Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202413350, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266462

RESUMEN

Photocaging is an emerging protocol for precisely manipulating spatial and temporal behaviors over biological activity. However, the red/near-infrared light-triggered photolysis process of current photocage is largely singlet oxygen (1O2)-dependent and lack of compatibility with other reactive oxygen species (ROS)-activated techniques, which has proven to be the major bottleneck in achieving efficient and precise treatment. Herein, we reported a lactosylated photocage BT-LRC by covalently incorporating camptothecin (CPT) into hybrid BODIPY-TPE fluorophore via the superoxide anion radical (O2-•)-cleavable thioketal bond for type I photodynamic therapy (PDT) and anticancer drug release. Amphiphilic BT-LRC could be self-assembled into aggregation-induced emission (AIE)-active nanoparticles (BT-LRCs) owing to the regulation of carbohydrate-carbohydrate interactions (CCIs) among neighboring lactose units in the nanoaggregates. BT-LRCs could simultaneously generate abundant O2-• through the aggregation modulated by lactose interactions, and DNA-damaging agent CPT was subsequently and effectively released. Notably, the type I PDT and CPT chemotherapy collaboratively amplified the therapeutic efficacy in HepG2 cells and tumor-bearing mice. Furthermore, the inherent AIE property of BT-LRCs endowed the photocaged prodrug with superior bioimaging capability, which provided a powerful tool for real-time tracking and finely tuning the PDT and photoactivated drug release behavior in tumor therapy.

2.
Molecules ; 29(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39202997

RESUMEN

Photoactive N-hydroxysulfonamides photocaged with the (6-bromo-7-hydroxycoumarin-4-yl)methyl chromophore have been successfully synthesized, and the mechanisms of photodecomposition investigated for two of the compounds. Upon irradiation up to 97% of a diagnostic marker for (H)NO release, sulfinate was observed for the trifluoromethanesulfonamide system. In the absence of a species that reacts rapidly with (H)NO, (H)NO instead reacts with the carbocation intermediate to ultimately generate (E)-BHC-oxime and (Z)-BHC-oxime. Alternatively, the carbocation intermediate reacts with solvent water to give a diol. Deprotonation of the N(H) proton is required for HNO generation via concerted C-O/N-S bond cleavage, whereas the protonation state of the O(H) does not affect the observed photoproducts. If the N(H) is protonated, C-O bond cleavage to generate the parent N-hydroxysulfonamide will occur, and/or O-N bond cleavage to generate a sulfonamide. The undesired competing O-N bond cleavage pathway increases when the volume percentage of water in acetonitrile/water solvent mixtures is increased.

3.
Cell Chem Biol ; 31(7): 1324-1335.e20, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38729162

RESUMEN

The ability to optically stimulate and inhibit neurons has revolutionized neuroscience research. Here, we present a direct, potent, user-friendly chemical approach for optically silencing neurons. We have rendered saxitoxin (STX), a naturally occurring paralytic agent, transiently inert through chemical protection with a previously undisclosed nitrobenzyl-derived photocleavable group. Exposing the caged toxin, STX-bpc, to a brief (5 ms) pulse of light effects rapid release of a potent STX derivative and transient, spatially precise blockade of voltage-gated sodium channels (NaVs). We demonstrate the efficacy of STX-bpc for parametrically manipulating action potentials in mammalian neurons and brain slice. Additionally, we show the effectiveness of this reagent for silencing neural activity by dissecting sensory-evoked swimming in larval zebrafish. Photo-uncaging of STX-bpc is a straightforward method for non-invasive, reversible, spatiotemporally precise neural silencing without the need for genetic access, thus removing barriers for comparative research.


Asunto(s)
Neuronas , Pez Cebra , Animales , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Saxitoxina/farmacología , Saxitoxina/metabolismo , Saxitoxina/química , Potenciales de Acción/efectos de los fármacos , Humanos , Conducta Animal/efectos de los fármacos , Larva/efectos de los fármacos , Larva/metabolismo , Luz , Ratones
4.
Biomolecules ; 14(4)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38672458

RESUMEN

While cytochrome P450 (CYP; P450) enzymes are commonly associated with the metabolism of organic xenobiotics and drugs or the biosynthesis of organic signaling molecules, they are also impacted by a variety of inorganic species. Metallic nanoparticles, clusters, ions, and complexes can alter CYP expression, modify enzyme interactions with reductase partners, and serve as direct inhibitors. This commonly overlooked topic is reviewed here, with an emphasis on understanding the structural and physiochemical basis for these interactions. Intriguingly, while both organometallic and coordination compounds can act as potent CYP inhibitors, there is little evidence for the metabolism of inorganic compounds by CYPs, suggesting a potential alternative approach to evading issues associated with rapid modification and elimination of medically useful compounds.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450 , Sistema Enzimático del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Inhibidores Enzimáticos del Citocromo P-450/química , Nanopartículas del Metal/química , Animales , Metales/química , Metales/metabolismo , Compuestos Inorgánicos/química
5.
Talanta ; 274: 126002, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38613948

RESUMEN

Developing probes for simultaneous diagnosis and killing of cancer cells is crucial, yet challenging. This article presents the design and synthesis of a novel Rhodamine B fluorescence probe. The design strategy involves utilizing an anticancer drug (Melphalan) to bind with a fluorescent group (HRhod-OH), forming HRhod-MeL, which is non-fluorescent. However, when exposed to the high levels of reactive oxygen species (ROS) of cancer cells, HRhod-MeL transforms into a red-emitting Photocage (Rhod-MeL), and selectively accumulates in the mitochondria of cancer cells, where, when activated with green light (556 nm), anti-cancer drugs released. The Photocage improve the efficacy of anti-cancer drugs and enables the precise diagnosis and killing of cancer cells. Therefore, the prepared Photocage can detect cancer cells and release anticancer drugs in situ, which provides a new method for the development of prodrugs.


Asunto(s)
Antineoplásicos , Liberación de Fármacos , Colorantes Fluorescentes , Profármacos , Rodaminas , Profármacos/química , Profármacos/farmacología , Profármacos/síntesis química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Rodaminas/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/análisis , Diseño de Fármacos , Luz , Línea Celular Tumoral
6.
J Proteome Res ; 23(2): 653-662, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38170682

RESUMEN

Cancer cells need a greater supply of glucose mainly due to their aerobic glycolysis, known as the Warburg effect. Glucose transport by glucose transporter 1 (GLUT1) is the rate-limiting step for glucose uptake, making it a potential cancer therapeutic target. However, GLUT1 is widely expressed and performs crucial functions in a variety of cells, and its indiscriminate inhibition will cause serious side effects. In this study, we designed and synthesized a photocaged GLUT1 inhibitor WZB117-PPG to suppress the growth of cancer cells in a spatiotemporally controllable manner. WZB117-PPG exhibited remarkable photolysis efficiency and substantial cytotoxicity toward cancer cells under visible light illumination with minimal side effects, ensuring its safety as a potential cancer therapy. Furthermore, our quantitative proteomics data delineated a comprehensive portrait of responses in cancer cells under glucose deprivation, underlining the mechanism of cell death via necrosis rather than apoptosis. We reason that our study provides a potentially reliable cancer treatment strategy and can be used as a spatiotemporally controllable trigger for studying nutrient deprivation-related stress responses.


Asunto(s)
Glucosa , Hidroxibenzoatos , Neoplasias , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Preparaciones de Acción Retardada , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico
7.
Cells ; 12(19)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37830565

RESUMEN

Immunosuppressants are emerging as promising candidates for cancer therapy with lower cytotoxicity compared to traditional chemotherapy drugs; yet, the intrinsic side effects such as immunosuppression remain a critical concern. Herein, we introduce a photoactivatable antitumor immunosuppressant called dmBODIPY-FTY720 (BF) that shows no cytotoxicity but can be temporally and locally activated by deep-red light illumination to induce tumor cell apoptosis. To further reduce potential side effects, we integrate BF with another classic photosensitizer called methylene blue (MB) that is activated under the same wavelength of deep-red light (>650 nm) and successfully establish a red-light-activatable AND Boolean logic gate through a mechanism that we found to be synergetic apoptotic induction. At further decreased dosages, deep-red light illumination does not induce cell death in the presence of either BF or MB, but significant cancer cell death is triggered in the presence of both drugs. Therefore, the dosage of BF is further reduced, which will be highly beneficial to minimize any potential side effects of BF. This AND-gated strategy has been successfully applied in vivo for effective suppression of hepatocarcinoma tumors in living mice.


Asunto(s)
Fotoquimioterapia , Ratones , Animales , Línea Celular Tumoral , Inmunosupresores , Luz , Fármacos Fotosensibilizantes/farmacología
8.
Chemistry ; 29(52): e202301067, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37382047

RESUMEN

Intercellular heterogeneity occurs widely under both normal physiological environments and abnormal disease-causing conditions. Several attempts to couple spatiotemporal information to cell states in a microenvironment were performed to decipher the cause and effect of heterogeneity. Furthermore, spatiotemporal manipulation can be achieved with the use of photocaged/photoactivatable molecules. Here, we provide a platform to spatiotemporally analyze differential protein expression in neighboring cells by multiple photocaged probes coupled with homemade photomasks. We successfully established intercellular heterogeneity (photoactivable ROS trigger) and mapped the targets (directly ROS-affected cells) and bystanders (surrounding cells), which were further characterized by total proteomic and cysteinomic analysis. Different protein profiles were shown between bystanders and target cells in both total proteome and cysteinome. Our strategy should expand the toolkit of spatiotemporal mapping for elucidating intercellular heterogeneity.


Asunto(s)
Proteómica , Especies Reactivas de Oxígeno/metabolismo
9.
Elife ; 122023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37265064

RESUMEN

The glucagon-like peptide-1 receptor (GLP1R) is a broadly expressed target of peptide hormones with essential roles in energy and glucose homeostasis, as well as of the blockbuster weight-loss drugs semaglutide and liraglutide. Despite its large clinical relevance, tools to investigate the precise activation dynamics of this receptor with high spatiotemporal resolution are limited. Here, we introduce a novel genetically encoded sensor based on the engineering of a circularly permuted green fluorescent protein into the human GLP1R, named GLPLight1. We demonstrate that fluorescence signal from GLPLight1 accurately reports the expected receptor conformational activation in response to pharmacological ligands with high sensitivity (max ΔF/F0=528%) and temporal resolution (τON = 4.7 s). We further demonstrated that GLPLight1 shows comparable responses to glucagon-like peptide-1 (GLP-1) derivatives as observed for the native receptor. Using GLPLight1, we established an all-optical assay to characterize a novel photocaged GLP-1 derivative (photo-GLP1) and to demonstrate optical control of GLP1R activation. Thus, the new all-optical toolkit introduced here enhances our ability to study GLP1R activation with high spatiotemporal resolution.


Asunto(s)
Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Humanos , Receptor del Péptido 1 Similar al Glucagón/genética , Liraglutida/farmacología
10.
Chemistry ; 29(40): e202300884, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37154791

RESUMEN

Multiple triggered-release strategies are widely utilized to control the release of caged target molecules. Among them, photocages with conditional triggers provide extra layers of control in photorelease. In this work, a series of pH-responsive photocages was designed that could be triggered under irradiation and specific intracellular pH values. pH-sensitive phenolic groups were conjugated with o-nitrobenzyl (oNB) to form azo-phenolic NPX photocages with tunable pKa. These azo-phenol-based oNB photocages showed differentiable photoreleasing profiles at pH 5.0, 7.2 and 9.0. By attaching fluorogenic cargos, it was shown that one of the photocages, NPdiCl, could be used to differentiate between acidic pH 5.0 and neutral pH 7.2 in cells under artificial pH conditions. Finally, NPdiCl was identified as a promising pH-responsive photocage for photoreleasing cargo inside acidic tumor cells.


Asunto(s)
Fenol , Fenoles , Concentración de Iones de Hidrógeno , Compuestos Azo/química
11.
Mol Cell Neurosci ; 125: 103845, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36948231

RESUMEN

The opioids are potent and widely used pain management medicines despite also possessing severe liabilities that have fueled the opioid crisis. The pharmacological properties of the opioids primarily derive from agonism or antagonism of the opioid receptors, but additional effects may arise from specific compounds, opioid receptors, or independent targets. The study of the opioids, their receptors, and the development of remediation strategies has benefitted from derivatization of the opioids as chemical tools. While these studies have primarily focused on the opioids in the context of the opioid receptors, these chemical tools may also play a role in delineating mechanisms that are independent of the opioid receptors. In this review, we describe recent advances in the development and applications of opioid derivatives as chemical tools and highlight opportunities for the future.


Asunto(s)
Analgésicos Opioides , Receptores Opioides , Humanos , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico
12.
Methods Enzymol ; 682: 247-288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36948704

RESUMEN

In synthetic biology, the artificial control of proteins by light is of growing interest since it enables the spatio-temporal regulation of downstream molecular processes. This precise photocontrol can be established by the site-directed incorporation of photo-sensitive non-canonical amino acids (ncAAs) into proteins, which generates so-called photoxenoproteins. Photoxenoproteins can be engineered using ncAAs that facilitate the irreversible activation or reversible regulation of their activity upon irradiation. In this chapter, we provide a general outline of the engineering process based on the current methodological state-of-the-art to obtain artificial photocontrol in proteins using the ncAAs o-nitrobenzyl-O-tyrosine as example for photocaged ncAAs (irreversible), and phenylalanine-4'-azobenzene as example for photoswitchable ncAAs (reversible). We thereby focus on the initial design as well as the production and characterization of photoxenoproteins in vitro. Finally, we outline the analysis of photocontrol under steady-state and non-steady-state conditions using the allosteric enzyme complexes imidazole glycerol phosphate synthase and tryptophan synthase as examples.


Asunto(s)
Aminoácidos , Proteínas , Aminoácidos/metabolismo , Proteínas/química , Tirosina , Fenilalanina
13.
J Inorg Biochem ; 238: 112031, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36327501

RESUMEN

Photoreactive Ru(II) complexes capable of ejecting ligands have been used extensively for photocaging applications and for the creation of "photocisplatin" reagents. The incorporation of distortion into the structure of the coordination complex lowers the energy of dissociative excited states, increasing the yield of the photosubstitution reaction. While steric clash between ligands induced by adding substituents at the coordinating face of the ligand has been extensively utilized, a lesser known, more subtle approach is to distort the coordination sphere by altering the chelate ring size. Here a systematic study was performed to alter metal-ligand bond lengths, angles, and to cause intraligand distortion by introducing a "linker" atom or group between two pyridine rings. The synthesis, photochemistry, and photobiology of five Ru(II) complexes containing CH2, NH, O, and S-linked dipyridine ligands was investigated. All systems where stable in the dark, and three of the five were photochemically active in buffer. While a clear periodic trend was not observed, this study lays the foundation for the creation of photoactive systems utilizing an alternative type of distortion to facilitate photosubstitution reactions.


Asunto(s)
Rutenio , Rutenio/química , Ligandos , Fotobiología , Fotoquímica
14.
Cell Chem Biol ; 29(12): 1729-1738.e8, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36481097

RESUMEN

Orexin neuropeptides carry out important neuromodulatory functions in the brain, yet tools to precisely control the activation of endogenous orexin signaling are lacking. Here, we developed a photocaged orexin-B (photo-OXB) through a C-terminal photocaging strategy. We show that photo-OXB is unable to activate its cognate receptors in the dark but releases functionally active native orexin-B upon uncaging by illumination with UV-visible (UV-vis) light (370-405 nm). We established an all-optical assay combining photo-OXB with a genetically encoded orexin biosensor and used it to characterize the efficiency and spatial profile of photo-OXB uncaging. Finally, we demonstrated that photo-OXB enables optical control over orexin signaling with fine temporal precision both in vitro and ex vivo. Thus, our photocaging strategy and photo-OXB advance the chemical biological toolkit by introducing a method for the optical control of peptide signaling and physiological function.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neuropéptidos , Orexinas , Receptores de Orexina , Transducción de Señal , Receptores Acoplados a Proteínas G
15.
Yi Chuan ; 44(8): 655-671, 2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36384665

RESUMEN

The site-specific recombination systems are composed of recombinases and specific recognition sites, which are powerful tools for gene manipulation and have been extensively used in life sciences research. Inducible recombination systems have been developed to precisely regulate gene expression in a spatiotemporal manner in cells and animals for applications such as gene function research, cell lineage tracing and disease treatment. Based on different spatiotemporal expression methods of recombinases, inducible recombination systems can be divided into two categories: chemical- controlled and light-controlled inductions. Light-controlled inducible recombination systems that utilize light as inducer consist of photocage and optogenetics in accordance with optical control patterns and objects. Photocaged inducible recombination systems are using photosensitive groups to control chemical inducers or recombinases. Their activities are inhibited by photosensitive groups before light induction and recovered after specific light irradiation, leading to light-controlled inducible gene recombination. While optogenetic inducible recombination systems rely on reactivations of split recombinases that mediated by optogenetic switches. Optogenetic switches are composed of a series of gene-encoded photosensitive proteins, including cryptochromes, VIVID, phytochromes, etc. These types of light-controlled inducible recombination systems provide more possibilities for analyzing gene expression and function from the dimension of high spatiotemporal resolution to meet the increasingly complex demands of life science research. In this review, we summarize the developing principles and applications of different types of light-controlled inducible recombination systems, compare their advantages and disadvantages, and prospect the development of more light-controlled recombination systems in the future, with the aims to provide theoretical basis and guidance for system optimization and upgrade.


Asunto(s)
Optogenética , Recombinasas , Animales , Optogenética/métodos , Recombinasas/metabolismo , Recombinación Genética
16.
Molecules ; 27(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36235226

RESUMEN

Bivalent ligands, including bisubstrate inhibitors, are conjugates of pharmacophores, which simultaneously target two binding sites of the biomolecule. Such structures offer attainable means for the development of compounds whose ability to bind to the biological target could be modulated by an external trigger. In the present work, two deactivatable bisubstrate inhibitors of basophilic protein kinases (PKs) were constructed by conjugating the pharmacophores via linkers that could be cleaved in response to external stimuli. The inhibitor ARC-2121 incorporated a photocleavable nitrodibenzofuran-comprising ß-amino acid residue in the structure of the linker. The pharmacophores of the other deactivatable inhibitor ARC-2194 were conjugated via reduction-cleavable disulfide bond. The disassembly of the inhibitors was monitored by HPLC-MS. The affinity and inhibitory potency of the inhibitors toward cAMP-dependent PK (PKAcα) were established by an equilibrium competitive displacement assay and enzyme activity assay, respectively. The deactivatable inhibitors possessed remarkably high 1-2-picomolar affinity toward PKAcα. Irradiation of ARC-2121 with 365 nm UV radiation led to reaction products possessing a 30-fold reduced affinity. The chemical reduction of ARC-2194 resulted in the decrease of affinity of over four orders of magnitude. The deactivatable inhibitors of PKs are valuable tools for the temporal inhibition or capture of these pharmacologically important enzymes.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Quinasas , Aminoácidos , Sitios de Unión , Disulfuros , Inhibidores Enzimáticos , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/metabolismo
17.
Chemistry ; 28(35): e202200647, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35420716

RESUMEN

In the development of photolabile protecting groups, it is of high interest to selectively modify photochemical properties with structural changes as simple as possible. In this work, knowledge of fluorophore optimization was adopted and used to design new coumarin- based photocages. Photolysis efficiency was selectively modulated by inactivating competitive decay channels, such as twisted intramolecular charge transfer (TICT) or hydrogen-bonding, and the photolytic release of the neurotransmitter serotonin was demonstrated. Structural modifications inspired by the fluorophore ATTO 390 led to a significant increase in the uncaging cross section that can be further improved by the simple addition of a double bond. Ultrafast transient absorption spectroscopy gave insights into the underlying solvent-dependent photophysical dynamics. The chromophores presented here are excellently suited as new photocages in the visible wavelength range due to their simple synthesis and their superior photochemical properties.


Asunto(s)
Cumarinas , Colorantes Fluorescentes , Cumarinas/química , Enlace de Hidrógeno , Fotoquímica , Fotólisis
18.
Chimia (Aarau) ; 76(9): 763-771, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-38069704

RESUMEN

In this account, we provide an overview of the applications that arose from the recently developed synthetic methodology that delivers heptamethine cyanines (Cy7) substituted at the central chain. The ability to easily introduce and manipulate various substituents in different substitution patterns along the cyanine chain enabled rational tailoring of the photophysical and photochemical properties. Exercising this control over the structure-property relationship proved to have a substantial impact in the field of cyanine dyes and was swiftly harnessed in a number of emerging applications in distinct areas, including fluorescent probes, biosensors, dye-sensitized upconversion nanoparticles, phototruncation of cyanines and photocages. While this method unlocked a number of new avenues, many synthetic challenges remain to be conquered in order to fully capitalize on the potential of cyanines, and we provide a short perspective that summarizes them at the end of this manuscript.

19.
RSC Chem Biol ; 2(2): 523-536, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34041491

RESUMEN

Biomolecular structural changes upon binding/unbinding are key to their functions. However, characterization of such dynamical processes is difficult as it requires ways to rapidly and specifically trigger the assembly/disassembly as well as ways to monitor the resulting changes over time. Recently, various chemical strategies have been developed to use light to trigger changes in oligonucleotide structures, and thereby their activities. Here we report that photocleavable DNA can be used to modulate the DNA binding of the Rad4/XPC DNA repair complex using light. Rad4/XPC specifically recognizes diverse helix-destabilizing/distorting lesions including bulky organic adduct lesions and functions as a key initiator for the eukaryotic nucleotide excision repair (NER) pathway. We show that the 6-nitropiperonyloxymethyl (NPOM)-modified DNA is recognized by the Rad4 protein as a specific substrate and that the specific binding can be abolished by light-induced cleavage of the NPOM group from DNA in a dose-dependent manner. Fluorescence lifetime-based analyses of the DNA conformations suggest that free NPOM-DNA retains B-DNA-like conformations despite its bulky NPOM adduct, but Rad4-binding causes it to be heterogeneously distorted. Subsequent extensive conformational searches and molecular dynamics simulations demonstrate that NPOM in DNA can be housed in the major groove of the DNA, with stacking interactions among the nucleotide pairs remaining largely unperturbed and thus retaining overall B-DNA conformation. Our work suggests that photoactivable DNA may be used as a DNA lesion surrogate to study DNA repair mechanisms such as nucleotide excision repair.

20.
ACS Appl Mater Interfaces ; 13(6): 7094-7101, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33522229

RESUMEN

Activating upconversion nanoparticle-based photoresponsive nanovectors (UCPNVs) by upconversion visible light at low-power near-infrared (NIR) excitation can realize deeper biotissue stimulation with a minimized overheating effect and photodamage. Here, we demonstrate a facile strategy to construct new surface-decorated UCPNVs based on Passerini three-component reaction (P-3CR) in highly convenient and effective manners. Such UCPNVs materials have a tailored deprotecting wavelength that overlaps upconversion blue light. By using 3-perylenecarboxaldehyde, Tm3+/Yb3+ ion-doped UCNP-containing isocyanides, and antitumor agent chlorambucil as the three components, the resulting monodisperse UCPNV exhibits an efficient release of caged chlorambucil under a very low 976 nm power. This approach expands the synthetic toolbox to enable quick development of UCPNVs for UCNP-assisted low-power NIR photochemistry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA