RESUMEN
Studies have demonstrated bacterial inactivation by radiations at wavelengths between 400 and 500 nm emitted by low-power light sources. The phototoxic activity of these radiations could occur by oxidative damage in DNA and membrane proteins/lipids. However, some cellular mechanisms can reverse these damages in DNA, allowing the maintenance of genetic stability. Photoreactivation is among such mechanisms able to repair DNA damages induced by ultraviolet radiation, ranging from ultraviolet A to blue radiations. In this review, studies on the effects of violet and blue lights emitted by low-power LEDs on bacteria were accessed by PubMed, and discussed the repair of ultraviolet-induced DNA damage by photoreactivation mechanisms. Data from such studies suggested bacterial inactivation after exposure to violet (405 nm) and blue (425-460 nm) radiations emitted from LEDs. However, other studies showed bacterial photoreactivation induced by radiations at 348-440 nm. This process occurs by photolyase enzymes, which absorb photons at wavelengths and repair DNA damage. Although authors have reported bacterial inactivation after exposure to violet and blue radiations emitted from LEDs, pre-exposure to such radiations at low fluences could activate the photolyases, increasing resistance to DNA damage induced by ultraviolet radiation.
Asunto(s)
Desoxirribodipirimidina Fotoliasa , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Luz , Fotones , ADNRESUMEN
Light provides critical information for the behavior and development of basically all organisms. Filamentous fungi sense blue light, mainly, through a unique transcription factor complex that activates its targets in a light-dependent manner. In Trichoderma atroviride, the BLR-1 and BLR-2 proteins constitute this complex, which triggers the light-dependent formation of asexual reproduction structures (conidia). We generated an ENVOY photoreceptor mutant and performed RNA-seq analyses in the mutants of this gene and in those of the BLR-1, CRY-1 and CRY-DASH photoreceptors in response to a pulse of low intensity blue light. Like in other filamentous fungi BLR-1 appears to play a central role in the regulation of blue-light responses. Phenotypic characterization of the Δenv-1 mutant showed that ENVOY functions as a growth and conidiation checkpoint, preventing exacerbated light responses. Similarly, we observed that CRY-1 and CRY-DASH contribute to the typical light-induced conidiation response. In the Δenv-1 mutant, we observed, at the transcriptomic level, a general induction of DNA metabolic processes and strong repression of central metabolism. An analysis of the expression level of DNA repair genes showed that they increase their expression in the absence of env-1. Consistently, photoreactivation experiments showed that Δenv-1 had increased DNA repair capacity. Our results indicate that light perception in T. atroviride is far more complex than originally thought.
RESUMEN
Photolyases are enzymes that repair DNA damage caused by solar radiation. Due to their photorepair potential, photolyases added in topical creams and used in medical treatments has allowed to reverse skin damage and prevent the development of different diseases, including actinic keratosis, premature photoaging and cancer. For this reason, research has been oriented to the study of new photolyases performing in extreme environments, where high doses of UV radiation may be a key factor for these enzymes to have perfected their photorepair potential. Generally, the extracted enzymes are first encapsulated and then added to the topical creams to increase their stability. However, other well consolidated immobilization methods are interesting strategies to be studied that may improve the biocatalyst performance. This review aims to go through the different Antarctic organisms that have exhibited photoreactivation activity, explaining the main mechanisms of photolyase DNA photorepair. The challenges of immobilizing these enzymes on porous and nanostructured supports is also discussed. The comparison of the most reported immobilization methods with respect to the structure of photolyases show that both covalent and ionic immobilization methods produced an increase in their stability. Moreover, the use of nanosized materials as photolyase support would permit the incorporation of the biocatalyst into the target cell, which is a technological requirement that photolyase based biocatalysts must fulfill.
Asunto(s)
Reparación del ADN , Desoxirribodipirimidina Fotoliasa/química , Desoxirribodipirimidina Fotoliasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Animales , Regiones Antárticas , Activación Enzimática , HumanosRESUMEN
AIMS: The effect of nutritional supplementation of two Metarhizium species with riboflavin (Rb) during production of conidia was evaluated on (i) conidial tolerance (based on germination) to UV-B radiation and on (ii) conidial expression following UV-B irradiation, of enzymes known to be active in photoreactivation, viz., photolyase (Phr), laccase (Lac) and polyketide synthase (Pks). METHODS AND RESULTS: Metarhizium acridum (ARSEF 324) and Metarhizium robertsii (ARSEF 2575) were grown either on (i) potato dextrose agar medium (PDA), (ii) PDA supplemented with 1% yeast extract (PDAY), (iii) PDA supplemented with Rb (PDA+Rb), or (iv) PDAY supplemented with Rb (PDAY+Rb). Resulting conidia were exposed to 866·7 mW m-2 of UV-B Quaite-weighted irradiance to total doses of 3·9 or 6·24 kJ m-2 . Some conidia also were exposed to 16 klux of white light (WL) after being irradiated, or not, with UV-B to investigate the role of possible photoreactivation. Relative germination of conidia produced on PDA+Rb (regardless Rb concentration) or on PDAY and exposed to UV-B was higher compared to conidia cultivated on PDA without Rb supplement, or to conidia suspended in Rb solution immediately prior to UV-B exposure. The expression of MaLac3 and MaPks2 for M. acridum, as well as MrPhr2, MrLac1, MrLac2 and MrLac3 for M. robertsii was higher when the isolates were cultivated on PDA+Rb and exposed to UV-B followed by exposure to WL, or exposed to WL only. CONCLUSIONS: Rb in culture medium increases the UV-B tolerance of M. robertsii and M. acridum conidia, and which may be related to increased expression of Phr, Lac and Pks genes in these conidia. SIGNIFICANCE AND IMPACT OF THE STUDY: The enhanced UV-B tolerance of Metarhizium spp. conidia produced on Rb-enriched media may improve the effectiveness of these fungi in biological control programs.
Asunto(s)
Metarhizium , Riboflavina/farmacología , Esporas Fúngicas , Regulación hacia Arriba/efectos de los fármacos , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Lacasa/genética , Lacasa/metabolismo , Metarhizium/efectos de los fármacos , Metarhizium/enzimología , Metarhizium/genética , Metarhizium/efectos de la radiación , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/efectos de la radiación , Rayos UltravioletaRESUMEN
Metarhizium acridum is an entomopathogen currently used against acridids. We have previously reported that exposing mycelium to visible light increases M. acridum tolerance to ultraviolet-B (UV-B) radiation. Here we evaluated if light could also increase tolerance to ultraviolet-C (UV-C) radiation. We observed that, as opposed to UV-B radiation, light did not increase tolerance to UV-C radiation under dark repair conditions. However, light did increase tolerance to UV-C radiation if photoreactivating light was present after UV-C exposure. Quantitative PCR experiments revealed that light up-regulates a photolyase gene. This is the first report showing that light regulates photoreactivating ability in M. acridum.