objective is to develop a piezoresistive sensor system to measure the pressure exerted by the hand on the shaft. The study begins with static characterization of the sensors, including dispersion analysis to assess their sensitivity, linearity and measurement range. A calibration process is carried out using a dedicated test bench, and an inverse viscoelastic model is used to establish an accurate relationship between the measured resistance and the corresponding pressure. The sensor system is connected to a data acquisition board equipped with an analog-to-digital converter (ADC) that enables the direct conversion of analog data into digital resistance values. Furthermore, Bluetooth Low Energy (BLE) wireless communication is employed to facilitate data transfer to a computer, enabling a detailed pressure mapping of the kayak paddle and real-time data collection. The calibrated sensors are then tested and validated on the kayak paddle, facilitating the mapping of pressure zones on the paddle surface. This mapping provides information for locating areas of high pressure exertion during kayaker movements.

14.
ACS Appl Mater Interfaces ; 14(45): 51361-51372, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36336918

RESUMEN

Sustainable biomass materials are promising for low-cost wearable piezoresistive pressure sensors, but these devices are still produced with time-consuming manufacturing processes and normally display low sensitivity and poor mechanical stability at low-pressure regimes. Here, an aqueous MXene ink obtained by simply ball-milling is developed as a conductive modifier to fabricate the multiresponsive bidirectional bending actuator and compressible MXene-plant fiber sponge (MX-PFS) for durable and wearable pressure sensors. The MX-PFS is fabricated by physically foaming MXene ink and plant fibers. It possesses a lamellar porous structure composed of one-dimensional (1D) MXene-coated plant fibers and two-dimensional (2D) MXene nanosheets, which significantly improves the compression capacity and elasticity. Consequently, the encapsulated piezoresistive sensor (PRS) exhibits large compressible strain (60%), excellent mechanical durability (10 000 cycles), low detection limit (20 Pa), high sensitivity (435.06 kPa-1), and rapid response time (40 ms) for practical wearable applications.

15.
Adv Sci (Weinh) ; 9(34): e2204519, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36253149

RESUMEN

Aerogels have been attracting wide attentions in flexible/wearable electronics because of their light weight, excellent flexibility, and electrical conductivity. However, multifunctional aerogel-based flexible/wearable electronics for human physiological/motion monitoring, and energy harvest/supply for mobile electronics, have been seldom reported yet. In this study, a kind of hybrid aerogel (GO/CNT HA) based on graphene oxide (GO) and carboxylated multiwalled carbon nanotubes (CMWCNTs) is prepared which can not only used as piezoresistive sensors for human motion and physiological signal detections, but also as high performance triboelectric nanogenerator (TENG) coupled with both solid-solid and gas-solid contact electrifications (CE). The repeatedly loading-unloading tests with 20 000 cycles exhibit its high and ultrastable piezoresistive sensor performances. Moreover, when the obtained aerogel is used as the electrode of a TENG, high electric output performance is produced due to the synergistic effect of solid-solid, and gas-solid interface CEs (3D electrification: solid-solid interface CE between the two solid electrification layers; gas-solid interface CE between the inner surface of GO/CNT HA and the air filled in the aerogel pores). This kind of aerogel promises good applications for human physiological/motion monitoring and energy harvest/supply in flexible/wearable electronics such as piezoresistive sensors and flexible TENG.


Asunto(s)
Nanotubos de Carbono , Humanos , Electrónica , Ácidos Carboxílicos , Conductividad Eléctrica
16.
Small ; 18(48): e2204806, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36266945

RESUMEN

The fields of electronic skin, man-machine interaction, and health monitoring require flexible pressure sensors with great sensitivity. However, most microstructure designs utilized to fabricate high-performance pressure sensors require complex preparation processes. Here, MXene/polyaniline (PANI) foam with 3D porous structure is achieved by using a steam-induced foaming method. Based on the structure, a flexible piezoresistive sensor is fabricated. It exhibits high sensitivity (690.91 kPa-1 ), rapid response, and recovery times (106/95 ms) and outstanding fatigue resistance properties (10 000 cycles). The MXene/PANI foam-based pressure sensor can swiftly detect minor pressure and be further used for human activity and health monitoring.


Asunto(s)
Compuestos de Anilina , Vapor , Humanos , Porosidad , Aerosoles
17.
Sensors (Basel) ; 22(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36081165

RESUMEN

Quantitatively assessing personal health status is gaining increasing attention due to the improvement of diagnostic technology and the increasing occurrence of chronic pathologies. Monitoring physiological parameters allows for retrieving a general overview of the personal health status. Respiratory activity can provide relevant information, especially when pathologies affect the muscles and organs involved in breathing. Among many technologies, wearables may represent a valid solution for continuous and remote monitoring of respiratory activity, thus reducing healthcare costs. The most popular wearables used in this arena are based on detecting the breathing-induced movement of the chest wall. Therefore, their use in patients with impaired chest wall motion and abnormal respiratory kinematics can be challenging, but literature is still in its infancy. This study investigates the performance of a custom wearable device for respiratory monitoring in post-stroke patients. We tested the device on six hemiplegic patients under different respiratory regimes. The estimated respiratory parameters (i.e., respiratory frequency and the timing of the respiratory phase) demonstrated good agreement with the ones provided by a gold standard device. The promising results of this pilot study encourage the exploitation of wearables on these patients that may strongly impact the treatment of chronic diseases, such as hemiplegia.


Asunto(s)
Accidente Cerebrovascular , Dispositivos Electrónicos Vestibles , Hemiplejía , Humanos , Proyectos Piloto , Frecuencia Respiratoria
18.
Materials (Basel) ; 15(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897616

RESUMEN

Although the force/pressure applied onto a textile substrate through a uniaxial compression is constant and independent of the yarn direction, it should be noted that such mechanical action causes a geometric change in the substrate, which can be identified by the reduction in its lateral thickness. Therefore, the objective of this study was to investigate the influence of the fabric orientation on both knitted and woven pressure sensors, in order to generate knowledge for a better design process during textile piezoresistive sensor development. For this purpose, these distinct textile structures were doped with different concentrations of graphene nanoplatelets (GNPs), using the screen-printing technique. The chemical and physical properties of these screen-printed fabrics were analysed using Field Emission Scanning Electron Microscopy, Ground State Diffuse Reflectance and Raman Spectroscopy. Samples were subjected to tests determining linear electrical surface resistance and piezoresistive behaviour. In the results, a higher presence of conductive material was found in woven structures. For the doped samples, the electrical resistance varied between 105 Ω and 101 Ω, for the GNPs' percentage increase. The lowest resistance value was observed for the woven fabric with 15% GNPs (3.67 ± 8.17 × 101 Ω). The samples showed different electrical behaviour according to the fabric orientation. Overall, greater sensitivity in the longitudinal direction and a lower coefficient of variation CV% of the measurement was identified in the transversal direction, coursewise for knitted and weftwise for woven fabrics. The woven fabric doped with 5% GNPs assembled in the weftwise direction was shown to be the most indicated for a piezoresistive sensor, due to its most uniform response and most accurate measure of mechanical stress.

19.
Adv Sci (Weinh) ; 9(22): e2201272, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35652199

RESUMEN

PtSe2 is one of the most promising materials for the next generation of piezoresistive sensors. However, the large-scale synthesis of homogeneous thin films with reproducible electromechanical properties is challenging due to polycrystallinity. It is shown that stacking phases other than the 1T phase become thermodynamically available at elevated temperatures that are common during synthesis. It is shown that these phases can make up a significant fraction in a polycrystalline thin film and discuss methods to characterize them, including their Seebeck coefficients. Lastly, their gauge factors, which vary strongly and heavily impact the performance of a nanoelectromechanical device are estimated.

20.
Adv Sci (Weinh) ; 9(23): e2201912, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35748166

RESUMEN

Flexible pressure sensors play significant roles in wearable devices, electronic skins, and human-machine interface (HMI). However, it remains challenging to develop flexible piezoresistive sensors with outstanding comprehensive performances, especially with excellent long-term durability. Herein, a facile "interfacial locking strategy" has been developed to fabricate metal aerogel-based pressure sensors with excellent sensitivity and prominent stability. The strategy broke the bottleneck of the intrinsically poor mechanical properties of metal aerogels by grafting them on highly elastic melamine sponge with the help of a thin polydimethylsiloxane (PDMS) layer as the interface-reinforcing media. The hierarchically porous conductive structure of the ensemble offered the as-prepared flexible piezoresistive sensor with a sensitivity as high as 12 kPa-1 , a response time as fast as 85 ms, and a prominent durability over 23 000 compression cycles. The excellent comprehensive performance enables the successful application of the flexible piezoresistive sensor as two-dimensional (2D) array device as well as three-dimensional (3D) force-detecting device for real-time monitoring of HMI activities.


Asunto(s)
Polímeros , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Humanos , Porosidad , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA