Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 112(11): 2001-2017, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38837524

RESUMEN

Methacrylated biopolymers are unique and attractive in preparing photocrosslinkable hydrogels in biomedical applications. Here we report a novel chitosan (CS) derivative-based injectable hydrogel with anti-inflammatory capacity via methacrylation modification. First, ibuprofen (IBU) was conjugated to the backbone of CS by carbodiimide chemistry to obtain IBU-CS conjugate, which converts water-insoluble unmodified CS into water-soluble IBU-CS conjugate. The IBU-CS conjugate did not precipitate at the pH of 7, which was beneficial to subsequent chemical modification with methacrylic anhydride to prepare IBU-CS methacrylate (IBU-CS-MA) with significantly higher methacrylation substitution. Photocrosslinkable in situ gel formation of injectable IBU-CS-MA hydrogel was verified using lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) initiator under visible light. The IBU-CS-MA hydrogel showed good cytocompatibility as revealed by encapsulating and in vitro culturing murine fibroblasts within hydrogels. It promoted macrophage polarization toward M2 phenotype, as well as downregulated pro-inflammatory gene expression and upregulated anti-inflammatory gene expression of macrophages. The hydrogel also significantly reduced the reactive oxygen specifies (ROS) and nitrogen oxide (NO) produced by lipopolysaccharides (LPS)-stimulated macrophages. Upon subcutaneous implantation in a rat model, it significantly mitigated inflammatory responses as shown by significantly lower inflammatory cell density, less cell infiltration, and much thinner fibrous capsule compared with CS methacrylate (CS-MA) hydrogel. This study suggests that IBU-CS conjugate represents a feasible strategy for preparing CS-based methacrylate hydrogels for biomedical applications.


Asunto(s)
Quitosano , Hidrogeles , Ibuprofeno , Inflamación , Metacrilatos , Animales , Ibuprofeno/farmacología , Ibuprofeno/química , Quitosano/química , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Metacrilatos/química , Ratas , Reactivos de Enlaces Cruzados/química , Células RAW 264.7 , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratas Sprague-Dawley , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo
2.
Bioengineering (Basel) ; 11(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38927843

RESUMEN

(1) Background: A rise in intraocular pressure (IOP) and decreased retinal ganglion cells are frequent indicators of effective modeling of chronic ocular hypertension in mice. In this study, the sensitivity of the mouse model to pharmaceutical therapy to reduce intraocular tension was assessed, the model's safety was confirmed using a cytotoxicity test, and the success rate of the mouse model of ocular hypertension was assessed by assessing alterations in IOP and neurons in the ganglion cell layer. (2) Methods: A mouse model of chronic ocular hypertension was produced in this study by employing photocrosslinkable sericin hydrogel injection and LED lamp irradiation. The eyes of 25 C57BL/6 male mice were subjected to 405 nm UV light from the front for 2 min after being injected with 5 µL of sericin hydrogel in the anterior chamber of the left eye. IOP in the mice was measured daily, and IOP rises greater than 5 mmHg were considered intraocular hypertension. When the IOP was lowered, the intervention was repeated once, but the interval between treatments was at least 2 weeks. The right eyes were not treated with anything as a normal control group. Mice eyeballs were stained with HE, Ni-type, and immunofluorescence to assess the model's efficacy. Two common drugs (tafluprost eye drops and timolol eye drops) were provided for one week after four weeks of stable IOP, and IOP changes were assessed to determine the drug sensitivity of the mouse model of chronic ocular hypertension. Furthermore, CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) was utilized to investigate the safety of the ocular hypertension model by evaluating the deleterious effects of photocrosslinkable sericin hydrogel on cells. (3) Results: Before injection, the basal IOP was (9.42 ± 1.28) mmHg (1 kPa = 7.5 mmHg) in the experimental group and (9.08 ± 1.21) in the control group. After injection, cataract occurred in one eye, corneal edema in one eye, endophthalmitis in one eye, iris incarceration in one eye, and eyeball atrophy in one eye. Five mice with complications were excluded from the experiment, and twenty mice were left. Four weeks after injection, the IOP of the experimental group was maintained at (19.7 ± 4.52) mmHg, and that of the control group was maintained at (9.92 ± 1.55) mmHg, and the difference between the two groups was statistically significant (p < 0.05). Before the intervention, the IOP in the experimental group was (21.7 ± 3.31) mmHg in the high IOP control group, (20.33 ± 2.00) mmHg in the tafluprost eye drops group, and (20.67 ± 3.12) mmHg in the timolol maleate eye drops group. The IOP after the intervention was (23.2 ± 1.03) mmHg, (12.7 ± 2.11) mmHg, and (10.4 ± 1.43) mmHg, respectively. Before and after the intervention, there were no significant differences in the high-IOP control group (p > 0.05), there were statistically significant differences in the timolol eye drops group (p < 0.05), and there were statistically significant differences in the tafluprost eye drops group (p < 0.05). One week after drug withdrawal, there was no significant difference in IOP among the three groups (p > 0.05). In the high-IOP group, the protein (sericin hydrogel) showed a short strips or fragmented structure in the anterior chamber, accompanied by a large number of macrophages and a small number of plasma cells. The shape of the chamber angle was normal in the blank control group. The number of retinal ganglion cells decreased significantly 8 weeks after injection of sericin hydrogel into the anterior chamber, and the difference was statistically significant compared with the blank control group (p < 0.05). After the cells were treated with photocrosslinkable sericin hydrogel, there was no significant difference in the data of the CellTiter 96® assay kit of MTS compared with the blank control group (p > 0.05). (4) Conclusions: A mouse model of chronic intraocular hypertension can be established successfully by injecting sericin in the anterior chamber and irradiating with ultraviolet light. The model can simulate the structural and functional changes of glaucoma and can effectively reduce IOP after the action of most antihypertensive drugs, and it is highly sensitive to drugs. Sericin has no obvious toxic effect on cells and has high safety.

3.
Adv Mater Technol ; 9(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38883438

RESUMEN

Embedded printing has emerged as a valuable tool for fabricating complex structures and microfluidic devices. Currently, an ample of amount of research is going on to develop new materials to advance its capabilities and increase its potential applications. Here, we demonstrate a novel, transparent, printable, photocrosslinkable, and tuneable silicone composite that can be utilized as a support bath or an extrudable ink for embedded printing. Its properties can be tuned to achieve ideal rheological properties, such as optimal self-recovery and yield stress, for use in 3D printing. When used as a support bath, it facilitated the generation microfluidic devices with circular channels of diameter up to 30 µm. To demonstrate its utility, flow focusing microfluidic devices were fabricated for generation of Janus microrods, which can be easily modified for multitude of applications. When used as an extrudable ink, 3D printing of complex-shaped constructs were achieved with integrated electronics, which greatly extends its potential applications towards soft robotics. Further, its biocompatibility was tested with multiple cell types to validate its applicability for tissue engineering. Altogether, this material offers a myriad of potential applications (i.e., soft robotics, microfluidics, bioprinting) by providing a facile approach to develop complicated 3D structures and interconnected channels.

4.
Materials (Basel) ; 17(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930365

RESUMEN

Gelatin-based photo-crosslinkable hydrogels are promising scaffold materials to serve regenerative medicine. They are widely applicable in additive manufacturing, which allows for the production of various scaffold microarchitectures in line with the anatomical requirements of the organ to be replaced or tissue defect to be treated. Upon their in vivo utilization, the main bottleneck is to monitor cell colonization along with their degradation (rate). In order to enable non-invasive visualization, labeling with MRI-active components like N-(2,2-difluoroethyl)acrylamide (DFEA) provides a promising approach. Herein, we report on the development of a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink in combination with DFEA, applicable in digital light processing-based additive manufacturing towards bone tissue regeneration. The fabricated hydrogel constructs show excellent shape fidelity in line with the printing resolution, as DFEA acts as a small molecular crosslinker in the system. The constructs exhibit high stiffness (E = 36.9 ± 4.1 kPa, evaluated via oscillatory rheology), suitable to serve bone regeneration and excellent MRI visualization capacity. Moreover, in combination with adipose tissue-derived stem cells (ASCs), the 3D-printed constructs show biocompatibility, and upon 4 weeks of culture, the ASCs express the osteogenic differentiation marker Ca2+.

5.
Bioact Mater ; 37: 439-458, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38698918

RESUMEN

Facile and rapid 3D fabrication of strong, bioactive materials can address challenges that impede repair of large-to-massive rotator cuff tears including personalized grafts, limited mechanical support, and inadequate tissue regeneration. Herein, we developed a facile and rapid methodology that generates visible light-crosslinkable polythiourethane (PHT) pre-polymer resin (∼30 min at room temperature), yielding 3D-printable scaffolds with tendon-like mechanical attributes capable of delivering tenogenic bioactive factors. Ex vivo characterization confirmed successful fabrication, robust human supraspinatus tendon (SST)-like tensile properties (strength: 23 MPa, modulus: 459 MPa, at least 10,000 physiological loading cycles without failure), excellent suture retention (8.62-fold lower than acellular dermal matrix (ADM)-based clinical graft), slow degradation, and controlled release of fibroblast growth factor-2 (FGF-2) and transforming growth factor-ß3 (TGF-ß3). In vitro studies showed cytocompatibility and growth factor-mediated tenogenic-like differentiation of mesenchymal stem cells. In vivo studies demonstrated biocompatibility (3-week mouse subcutaneous implantation) and ability of growth factor-containing scaffolds to notably regenerate at least 1-cm of tendon with native-like biomechanical attributes as uninjured shoulder (8-week, large-to-massive 1-cm gap rabbit rotator cuff injury). This study demonstrates use of a 3D-printable, strong, and bioactive material to provide mechanical support and pro-regenerative cues for challenging injuries such as large-to-massive rotator cuff tears.

6.
Cureus ; 16(4): e58664, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38770483

RESUMEN

Background Tissue adhesives are mainly used for aiding in the attachment of adjacent tissues or to nearby hard tissue surfaces. They promote the natural healing processes of the tissues, especially for less painful closure, simple application, no need for sutures following surgery, and localized drug release. This study aimed to synthesize and assess the properties of hyaluronic acid (HA)-based, dual photocrosslinkable tissue adhesive. Materials and methodology N-hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), HA, and polymethylmethacrylate, which served as a photoinitiator, were combined to synthesize a tissue adhesive. The prepared formulation was characterized, and its biocompatibility was assessed. Results Surface morphology, mechanical properties, and biological properties of the HA adhesive were comparable to those of conventional fibrin glue. Scanning electron microscopy (SEM) analysis showed the average size of the molecules, 10-25 mm in diameter, and also showed a smooth and nonporous surface. The specimens experienced maximum compressive stress of 0.06 ± 0.02 MPa, compressive strain of 3.07 ± 2.02, and a compressive displacement at break of 3.04 ± 1.23 mm, with a maximum force of 2.33 ± 0.07 N at break. The cytotoxicity assay results for HA and fibrin glue are almost equal. Conclusion HA-based photocrosslinkable tissue adhesive could be a potential biomaterial in various applications in the field of medicine, especially in soft tissue management.

7.
Front Bioeng Biotechnol ; 12: 1385001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681961

RESUMEN

Introduction: Antibiotic resistance and weak bioavailability of antibiotics in the skin due to systemic administration leads to failure in eradication of vancomycin- and methicillin-resistant Staphylococcus aureus (VRSA and MRSA)-associated wound infections and subsequent septicemia and even death. Accordingly, this study aimed at designing a photocrosslinkable methacrylated chitosan (MECs) hydrogel coated by melittin-derived peptide 1 (MDP1) that integrated the antibacterial activity with the promising skin regenerative capacity of the hydrogel to eradicate bacteria by burst release strategy. Methods: The MECs was coated with MDP1 (MECs-MDP1), characterized, and the hydrogel-peptide interaction was evaluated by molecular docking. Antibacterial activities of MECs-MDP1 were evaluated against VRSA and MRSA bacteria and compared to MECs-vancomycin (MECs-vanco). Antibiofilm activity of MECs-MDP1 was studied by our novel 'in situ biofilm inhibition zone (IBIZ)' assay, and SEM. Biocompatibility with human dermal fibroblast cells (HDFs) was also evaluated. Results and Discussion: Molecular docking showed hydrogen bonds as the most interactions between MDP1 and MECs at a reasonable affinity. MECs-MDP1 eradicated the bacteria rapidly by burst release strategy whereas MECs-vanco failed to eradicate them at the same time intervals. Antibiofilm activity of MECs-MDP1 were also proved successfully. As a novel report, molecular docking analysis has demonstrated that MDP1 covers the structure of MECs and also binds to lysozyme with a reasonable affinity, which may explain the inhibition of lysozyme. MECs-MDP1 was also biocompatible with human dermal fibroblast skin cells, which indicates its safe future application. The antibacterial properties of a photocrosslinkable methacrylated chitosan-based hydrogel coated with MDP1 antimicrobial peptide were successfully proved against the most challenging antibiotic-resistant bacteria causing nosocomial wound infections; VRSA and MRSA. Molecular docking analysis revealed that MDP1 interacts with MECs mainly through hydrogen bonds with reasonable binding affinity. MECs-MDP1 hydrogels eradicated the planktonic state of bacteria by burst release of MDP1 in just a few hours whereas MECs-vanco failed to eradicate them. inhibition zone assay showed the anti-biofilm activity of the MECs-MDP1 hydrogel too. These findings emphasize that MECs-MDP1 hydrogel would be suggested as a biocompatible wound-dressing candidate with considerable and rapid antibacterial activities to prevent/eradicate VRSA/MRSA bacterial wound infections.

8.
Biomater Adv ; 159: 213827, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490018

RESUMEN

Chronic suppurative otitis media (CSOM) is often associated with permanent tympanic membrane (TM) perforation and conductive hearing loss. The current clinical gold standard, using autografts and allografts, suffers from several drawbacks. Artificial replacement materials can help to overcome these drawbacks. Therefore, scaffolds fabricated through digital light processing (DLP) were herein created to support TM regeneration. Various UV-curable printing inks, including gelatin methacryloyl (GelMA), gelatin-norbornene-norbornene (GelNBNB) (crosslinked with thiolated gelatin (GelSH)) and alkene-functionalized poly-ε-caprolactone (E-PCL) (crosslinked with pentaerythritol tetrakis(3-mercaptopropionate) (PETA4SH)) were optimized regarding photo-initiator (PI) and photo-absorber (PA) concentrations through viscosity characterization, photo-rheology and the establishment of working curves for DLP. Our material platform enabled the development of constructs with a range of mechanical properties (plateau storage modulus varying between 15 and 119 kPa). Excellent network connectivity for the GelNBNB and E-PCL constructs was demonstrated (gel fractions >95 %) whereas a post-crosslinking step was required for the GelMA constructs. All samples showed excellent biocompatibility (viability >93 % and metabolic activity >88 %). Finally, in vivo and ex vivo assessments, including histology, vibration and deformation responses measured through laser doppler vibrometry and digital image correlation respectively, were performed to investigate the effects of the scaffolds on the anatomical and physiological regeneration of acute TM perforations in rabbits. The data showed that the most efficient healing with the best functional quality was obtained when both mechanical (obtained with the PCL-based resin) and biological (obtained with the gelatin-based resins) material properties were taken into account.


Asunto(s)
Perforación de la Membrana Timpánica , Membrana Timpánica , Animales , Conejos , Gelatina , Señales (Psicología) , Perforación de la Membrana Timpánica/cirugía , Regeneración , Norbornanos
9.
Int J Biol Macromol ; 266(Pt 2): 131231, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554918

RESUMEN

The enormous potential of multifunctional bilayer wound dressings in various medical interventions for wound healing has led to decades of exploration into this field of medicine. However, it is usually difficult to synthesize a single hydrogel with all the required capabilities simultaneously. This paper proposes a bilayer model with an outer layer intended for hydrogel wound treatment. By adding gelatin methacrylate (GelMA) and tannic acid (TA) to the hydrogel composition and using polyvinyl alcohol-carboxymethyl chitosan (PVA-CMCs) foam layer as supports, a photocrosslinkable hydrogel with an optimal formulation was created. The hydrogels were then examined using a range of analytical procedures, including mechanical testing, rheology, chemical characterization, and in vitro and in vivo tests. The resulting bilayer wound dressing has many desirable properties, namely uniform adhesion and quick crosslinking by UV light. When used against Gram-positive and Gram-negative bacterial strains, bilayer wound dressings demonstrated broad antibacterial efficacy. In bilayer wound dressings with GelMA and TA, better wound healing was observed. Those without these elements showed less effectiveness in healing wounds. Additionally, encouraging collagen production and reducing wound infection has a major therapeutic impact on wounds. The results of this study could have a significant impact on the development of better-performing wound dressings.


Asunto(s)
Vendajes , Quitosano , Gelatina , Hidrogeles , Metacrilatos , Alcohol Polivinílico , Cicatrización de Heridas , Alcohol Polivinílico/química , Gelatina/química , Gelatina/farmacología , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Animales , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Metacrilatos/química , Metacrilatos/farmacología , Piel/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Taninos/química , Taninos/farmacología , Reactivos de Enlaces Cruzados/química , Regeneración/efectos de los fármacos , Ratones , Ratas
10.
Adv Sci (Weinh) ; 11(11): e2308635, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233151

RESUMEN

Reactive oxygen species (ROS) have been recognized as prevalent contributors to the development of inner retinal injuries including optic neuropathies such as glaucoma, non-arteritic anterior ischemic optic neuropathy, traumatic optic neuropathy, and Leber hereditary optic neuropathy, among others. This underscores the pivotal significance of oxidative stress in the damage inflicted upon retinal tissue. To combat ROS-related challenges, this study focuses on creating an injectable and tissue-adhesive hydrogel with tailored antioxidant properties for retinal applications. GelCA, a gelatin-modified hydrogel with photo-crosslinkable and injectable properties, is developed. To enhance its antioxidant capabilities, curcumin-loaded polydopamine nanoparticles (Cur@PDA NPs) are incorporated into the GelCA matrix, resulting in a multifunctional nanocomposite hydrogel referred to as Cur@PDA@GelCA. This hydrogel exhibits excellent biocompatibility in both in vitro and in vivo assessments, along with enhanced tissue adhesion facilitated by NPs in an in vivo model. Importantly, Cur@PDA@GelCA demonstrates the potential to mitigate oxidative stress when administered via intravitreal injection in retinal injury models such as the optic nerve crush model. These findings underscore its promise in advancing retinal tissue engineering and providing an innovative strategy for acute neuroprotection in the context of inner retinal injuries.


Asunto(s)
Antioxidantes , Adhesivos Tisulares , Nanogeles , Especies Reactivas de Oxígeno , Retina , Hidrogeles
11.
Macromol Rapid Commun ; 45(4): e2300549, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37983912

RESUMEN

This study focuses on developing surface coatings with excellent antifouling properties, crucial for applications in the medical, biological, and technical fields, for materials and devices in direct contact with living tissues and bodily fluids such as blood. This approach combines thermoresponsive poly(2-alkyl-2-oxazoline)s, known for their inherent protein-repellent characteristics, with established antifouling motifs based on betaines. The polymer framework is constructed from various monomer types, including a novel benzophenone-modified 2-oxazoline for photocrosslinking and an azide-functionalized 2-oxazoline, allowing subsequent modification with alkyne-substituted antifouling motifs through copper(I)-catalyzed azide-alkyne cycloaddition. From these polymers surface-attached networks are created on benzophenone-modified gold substrates via photocrosslinking, resulting in hydrogel coatings with several micrometers thickness when swollen with aqueous media. Given that poly(2-alkyl-2-oxazoline)s can exhibit a lower critical solution temperature in water, their temperature-dependent solubility is compared to the swelling behavior of the surface-attached hydrogels upon thermal stimulation. The antifouling performance of these hydrogel coatings in contact with human blood plasma is further evaluated by surface plasmon resonance and optical waveguide spectroscopy. All surfaces demonstrate extremely low retention of blood plasma components, even with undiluted plasma. Notably, hydrogel layers with sulfobetaine moieties allow efficient penetration by plasma components, which can then be easily removed by rinsing with buffer.


Asunto(s)
Azidas , Hidrogeles , Humanos , Hidrogeles/química , Polímeros/química , Plasma , Alquinos , Benzofenonas
12.
ACS Biomater Sci Eng ; 10(2): 800-813, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38159039

RESUMEN

Light-cured conductive hydrogels have attracted immense interest in the regeneration of electroactive tissues and bioelectronic interfaces. Despite the unique properties of MXene (MX), its light-blocking effect in the range of 300-600 nm hinders the efficient cross-linking of photocurable hydrogels. In this study, we investigated the photo-cross-linking process of MX-gelatin methacrylate (GelMa) composites with different types of photoinitiators and MX concentrations to prepare biocompatible, injectable, conductive, and photocurable composite hydrogels. The examined photoinitiators were Eosin Y, Irgacure 2959 (Type I), and lithium phenyl-2,4,6-trimethylbenzoyl phosphinate (Type II). The light-blocking effect of MX strongly affected the thickness, pore structure, swelling ratio, degradation, and mechanical properties of the light-cured hydrogels. Uniform distribution of MX in the hydrogel matrix was achieved at concentrations up to 0.04 wt % but the film thickness and curing times varied depending on the type of photoinitiator. It was feasible to prepare thin films (0.5 mm) by employing Type I photoinitiators under a relatively long light irradiation (4-5 min) while thick films with centimeter sizes could be rapidly cured by using Type II photoinitiator (<60 s). The mechanical properties, including elastic modulus, toughness, and stress to break for the Type II hydrogels were significantly superior (up to 300%) to those of Type I hydrogels depending on the MX concentration. The swelling ratio was also remarkably higher (648-1274%). A conductivity of about 1 mS/cm was attained at 0.1 mg/mL MX for the composite hydrogel cured by the Type I photoinitiator. In vitro cytocompatibility assays determined that the hydrogels promoted cell viability, metabolic activity, and robust proliferation of C2C12 myoblasts, which indicated their potential to support muscle cell growth during myogenesis. The developed photocurable GelMa-MX hydrogels have the potential to serve as bioactive and conductive scaffolds to modulate cellular functions and for tissue-device interfacing.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Nitritos , Elementos de Transición , Materiales Biocompatibles/farmacología , Hidrogeles/farmacología , Hidrogeles/química , Conductividad Eléctrica , Supervivencia Celular , Gelatina/química , Metacrilatos/química , Metacrilatos/farmacología
13.
Biomater Adv ; 154: 213629, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37742557

RESUMEN

Herein, we fabricated fluorine-containing, polymer-based, flexible neural probes with fluorinated ethylene propylene (FEP) films as the substrates and photo-crosslinkable fluoropolymers as the passivation material. For fabrication, metal-free Au layer formation on the FEP film, the simultaneous photo-adhesion and photo-patterning technique, and the pulsed-laser scanning probe shaping technique were combined, followed by Au electrode surface modification. The resultant probes achieved a charge injection limit equal to 5.18 mC cm-2 by implementing iridium oxide-modified nanoporous Au (IrOx/NPG) structures. We performed simultaneous in vivo micro-stimulations of the Schaffer collateral fibres and recorded the evoked field excitatory postsynaptic potentials (fEPSPs) in the stratum radiatum layer of the hippocampal Cornu Ammonis 1 region using a single probe. Inducing the fEPSP at very low charge per pulse settings (3.2-3.6 nC/pulse) indicates the efficient charge injection capability of the IrOx/NPG electrode, thereby enabling safe, prolonged, and thrifty micro-stimulations. Furthermore, the single probe-induced and recorded long-term potentiation persisted for periods longer than 60 min following theta-burst stimulation. The materials used in this study are all biocompatible and chemically robust. The fabricated neural probes can be applied in chronic clinical trials in vivo.


Asunto(s)
Polímeros de Fluorocarbono , Hipocampo , Hipocampo/fisiología , Región CA1 Hipocampal , Electrodos
14.
Int J Biol Macromol ; 250: 126063, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37524281

RESUMEN

Materials derived from renewable resources have great potential to replace fossil-based plastics in biomedical applications. In this study, the synthesis of cellulose-based photoresists by esterification with methacrylic acid anhydride and sorbic acid was investigated. These resists polymerize under UV irradiation in the range of λ = 254 nm to 365 nm, with or, in the case of the sorbic acid derivative, without using an additional photoinitiator. Usability for biomedical applications was demonstrated by investigating the adhesion and viability of a fibrosarcoma cell line (HT-1080). Compared to polystyrene, the material widely used for cell culture dishes, cell adhesion to the biomaterials tested was even stronger, as assessed by a centrifugation assay. Remarkably, chemical surface modifications of cellulose acetate with methacrylate and sorbic acid allow direct attachment of HT-1080 cells without adding protein modifiers or ligands. Furthermore, cells on both biomaterials show similar cell viability, not significantly different from polystyrene, indicating no significant impairment or enhancement, allowing the use of these cellulose derivatives as support structures for scaffolds or as a self-supporting coating for cell culture solely based on renewable resources.

15.
Mater Today Bio ; 21: 100695, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37384040

RESUMEN

Three-dimensional (3D) bioprinted cartilage-mimicking substitutes for full-thickness articular cartilage defect repair have emerged as alternatives to in situ defect repair models. However, there has been very limited breakthrough in cartilage regeneration based on 3D bioprinting owing to the lack of ideal bioinks with printability, biocompatibility, bioactivity, and suitable physicochemical properties. In contrast to animal-derived natural polymers or acellular matrices, human-derived Wharton's jelly is biocompatible and hypoimmunogenic with an abundant source. Although acellular Wharton's jelly can mimic the chondrogenic microenvironment, it remains challenging to prepare both printable and biologically active bioinks from this material. Here, we firstly prepared methacryloyl-modified acellular Wharton's jelly (AWJMA) using a previously established photo-crosslinking strategy. Subsequently, we combined methacryloyl-modified gelatin with AWJMA to obtain a hybrid hydrogel that exhibited both physicochemical properties and biological activities that were suitable for 3D bioprinting. Moreover, bone marrow mesenchymal stem cell-loaded 3D-bioprinted cartilage-mimicking substitutes had superior advantages for the survival, proliferation, spreading, and chondrogenic differentiation of bone marrow mesenchymal stem cells, which enabled satisfactory repair of a model of full-thickness articular cartilage defect in the rabbit knee joint. The current study provides a novel strategy based on 3D bioprinting of cartilage-mimicking substitutes for full-thickness articular cartilage defect repair.

16.
Pharmaceutics ; 15(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37376037

RESUMEN

Skin infections are frequently treated via intravenous or oral administration of antibiotics, which can lead to serious adverse effects and may sometimes contribute to the proliferation of resistant bacterial strains. Skin represents a convenient pathway for delivering therapeutic compounds, ensured by the high number of blood vessels and amount of lymphatic fluids in the cutaneous tissues, which are systematically connected to the rest of the body. This study provides a novel, straightforward method to obtain nafcillin-loaded photocrosslinkable nanocomposite hydrogels and demonstrates their performance as drug carriers and antimicrobial efficacy against Gram-positive bacteria. The novel formulations obtained, based on polyvinylpyrrolidone, tri(ethylene glycol) divinyl ether crosslinker, hydrophilic bentonite nanoclay, and/or two types of photoactive (TiO2 and ZnO) nanofillers, were characterized using various analytical methods (transmission electron microscopy (TEM), scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDX), mechanical tests (tension, compression, and shear), ultraviolet-visible spectroscopy (UV-Vis), swelling investigations, and via specific microbiological assays ("agar disc diffusion method" and "time-kill test"). The results reveal that the nanocomposite hydrogel possessed high mechanical resistance, good swelling abilities, and good antimicrobial activity, demonstrating a decrease in the bacteria growth between 3log10 and 2log10 after one hour of direct contact with S. aureus.

17.
Tissue Eng Part B Rev ; 29(6): 710-722, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37335218

RESUMEN

Three-dimensional (3D) bioprinting, or additive manufacturing, is a rapid fabrication technique with the foremost objective of creating biomimetic tissue and organ replacements in hopes of restoring normal tissue function and structure. Generating the engineered organs with an infrastructure that is similar to that of the real organs can be beneficial to simulate the functional organs that work inside our bodies. Photopolymerization-based 3D bioprinting, or photocuring, has emerged as a promising method in engineering biomimetic tissues due to its simplicity, and noninvasive and spatially controllable approach. In this review, we investigated types of 3D printers, mainstream materials, photoinitiators, phototoxicity, and selected tissue engineering applications of 3D photopolymerization bioprinting.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Bioimpresión/métodos , Polímeros , Impresión Tridimensional , Andamios del Tejido , Materiales Biocompatibles
18.
Carbohydr Polym ; 313: 120895, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182936

RESUMEN

While the natural carbohydrate alginate has enabled effective three-dimensional (3D) extrusion bioprinting, it still suffers from some issues such as low printability and resolution and limited cellular function due to ionic crosslinking dependency. Here, we prepared a harmless visible light-based photocrosslinkable alginate by chemically bonding tyrosine-like residues onto alginate chains to propose a new microgel manufacturing system for the development of 3D-printed bioinks. The photocrosslinkable tyramine-conjugated alginate microgel achieved both higher cell viability and printing resolution compared to the bulk gel form. This alginate-based jammed granular microgel bioink showed excellent 3D bioprinting ability with maintained structural stability. As a biocompatible material, the developed multiple cell-loaded photocrosslinkable alginate-based microgel bioink provided excellent proliferation and migration abilities of laden living cells, providing an effective strategy to construct implantable functional artificial organ structures for 3D bioprinting-based tissue engineering.


Asunto(s)
Microgeles , Andamios del Tejido , Andamios del Tejido/química , Alginatos/química , Tiramina , Gelatina/química , Ingeniería de Tejidos/métodos , Luz , Hidrogeles/química , Impresión Tridimensional
19.
Regen Biomater ; 10: rbad037, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250979

RESUMEN

Bone tissue engineering (BTE) has been proven to be an effective method for the treatment of bone defects caused by different musculoskeletal disorders. Photocrosslinkable hydrogels (PCHs) with good biocompatibility and biodegradability can significantly promote the migration, proliferation and differentiation of cells and have been widely used in BTE. Moreover, photolithography 3D bioprinting technology can notably help PCHs-based scaffolds possess a biomimetic structure of natural bone, meeting the structural requirements of bone regeneration. Nanomaterials, cells, drugs and cytokines added into bioinks can enable different functionalization strategies for scaffolds to achieve the desired properties required for BTE. In this review, we demonstrate a brief introduction of the advantages of PCHs and photolithography-based 3D bioprinting technology and summarize their applications in BTE. Finally, the challenges and potential future approaches for bone defects are outlined.

20.
Int J Biol Macromol ; 243: 124971, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37236562

RESUMEN

Mesenchymal stem cells (MSCs) have gained increasing attention in various biomedical applications. However, conventional therapeutic approaches, such as direct intravenous injection, are associated with low cell survival due to the shear force during injection and the oxidative stress microenvironments in the lesion area. Herein, a photo-crosslinkable antioxidant hydrogel based on tyramine- and dopamine-modified hyaluronic acid (HA-Tyr/HA-DA) was developed. Meanwhile, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were encapsulated in HA-Tyr/HA-DA hydrogel using a microfluidic system to create size-controllable microgels (hUC-MSCs@microgels). The HA-Tyr/HA-DA hydrogel was demonstrated to have good rheology, biocompatibility, and antioxidant properties for cell microencapsulation. The hUC-MSCs encapsulated in microgels showed a high viability and a significantly improved the survival rate under oxidative stress conditions. Therefore, the presented work provides a promising platform for MSCs microencapsulation, which may further improve the stem cell-based biomedical applications.


Asunto(s)
Células Madre Mesenquimatosas , Microgeles , Humanos , Especies Reactivas de Oxígeno , Ácido Hialurónico , Antioxidantes , Hidrogeles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA