Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
ArXiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39253641

RESUMEN

Modern phylogenetics research is often performed within a Bayesian framework, using sampling algorithms such as Markov chain Monte Carlo (MCMC) to approximate the posterior distribution. These algorithms require careful evaluation of the quality of the generated samples. Within the field of phylogenetics, one frequently adopted diagnostic approach is to evaluate the effective sample size (ESS) and to investigate trace graphs of the sampled parameters. A major limitation of these approaches is that they are developed for continuous parameters and therefore incompatible with a crucial parameter in these inferences: the tree topology. Several recent advancements have aimed at extending these diagnostics to topological space. In this reflection paper, we present two case studies - one on Ebola virus and one on HIV - illustrating how these topological diagnostics can contain information not found in standard diagnostics, and how decisions regarding which of these diagnostics to compute can impact inferences regarding MCMC convergence and mixing. Our results show the importance of running multiple replicate analyses and of carefully assessing topological convergence using the output of these replicate analyses. To this end, we illustrate different ways of assessing and visualizing the topological convergence of these replicates. Given the major importance of detecting convergence and mixing issues in Bayesian phylogenetic analyses, the lack of a unified approach to this problem warrants further action, especially now that additional tools are becoming available to researchers.

2.
Emerg Microbes Infect ; : 2392667, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143912

RESUMEN

Surveillance data from wildlife and poultry was used to describe the spread of highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.4.4b in British Columbia (B.C.) and the Yukon, Canada from September 2022 - June 2023 compared to the first 'wave' of the outbreak in this region, which occurred April - August 2022, after the initial viral introduction. Although the number of HPAI-positive poultry farms and wildlife samples was greater in 'Wave 2', cases were more tightly clustered in southwestern B.C. and the most commonly affected species differed, likely due to an influx of overwintering waterfowl in the area. Eight HPAI genetic clusters, representing seven genotypes and two inter-continental viral incursions, were detected, with significant variation in the relative abundance of each cluster between the waves. Phylogenetic data suggests multiple spillover events from wild birds to poultry and mammals but could not rule out transmission among farms and among mammals.

3.
Front Immunol ; 15: 1332444, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156896

RESUMEN

Introduction: Since their identification in 1974, circoviruses have caused clinicopathological diseases in various animal species, including humans. However, their origin, transmission, and genetic evolution remain poorly understood. Methods: In this study, the genome sequences of circovirus were obtained from GenBank, and the Bayesian stochastic search variable selection algorithm was employed to analyzed the evolution and origin of circovirus. Results: Here, the evolutionary origin, mode of transmission, and genetic recombination of the circovirus were determined based on the available circovirus genome sequences. The origin of circoviruses can be traced back to fish circovirus, which might derive from fish genome, and human contributes to transmission of fish circovirus to other species. Furthermore, mosquitos, ticks, bats, and/or rodents might play a role as intermediate hosts in circovirus intra- and inter-species transmission. Two major lineages (A and B) of circoviruses are identified, and frequent recombination events accelerate their variation and spread. The time to the most recent common ancestor of circoviruses can be traced back to around A.D. 600 and has been evolving at a rate of 10-4 substitutions site-1 year-1 for a long time. Discussion: These comprehensive findings shed light on the evolutionary origin, population dynamics, transmission model, and genetic recombination of the circovirus providing valuable insights for the development of prevention and control strategies against circovirus infections.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Evolución Molecular , Filogenia , Recombinación Genética , Animales , Humanos , Circovirus/genética , Infecciones por Circoviridae/transmisión , Infecciones por Circoviridae/virología , Infecciones por Circoviridae/veterinaria , Genoma Viral , Teorema de Bayes
4.
Viruses ; 16(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39205241

RESUMEN

Coxsackievirus A24 (CV-A24) is a human enterovirus that causes acute flaccid paralysis. However, a Coxsackievirus A24 variant (CV-A24v) is the most common cause of eye infections. The causes of these variable pathogenicity and tissue tropism remain unclear. To elucidate the phylodynamics of CV-A24 and CV-A24v, we analyzed a dataset of 66 strains using Bayesian phylodynamic approach, along with detailed sequence variation and epistatic analyses. Six CV-A24 strains available in GenBank and 60 CV-A24v strains, including 11 Taiwanese strains, were included in this study. The results revealed striking differences between CV-A24 and CV-A24v exhibiting long terminal branches in the phylogenetic tree, respectively. CV-A24v presented distinct ladder-like clustering, indicating immune escape mechanisms. Notably, 10 genetic recombination events in the 3D regions were identified. Furthermore, 11 missense mutation signatures were detected to differentiate CV-A24 and CV-A24v; among these mutations, the F810Y substitution may significantly affect the secondary structure of the GH loop of VP1 and subsequently affect the epitopes of the capsid proteins. In conclusion, this study provides critical insights into the evolutionary dynamics and epidemiological characteristics of CV-A24 and CV-A24v, and highlights the differences in viral evolution and tissue tropism.


Asunto(s)
Epistasis Genética , Filogenia , Humanos , Infecciones por Coxsackievirus/virología , Proteínas de la Cápside/genética , Teorema de Bayes , Enterovirus Humano C/genética , Enterovirus Humano C/clasificación , Recombinación Genética , Mutación Missense , Variación Genética , Taiwán/epidemiología , Genoma Viral
5.
J Infect Dis ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207199

RESUMEN

BACKGROUND: Shenzhen, a city with a substantial mobile population, was identified as the first discovered region of HIV-1 CRF55_01B and epicenter of its severe epidemic. During the implementation of venue-based behavioral interventions and the "treat-all" policy, discerning the spread patterns and transmission hotspots of CRF55_01B is imperative. METHODS: In this study, 1,450 partial pol sequences, with demographic information, were collected from all newly diagnosed CRF55_01B infections in Shenzhen from 2008 to 2020. Molecular networks were constructed using the maximum likelihood and time-resolve phylogenies. Transmission rates, effective reproduction numbers (Re) of clusters and viral dispersal were evaluated using Bayesian inference. RESULTS: In total, 526 sequences formed 114 clusters, including seven large clusters. The status and size of clusters were strongly correlated with age, ethnicity, occupation and CD4+ T cell counts. The transmission rates of clusters were significantly higher than the national epidemic estimate. Four large clusters had Re exceeding 1 at the end of sampling period. Immigrants from Guangdong and Hunan, along with local residents, were identified as the transmission hubs, with heterosexual men being the main source and MSM being the main destination. The virus exhibited a high movement frequency from individuals aged 30-49 years toward diverse age groups. CONCLUSIONS: This study demonstrated the hidden CRF55_01B transmissions continued despite current combined interventions in Shenzhen, and special at-risk individuals susceptible to infection or transmission were identified, potentially serving as targets for more effective prevention and control of the local epidemic, thereby mitigating cross-regional spread nationwide due to population migration.

6.
Virus Res ; 347: 199429, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38960004

RESUMEN

The aim of this study was to investigate to what extent fragments of the HEV genome could be used for accurate diagnostics and inference of viral population-scale processes. For this, we selected all the published whole genome sequences from the NCBI GenBank and trimmed them to various fragment lengths (ORF1,2,3, ORF1, ORF2, ORF3, 493 nt in ORF2 and 148 nt in ORF2). Each of the fragment lengths was used to infer the richness and diversity of the viral sequence types, typing accuracy, and potential use in phylodynamics. The results obtained from the different fragments were compared. We observed that, generally, the longer the nucleic acid fragment used in typing, the better the accuracy in predicting the viral subtype. However, the dominant HEV subtypes circulating in Europe were relatively well classified even by the 493 nt fragment, with false negative rates as low as 8 in 1000 typed sequences. Most fragments also give comparable results in analyses of population size, albeit with shorter fragments showing a broader 95 % highest posterior density interval and less obvious increase of the viral effective population size. The reconstructed phylogenies of a heterochronous subset indicated a good concordance between all the fragments, with the major clades following similar branching patterns. Furthermore, we have used the HEV sequence data from the Netherlands available in the HEVnet database as a case study for reconstruction of population size changes in the past decades. This data showed that molecular and epidemiological results are concordant and point to an increase in the viral effective population size underlying the observed increase in incidence of acute HEV infection cases. In the absence of whole genome sequencing data, the 493 bp fragment can be used for analyzing HEV strains currently circulating in Europe, as it is informative for describing short term population-scale processes.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Viral , Virus de la Hepatitis E , Hepatitis E , Filogenia , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/clasificación , Humanos , Hepatitis E/virología , Hepatitis E/epidemiología , Europa (Continente)/epidemiología , Genotipo , ARN Viral/genética , Sistemas de Lectura Abierta
7.
medRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39072023

RESUMEN

Human respiratory syncytial virus (RSV) is a major cause of acute respiratory infection. In 2020, RSV was effectively eliminated from the community in New Zealand due to non-pharmaceutical interventions (NPI) used to control the spread of COVID-19. However, in April 2021, following a brief quarantine-free travel agreement with Australia, there was a large-scale nationwide outbreak of RSV that led to reported cases more than five times higher, and hospitalisations more than three times higher, than the typical seasonal pattern. In this study, we generated 1,471 viral genomes of both RSV-A and RSV-B sampled between 2015 and 2022 from across New Zealand. Using a phylodynamics approach, we used these data to better understand RSV transmission patterns in New Zealand prior to 2020, and how RSV became re-established in the community following the relaxation of COVID-19 restrictions. We found that in 2021, there was a large epidemic of RSV in New Zealand that affected a broader age group range compared to the usual pattern of RSV infections. This epidemic was due to an increase in RSV importations, leading to several large genomic clusters of both RSV-A ON1 and RSV-B BA9 genotypes in New Zealand. However, while a number of importations were detected, there was also a major reduction in RSV genetic diversity compared to pre-pandemic seasonal outbreaks. These genomic clusters were temporally associated with the increase of migration in 2021 due to quarantine-free travel from Australia at the time. The closest genetic relatives to the New Zealand RSV genomes, when sampled, were viral genomes sampled in Australia during a large, off-season summer outbreak several months prior, rather than cryptic lineages that were sustained but not detected in New Zealand. These data reveal the impact of NPI used during the COVID-19 pandemic on other respiratory infections and highlight the important insights that can be gained from viral genomes.

8.
Lancet Reg Health West Pac ; 47: 101105, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39022748

RESUMEN

Background: MPT64 is a key protein used for Mycobacterium tuberculosis (MTB) complex strain identification. We describe protracted transmission of an MPT64 negative MTB strain in Queensland, Australia, and explore genomic factors related to its successful spread. Methods: All MPT64 negative strains identified between 2002 and 2022 by the Queensland Mycobacteria Reference Laboratory, and an additional 2 isolates from New South Wales (NSW), were whole genome sequenced. Bayesian modelling and phylogeographical analyses were used to assess their evolutionary history and transmission dynamics. Protein structural modelling to understand the putative functional effects of the mutated gene coding for MPT64 protein was performed. Findings: Forty-three MPT64 negative isolates were sequenced, belonging to a single MTB cluster of Lineage 4.1.1.1 strains. Combined with a UK dataset of the same lineage, molecular dating estimated 1990 (95% HPD 1987-1993) as the likely time of strain introduction into Australia. Although the strain has spread over a wide geographic area and new cases linked to the cluster continue to arise, phylodynamic analysis suggest the outbreak peaked around 2003. All MPT64 negative strains had a frame shift mutation (delAT, p.Val216fs) within the MPT64 gene, which confers two major structural rearrangements at the C-terminus of the protein. Interpretation: This study uncovered the origins of an MPT64 negative MTB outbreak in Australia, providing a richer understanding of its biology and transmission dynamics, as well as guidance for clinical diagnosis and public health action. The potential spread of MPT64 negative strains undermines the diagnostic utility of the MPT64 immunochromatographic test. Funding: This study was funded from an operational budget provided to the Queensland Mycobacterium Reference Laboratory by Pathology Queensland, Queensland Department of Health.

9.
medRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38883783

RESUMEN

Phylogeographic analyses are able to exploit the location data associated with sampled molecular sequences to reconstruct the spatio-temporal dispersal history of a pathogen. Visualisation software is commonly used to facilitate the interpretation of the accompanying estimation results, as these are not always easily interpretable. spread.gl is a powerful, open-source and feature-rich browser application that enables smooth, intuitive and user-friendly visualisation of both discrete and continuous phylogeographic inference results, enabling the animation of pathogen geographic dispersal through time. spread.gl can render and combine the visualisation of several data layers, including a geographic layer (e.g., a world map), multiple layers that contain information extracted from the input phylogeny, and different types of layers that represent environmental data. As such, users can explore which environmental data may have shaped pathogen dispersal patterns, that can subsequently be formally tested through more principled statistical analyses. We showcase the visualisation features of spread.gl on several representative pathogen dispersal examples, including the smooth animation of a phylogeny encompassing over 17,000 genomic sequences resulting from a large-scale SARS-CoV-2 analysis.

10.
Infect Dis Poverty ; 13(1): 43, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863070

RESUMEN

BACKGROUND: The strong invasiveness and rapid expansion of dengue virus (DENV) pose a great challenge to global public health. However, dengue epidemic patterns and mechanisms at a genetic scale, particularly in term of cross-border transmissions, remain poorly understood. Importation is considered as the primary driver of dengue outbreaks in China, and since 1990 a frequent occurrence of large outbreaks has been triggered by the imported cases and subsequently spread to the western and northern parts of China. Therefore, this study aims to systematically reveal the invasion and diffusion patterns of DENV-1 in Guangdong, China from 1990 to 2019. METHODS: These analyses were performed on 179 newly assembled genomes from indigenous dengue cases in Guangdong, China and 5152 E gene complete sequences recorded in Chinese mainland. The genetic population structure and epidemic patterns of DENV-1 circulating in Chinese mainland were characterized by phylogenetics, phylogeography, phylodynamics based on DENV-1 E-gene-based globally unified genotyping framework. RESULTS: Multiple serotypes of DENV were co-circulating in Chinese mainland, particularly in Guangdong and Yunnan provinces. A total of 189 transmission clusters in 38 clades belonging to 22 subgenotypes of genotype I, IV and V of DENV-1 were identified, with 7 Clades of Concern (COCs) responsible for the large outbreaks since 1990. The epidemic periodicity was inferred from the data to be approximately 3 years. Dengue transmission events mainly occurred from Great Mekong Subregion-China (GMS-China), Southeast Asia (SEA), South Asia Subcontinent (SASC), and Oceania (OCE) to coastal and land border cities respectively in southeastern and southwestern China. Specially, Guangzhou was found to be the most dominant receipting hub, where DENV-1 diffused to other cities within the province and even other parts of the country. Genome phylogeny combined with epidemiological investigation demonstrated a clear local consecutive transmission process of a 5C1 transmission cluster (5C1-CN4) of DENV-1 in Guangzhou from 2013 to 2015, while the two provinces of Guangdong and Yunnan played key roles in ongoing transition of dengue epidemic patterns. In contextualizing within Invasion Biology theories, we have proposed a derived three-stage model encompassing the stages of invasion, colonization, and dissemination, which is supposed to enhance our understanding of dengue spreading patterns. CONCLUSIONS: This study demonstrates the invasion and diffusion process of DENV-1 in Chinese mainland within a global genotyping framework, characterizing the genetic diversities of viral populations, multiple sources of importation, and periodic dynamics of the epidemic. These findings highlight the potential ongoing transition trends from epidemic to endemic status offering a valuable insight into early warning, prevention and control of rapid spreading of dengue both in China and worldwide.


Asunto(s)
Virus del Dengue , Dengue , Genotipo , Filogenia , Serogrupo , Virus del Dengue/genética , Virus del Dengue/clasificación , Virus del Dengue/fisiología , China/epidemiología , Dengue/epidemiología , Dengue/virología , Dengue/transmisión , Humanos , Brotes de Enfermedades , Filogeografía , Genoma Viral
11.
Virus Res ; 347: 199415, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38880334

RESUMEN

Our study identified strains of the A/H5N1 virus in analyzed samples of subsistence poultry, wild birds, and mammals, belonging to clade 2.3.4.4b, genotype B3.2, with very high genetic similarity to strains from Chile, Uruguay, and Argentina. This suggests a migratory route for wild birds across the Pacific, explaining the phylogenetic relatedness. The Brazilian samples displayed similarity to strains that had already been previously detected in South America. Phylogeographic analysis suggests transmission of US viruses from Europe and Asia, co-circulating with other lineages in the American continent. As mutations can influence virulence and host specificity, genomic surveillance is essential to detect those changes, especially in critical regions, such as hot spots in the HA, NA, and PB2 sequences. Mutations in the PB2 gene (D701N and Q591K) associated with adaptation and transmission in mammals were detected suggesting a potential zoonotic risk. Nonetheless, resistance to neuraminidase inhibitors (NAIs) was not identified, however, continued surveillance is crucial to detect potential resistance. Our study also mapped the spread of the virus in the Southern hemisphere, identifying possible entry routes and highlighting the importance of surveillance to prevent outbreaks and protect both human and animal populations.


Asunto(s)
Brotes de Enfermedades , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Filogenia , Filogeografía , Animales , Brasil/epidemiología , Gripe Aviar/virología , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/clasificación , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Aves/virología , Mamíferos/virología , Aves de Corral/virología , Humanos , Genotipo , Neuraminidasa/genética , Proteínas Virales/genética , Mutación , Animales Salvajes/virología
12.
Microbiol Spectr ; 12(7): e0382923, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38771094

RESUMEN

Mycobacterium bovis causes animal tuberculosis in livestock and wildlife, with an impact on animal health and production, wildlife management, and public health. In this work, we sampled a multi-host tuberculosis community from the official hotspot risk area of Portugal over 16 years, generating the largest available data set in the country. Using phylogenetic and ecological modeling, we aimed to reconstruct the history of circulating lineages across the livestock-wildlife interface to inform intervention and the implementation of genomic surveillance within the official eradication plan. We find evidence for the co-circulation of M. bovis European 1 (Eu1), Eu2, and Eu3 clonal complexes, with Eu3 providing sufficient temporal signal for further phylogenetic investigation. The Eu3 most recent common ancestor (bovine) was dated in the 1990s, subsequently transitioning to wildlife (red deer and wild boar). Isolate clustering based on sample metadata was used to inform phylogenetic inference, unravelng frequent transmission between two clusters that represent an ecological corridor of previously unrecognized importance in Portugal. The latter was associated with transmission at the livestock-wildlife interface toward locations with higher temperature and precipitation, lower agriculture and road density, and lower host densities. This is the first analysis of M. bovis Eu3 complex in Iberia, shedding light on background ecological factors underlying long-term transmission and informing where efforts could be focused within the larger hotspot risk area of Portugal. IMPORTANCE: Efforts to strengthen surveillance and control of animal tuberculosis (TB) are ongoing worlwide. Here, we developed an eco-phylodynamic framework based on discrete phylogenetic approaches informed by M. bovis whole-genome sequence data representing a multi-host transmission system at the livestock-wildlife interface, within a rich ecological landscape in Portugal, to understand transmission processes and translate this knowledge into disease management benefits. We find evidence for the co-circulation of several M. bovis clades, with frequent transmission of the Eu3 lineage among cattle and wildlife populations. Most transition events between different ecological settings took place toward host, climate and land use gradients, underscoring animal TB expansion and a potential corridor of unrecognized importance for M. bovis maintenance. Results stress that animal TB is an established wildlife disease without ecological barriers, showing that control measures in place are insufficient to prevent long-distance transmission and spillover across multi-host communities, demanding new interventions targeting livestock-wildlife interactions.


Asunto(s)
Animales Salvajes , Mycobacterium bovis , Filogenia , Portugal/epidemiología , Animales , Mycobacterium bovis/genética , Mycobacterium bovis/clasificación , Mycobacterium bovis/aislamiento & purificación , Bovinos , Animales Salvajes/microbiología , Ganado/microbiología , Tuberculosis Bovina/transmisión , Tuberculosis Bovina/microbiología , Tuberculosis Bovina/epidemiología , Ciervos/microbiología , Sus scrofa/microbiología , Tuberculosis/transmisión , Tuberculosis/microbiología , Tuberculosis/epidemiología , Tuberculosis/veterinaria
13.
Virus Evol ; 10(1): veae027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699215

RESUMEN

Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.

14.
J Med Microbiol ; 73(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757423

RESUMEN

Introduction. Human immunodeficiency virus (HIV)-1 subtype C is the most prevalent globally and is thought to have originated in non-human primates in the Democratic Republic of Congo.Hypothesis/Gap Statement. Although the global dominance of HIV-1 subtype C is well established, a thorough understanding of its evolutionary history and transmission dynamics across various risk populations remains elusive. The current knowledge is insufficient to fully capture the global diversification and dissemination of this subtype.Aim. We for the first time sought to investigate the global evolutionary history and spatiotemporal dynamics of HIV-1 subtype C using a selection of maximum-likelihood-based phylodynamic approaches on a total of 1210 near full-length genomic sequences sampled from 32 countries, collected in 4 continents, with sampling dates between 1986-2019 among various risk groups were analysed.Methodology. We subsampled the HIV-1 subtype C genomic datasets based on continent and risk group traits, and performed nucleotide substitution model selection analysis, maximum likelihood (ML) phylogenetic reconstruction, phylogenetic tree topology similarity analysis, temporal signal analysis and traced the timings of viral spread both geographically and by risk group.Results. Based on the phylodynamic analyses of four datasets (full1210, locrisk626, loc562 and risk393), we inferred the time to the most recent common ancestor (TMRCA) in the 1930s and an evolutionary rate of 0.0023 substitutions per site per year. The total number of introduction events of HIV-1 subtype C between continents and between risk groups is estimated to be 71 and 115, respectively. The largest number of introductions occurred from Africa to Europe (n=32), from not-recorded to heterosexual (n=40) and from heterosexual to not-recorded (n=51) risk groups.Conclusion. Our results emphasize that HIV subtype C has mainly spread from Africa to Europe, likely through heterosexual transmission.


Asunto(s)
Infecciones por VIH , VIH-1 , Filogenia , VIH-1/genética , VIH-1/clasificación , VIH-1/aislamiento & purificación , Humanos , Infecciones por VIH/virología , Infecciones por VIH/epidemiología , Infecciones por VIH/transmisión , Evolución Molecular
15.
Sci Total Environ ; 933: 173027, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729368

RESUMEN

Staphylococcus aureus is a versatile pathobiont, exhibiting a broad host range, including humans, other mammals, and avian species. Host specificity determinants, virulence, and antimicrobial resistance genes are often shared by strains circulating at the animal-human interface. While transmission dynamics studies have shown strain exchange between humans and livestock, knowledge of the source, genetic diversification, and transmission drivers of S. aureus in wildlife lag behind. In this work, we explore a wide array of S. aureus genomes from different sources in the Iberian Peninsula to understand population structure, gene content and niche adaptation at the human-livestock-wildlife nexus. Through Bayesian inference, we address the hypothesis that S. aureus strains in wildlife originate from humanized landscapes, either from contact with humans or through interactions with livestock. Phylogenetic reconstruction applied to whole genome sequence data was completed with a dataset of 450 isolates featuring multiple clones from the 1990-2022 period and a subset of CC398 strains representing the 2008-2022 period. Phylodynamic signatures of S. aureus from the Iberian Peninsula suggest widespread circulation of most clones among humans before jumping to other hosts. The number of transitions of CC398 strains within each host category (human, livestock, wildlife) was high (88.26 %), while the posterior probability of transitions from livestock to wildlife was remarkably high (0.99). Microbial genome-wide association analysis did not evidence genome rearrangements nor biomarkers suggesting S. aureus niche adaptation to wildlife, thus supporting recent spill overs. Altogether, our findings indicate that S. aureus isolates collected in the past years from wildlife most likely represent multiple introduction events from livestock. The clonal origin of CC398 and its potential to disseminate and evolve through different animal host species are highlighted, calling for management practices at the livestock-wildlife axis to improve biosecurity and thus restrict S. aureus transmission and niche expansion along gradients of human influence.


Asunto(s)
Animales Salvajes , Ganado , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Ganado/microbiología , Staphylococcus aureus/genética , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Animales Salvajes/microbiología , España , Humanos , Filogenia , Portugal/epidemiología
16.
Lancet Reg Health Am ; 33: 100751, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711788

RESUMEN

Background: We examined HIV prevalence and transmission dynamics among people who inject drugs in the U.S./Mexico border region during the COVID-19 pandemic. Methods: People who inject drugs aged ≥18 years from 3 groups were recruited: people who inject drugs who live in San Diego (SD) and engaged in cross-border drug use in Tijuana, Mexico (SD CBDUs), and people who inject drugs in SD and Tijuana (TJ) who did not engage in cross-border drug use (NCBDUs). We computed HIV prevalence at baseline and bivariate incidence-density rates (IR) at 18-month follow-up. Bayesian phylogenetic analysis was used to identify local transmission clusters, estimate their age, and effective reproductive number (Re) over time within the clusters. Findings: At baseline (n = 612), 26% of participants were female, 9% engaged in sex work, and HIV prevalence was 8% (4% SD CBDU, 4% SD NCBDU, 16% TJ NCBDU). Nine HIV seroconversions occurred over 18 months, IR: 1.357 per 100 person-years (95% CI: 0.470, 2.243); 7 in TJ NCBDU and 2 in SD CBDU. Out of 16 identified phylogenetic clusters, 9 (56%) had sequences from both the U.S. and Mexico (mixed-country). The age of three youngest mixed-country dyads (2018-2021) overlapped with the COVID-related US-Mexico border closure in 2020. One large mixed-country cluster (N = 15) continued to grow during the border closure (Re = 4.8, 95% Highest Posterior Density (HPD) 1.5-9.1) with 47% engaging in sex work. Interpretation: Amidst the COVID-19 pandemic and the border closure, cross-border HIV clusters grew. Efforts to end the HIV epidemic in the U.S. should take into account cross-border HIV-1 transmission from Tijuana. Mobile harm reduction services and coordination with municipal HIV programs to initiate anti-retroviral therapy and pre-exposure prophylaxisis are needed to reduce transmission. Funding: This research was supported by the James B. Pendleton Charitable Trust and the San Diego Center for AIDS Research.

17.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648521

RESUMEN

Reassortment is an evolutionary process common in viruses with segmented genomes. These viruses can swap whole genomic segments during cellular co-infection, giving rise to novel progeny formed from the mixture of parental segments. Since large-scale genome rearrangements have the potential to generate new phenotypes, reassortment is important to both evolutionary biology and public health research. However, statistical inference of the pattern of reassortment events from phylogenetic data is exceptionally difficult, potentially involving inference of general graphs in which individual segment trees are embedded. In this paper, we argue that, in general, the number and pattern of reassortment events are not identifiable from segment trees alone, even with theoretically ideal data. We call this fact the fundamental problem of reassortment, which we illustrate using the concept of the "first-infection tree," a potentially counterfactual genealogy that would have been observed in the segment trees had no reassortment occurred. Further, we illustrate four additional problems that can arise logically in the inference of reassortment events and show, using simulated data, that these problems are not rare and can potentially distort our observation of reassortment even in small data sets. Finally, we discuss how existing methods can be augmented or adapted to account for not only the fundamental problem of reassortment, but also the four additional situations that can complicate the inference of reassortment.


Asunto(s)
Genoma Viral , Filogenia , Virus Reordenados , Virus Reordenados/genética , Evolución Molecular , Modelos Genéticos
18.
Cell ; 187(6): 1374-1386.e13, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38428425

RESUMEN

The World Health Organization declared mpox a public health emergency of international concern in July 2022. To investigate global mpox transmission and population-level changes associated with controlling spread, we built phylogeographic and phylodynamic models to analyze MPXV genomes from five global regions together with air traffic and epidemiological data. Our models reveal community transmission prior to detection, changes in case reporting throughout the epidemic, and a large degree of transmission heterogeneity. We find that viral introductions played a limited role in prolonging spread after initial dissemination, suggesting that travel bans would have had only a minor impact. We find that mpox transmission in North America began declining before more than 10% of high-risk individuals in the USA had vaccine-induced immunity. Our findings highlight the importance of broader routine specimen screening surveillance for emerging infectious diseases and of joint integration of genomic and epidemiological information for early outbreak control.


Asunto(s)
Enfermedades Transmisibles Emergentes , Epidemias , Mpox , Humanos , Brotes de Enfermedades , Mpox/epidemiología , Mpox/transmisión , Mpox/virología , Salud Pública , Monkeypox virus/fisiología
19.
Vet Q ; 44(1): 1-13, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38465827

RESUMEN

Marek's disease virus (MDV) has become an increasingly virulent pathogen in the poultry industry despite vaccination efforts to control it. Brazil has experienced a significant rise of Marek's disease (MD) outbreaks in recent years. Our study aimed to analyze the complete meq gene sequences to understand the molecular epidemiological basis of MD outbreaks in Brazilian vaccinated layer farms. We detected a high incidence rate of visceral MD (67.74%) and multiple circulating MDV strains. The most prevalent and geographically widespread genotype presented several clinical and molecular characteristics of a highly virulent strain and evolving under positive selective pressure. Phylogenetic and phylogeographic analysis revealed a closer relationship with strains from the USA and Japan. This study sheds light on the circulation of MDV strains capable of infecting vaccinated birds. We emphasize the urgency of adopting preventive measures to manage MDV outbreaks threatening the poultry farming industry.


Asunto(s)
Mardivirus , Enfermedad de Marek , Enfermedades de las Aves de Corral , Animales , Aves de Corral , Pollos/genética , Brasil/epidemiología , Filogenia , Mardivirus/genética , Enfermedad de Marek/epidemiología , Enfermedad de Marek/prevención & control , Enfermedad de Marek/genética , Granjas , Oncogenes , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/prevención & control
20.
Microb Genom ; 10(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38334271

RESUMEN

Novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge as the coronavirus disease 2019 (COVID-19) pandemic extends into its fourth year. Understanding SARS-CoV-2 circulation in university populations is vital for effective interventions in higher education settings and will inform public health policy during pandemics. In this study, we generated 793 whole-genome sequences collected over an entire academic year in a university population in Indiana, USA. We clearly captured the rapidity with which Delta variant was wholly replaced by Omicron variant across the West Lafayette campus over the length of two academic semesters in a community with high vaccination rates. This mirrored the emergence of Omicron throughout the state of Indiana and the USA. Further, phylogenetic analyses demonstrated that there was a more diverse set of potential geographic origins for Omicron viruses introduction into campus when compared to Delta. Lastly, statistics indicated that there was a more significant role for international and out-of-state migration in the establishment of Omicron variants at Purdue. This surveillance workflow, coupled with viral genomic sequencing and phylogeographic analyses, provided critical insights into SARS-CoV-2 transmission dynamics and variant arrival.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2/genética , Filogenia , Universidades , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA