Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(9): 220, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158724

RESUMEN

KEY MESSAGE: This study provided a non-destructive detection method with Vis-NIR hyperspectral imaging combining with physio-biochemical parameters in Helianthus annuus in response to Orobanche cumana infection that took insights into the monitoring of sunflower weed. Sunflower broomrape (Orobanche cumana Wallr.) is an obligate weed that attaches to the host roots of sunflower (Helianthus annuus L.) leading to a significant reduction in yield worldwide. The emergence of O. cumana shoots after its underground life-cycle causes irreversible damage to the crop. In this study, a fast visual, non-invasive and precise method for monitoring changes in spectral characteristics using visible and near-infrared (Vis-NIR) hyperspectral imaging (HSI) was developed. By combining the bands sensitive to antioxidant enzymes (SOD, GR), non-antioxidant enzymes (GSH, GSH + GSSG), MDA, ROS (O2-, OH-), PAL, and PPO activities obtained from the host leaves, we sought to establish an accurate means of assessing these changes and conducted imaging acquisition using hyperspectral cameras from both infested and non-infested sunflower cultivars, followed by physio-biochemical parameters measurement as well as analyzed the expression of defense related genes. Extreme learning machine (ELM) and convolutional neural network (CNN) models using 3-band images were built to classify infected or non-infected plants in three sunflower cultivars, achieving accuracies of 95.83% and 95.83% for the discrimination of infestation as well as 97.92% and 95.83% of varieties, respectively, indicating the potential of multi-spectral imaging systems for early detection of O. cumana in weed management.


Asunto(s)
Helianthus , Imágenes Hiperespectrales , Orobanche , Helianthus/parasitología , Orobanche/fisiología , Imágenes Hiperespectrales/métodos , Espectroscopía Infrarroja Corta/métodos , Hojas de la Planta/parasitología , Hojas de la Planta/metabolismo , Enfermedades de las Plantas/parasitología , Antioxidantes/metabolismo , Malezas , Interacciones Huésped-Parásitos
2.
Genes (Basel) ; 13(11)2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421774

RESUMEN

Commiphora gileadensis L. is a medicinal plant, known as balsam, with pharmaceutical potential for its phytochemical activities and chemical constituents. Genetic diversity is a genetic tool used in medicinal plant evolution and conservation. Three accessions from C. gileadensis were collected from three localities in Saudi Arabia (Jeddah, Jizan and Riyadh). Genetic characterization was carried out using physio-biochemical parameters, molecular markers (inter-simple sequence repeat (ISSR) and start codon targeted (SCoT)), DNA barcoding (18 S rRNA and ITS rDNA regions), relative gene expressions (phenylalanine ammonia-lyase 1 (PAL1), defensin (PR-12)) and pathogenesis-related protein (AFPRT). The results of this study showed that C. gileadensis accession C3, collected from Riyadh, had the highest content from the physio-biochemical parameters perspective, with values of 92.54 mg/g and 77.13 mg/g for total phenolic content (TPC) and total flavonoid content (TFC), respectively. Furthermore, the highest content of antioxidant enzyme activity was present in accession C3 with values of 16.87, 60.87, 35.76 and 27.98 U mg-1 for superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) (mol/min/mg FW) and ascorbate peroxidase (APX) (U mg-1 protein), respectively. The highest total number of bands and number of unique bands were 138 and 59, respectively, for the SCoT marker. The SCoT marker was the most efficient for the genetic diversity of C. gileadensis by producing the highest polymorphism (75.63%). DNA barcoding using 18 S and ITS showed the nearby Commiphora genus and clustered C. gileadensis accessions from Jeddah and Jizan in one clade and the C. gileadensis accession from Ryiadh in a separate cluster. Moreover, relative gene expression of the PAL1, defensin (PR-12) and AFPRT (PR1) genes was upregulated in the C. gileadensis accession from Ryiadh. In conclusion, ecological and environmental conditions in each locality affect the genomic expression and genetic diversity, which can help the evolution of important medicinal plants and improve breeding and conservation systems.


Asunto(s)
Commiphora , Código de Barras del ADN Taxonómico , Commiphora/genética , Arabia Saudita , Filogenia , Fitomejoramiento , Codón Iniciador , Marcadores Genéticos , Expresión Génica , Defensinas/genética
3.
Plant Physiol Biochem ; 189: 104-114, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36081232

RESUMEN

Cadmium (Cd) and lead (Pb) pollution is a major environmental issue affecting plant production. Spermidine (Spd) is involved in plant response to abiotic stress. However, the role and associated mechanism of Spd under Cd + Pb combined stress are poorly understood. The potential protective role of Spd at different concentration on rice (Oryza sativa L.) seedlings exposed to Cd + Pb treatment was investigated by a hydroponic experiment in this study. The results showed that exogenous Spd enhanced the tolerance of rice seedlings to Cd + Pb stress, resulted in an increase in plant height, root length, fresh weight and dry weight of roots and shoots. Further, application of Spd decreased the contents of hydrogen peroxide, superoxide anion, malondialdehyde, and the accumulation of Cd and Pb, and increased the contents of mineral nutrient, carotenoids, chlorophyll, proline, soluble sugar, soluble protein, total phenol, flavonoid, anthocyanin, and antioxidant enzymes activities in roots and shoots of rice seedlings under Cd + Pb stress. Particularly, 0.5 mmol L-1 Spd was the most effective to alleviate the adverse impacts on growth and physiological metabolism of rice seedlings under Cd + Pb stress. Principal component analysis and heat map clustering established correlations between physio-biochemical parameters and further revealed Spd alleviated Cd + Pb damage in rice seedling was associated with inhibition of accumulation and translocation of Cd and Pb, increasing the contents of photosynthetic pigments and mineral nutrient and stimulation of antioxidative response and osmotic adjustment. Overall, our findings provide an important prospect for use of Spd in modulating Cd + Pb tolerance in rice plants. Spd could help to alleviate Cd + Pb damage through inhibition of accumulation and translocation of Cd and Pb and stimulation of oxidant-defense system and osmotic adjustment.


Asunto(s)
Oryza , Antocianinas/metabolismo , Antioxidantes/metabolismo , Cadmio/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Plomo/metabolismo , Malondialdehído/metabolismo , Oryza/metabolismo , Oxidantes/metabolismo , Oxidantes/farmacología , Fenoles/metabolismo , Raíces de Plantas/metabolismo , Prolina/metabolismo , Plantones/metabolismo , Espermidina/metabolismo , Espermidina/farmacología , Azúcares/metabolismo , Superóxidos/metabolismo
4.
Gesunde Pflanz ; : 1-17, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38625265

RESUMEN

Arbuscular mycorrhizal (AM) fungi can affect the host's ability to cope with several environmental stresses, such as heavy metal stress. Therefore, an experiment was conducted to assess the effect of the Funneliformis mosseae inoculation on growth and physio-biochemical parameters and lead (Pb) accumulation in liquorice (Glycyrrhiza glabra L.) under Pb stress. A factorial experiment was performed with the combination of two factors, fungi (inoculated and non-inoculated (NM)) and soil Pb levels (0, 150, 300, and 450 mg kg-1 soil) with four replicates. In the presence of Pb, symbiosis with F. mosseae exert positive effect on growth parameters, which was more significant in shoots than roots. Mycorrhization improved fresh and dry weights and length in shoot by 147, 112.5 and 83%, respectively, compared to NM plants at Pb150 level. Moreover, F. mosseae significantly increased tolerance index and the concentrations of soluble sugars and flavonoids in shoots and proline, phosphorus, potassium, calcium, zinc and manganese in shoots and roots but decreased their malondialdehyde concentrations under Pb stress. The Pb concentrations, transfer and bioaccumulation factors of mycorrhizal plants were less than non-mycorrhizal ones. A positive correlation was also observed between glomalin secretion and colonization rate in Pb treated soils. These results indicate the importance of mycorrhizal colonization in alleviating the Pb-induced stress in liquorice, mainly through improving the nutrition, modifying reactive oxygen species detoxifying metabolites and reducing the translocation of Pb to shoots. Observations revealed that mycorrhization of liquorice would be an efficient strategy to use in the phytoremediation practices of Pb-contaminated soils.

5.
Front Plant Sci ; 8: 1881, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163606

RESUMEN

Peanut, an important oilseed crop, frequently encounters drought stress (DS) during its life cycle. In this study, four previously developed mtlD transgenic (T) peanut lines were used for detailed characterization under DS, at the reproductive stage using lysimeter system under controlled greenhouse conditions. In dry-down experiments, T lines maintained better photosynthetic machinery, such as, photosynthesis rate, stomatal conductance, transpiration rate, and SPAD (Soil-Plant Analyses Development) values, and had lower oxidative damage, including lipid membrane peroxidation and hydrogen peroxide and superoxide radical accumulation than WT, when exposed to 24 days of DS. WT plants had a more negative water potential (WP; up to -3.22 MPa) than T lines did (-2.56 to -2.71 MPa) at day 24 of DS treatment. During recovery, T lines recovered easily whereas 67% of WT plants failed to recover. In T lines, the rate of photosynthesis strongly and positively correlated with the transpiration rate (r = 0.92), RWC (r = 0.90), WP (r = 0.86), and total chlorophyll content (r = 0.75), suggesting its strong correlation with water retention-related parameters. Furthermore, yield parameters such as, pod weight and harvest index of T lines were up to 2.19 and 1.38 times more than those of WT plants, respectively. Thus, the significantly better performance of mtlD T peanut lines than of WT plants under DS could be attributed to the accumulation of mannitol, which in turn helped in maintaining the osmoregulation and ROS scavenging activity of mannitol and ultimately conferred water-economizing capacity and higher yield in T lines than in WT plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA