Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Exp Cell Res ; 437(1): 113977, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373588

RESUMEN

Serine metabolic reprogramming is known to be associated with oncogenesis and tumor development. The key metabolic enzyme PSAT1 has been identified as a potential prognostic marker for various cancers, but its role in ccRCC remains unkown. In this study, we investigated expression of PSAT1 in ccRCC using the TCGA database and clinical specimens. Our results showed that PSAT1 exhibited lower expression in tumor tissue compared to adjacent normal tissue, but its expression level increased with advancing stages and grades of ccRCC. Patients with elevated expression level of PSAT1 exhibited an unfavorable prognosis. Functional experiments have substantiated that the depletion of PSAT1 shows an effective activity in inhibiting the proliferation, migration and invasion of ccRCC cells, concurrently promoting apoptosis. RNA sequencing analysis has revealed that the attenuation of PSAT1 can diminish tumor resistance to therapeutic drugs. Furthermore, the xenograft model has indicated that the inhibition of PSAT1 can obviously impact the tumorigenic potential of ccRCC and mitigate lung metastasis. Notably, pharmacological targeting PSAT1 by Aminooxyacetic Acid (AOA) or knockdown of PSAT1 increased the susceptibility of sunitinib-resistant cells. Inhibition of PSAT1 increased the sensitivity of drug-resistant tumors to sunitinib in vivo. Collectively, our investigation identifies PSAT1 as an independent prognostic biomarker for advanced ccRCC patients and as a prospective therapeutic target.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Resistencia a Medicamentos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Sunitinib , Regulación hacia Arriba/genética
2.
Endocr Relat Cancer ; 30(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37650685

RESUMEN

Despite the successful combination of therapies improving survival of estrogen receptor α (ER+) breast cancer patients with metastatic disease, mechanisms for acquired endocrine resistance remain to be fully elucidated. The RNA binding protein HNRNPA2B1 (A2B1), a reader of N(6)-methyladenosine (m6A) in transcribed RNA, is upregulated in endocrine-resistant, ER+ LCC9 and LY2 cells compared to parental MCF-7 endocrine-sensitive luminal A breast cancer cells. The miRNA-seq transcriptome of MCF-7 cells overexpressing A2B1 identified the serine metabolic processes pathway. Increased expression of two key enzymes in the serine synthesis pathway (SSP), phosphoserine aminotransferase 1 (PSAT1) and phosphoglycerate dehydrogenase (PHGDH), correlates with poor outcomes in ER+ breast patients who received tamoxifen (TAM). We reported that PSAT1 and PHGDH were higher in LCC9 and LY2 cells compared to MCF-7 cells and their knockdown enhanced TAM sensitivity in these-resistant cells. Here we demonstrate that stable, modest overexpression of A2B1 in MCF-7 cells increased PSAT1 and PHGDH and endocrine resistance. We identified four miRNAs downregulated in MCF-7-A2B1 cells that directly target the PSAT1 3'UTR (miR-145-5p and miR-424-5p), and the PHGDH 3'UTR (miR-34b-5p and miR-876-5p) in dual luciferase assays. Lower expression of miR-145-5p and miR-424-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PSAT1 and lower expression of miR-34b-5p and miR-876-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PHGDH. Transient transfection of these miRNAs restored endocrine-therapy sensitivity in LCC9 and ZR-75-1-4-OHT cells. Overall, our data suggest a role for decreased A2B1-regulated miRNAs in endocrine resistance and upregulation of the SSP to promote tumor progression in ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Mama/patología , Regiones no Traducidas 3' , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Mama/metabolismo , Células MCF-7 , Regulación Neoplásica de la Expresión Génica , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral
3.
J Cell Commun Signal ; 17(3): 851-862, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36745318

RESUMEN

Hepatic ischemia-reperfusion (I/R) injury is a severe clinical syndrome, causing a profound medical and socioeconomic burden worldwide. This study aimed to explore underlying biomarkers and treatment targets in the progression of hepatic I/R injury. We screened gene expression profiles of the hepatic I/R injury from the Gene Expression Omnibus (GEO) database, downloaded expression profiles data (GSE117066). Differentially expressed genes (DEGs) were identified through cluster of the PPI network, and enrichment pathways were conducted based on gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The bioinformatics analysis was used to identify biomarkers that alleviate hepatic I/R injury. Finally, the effects of hub gene were investigated by in vitro and in vivo experiments. A total of 162 DEGs (76 up-regulated and 86 down-regulated genes) were extracted between sham and I/R, and 248 DEGs (118 up-regulated and 130 down-regulated genes) were extracted between I/R and ischemic postconditioning (IPO). The cluster of the PPI network and maximal clique centrality (MCC) method of the common DEGs were performed to identify the phosphoserine aminotransferase 1 (PSAT1) as the potential gene for hepatic I/R injury. Then, the H-E, TUNEL and PCNA staining were indicated that the hepatic injury score was highest in I/R 6 h. The expression level of apoptosis-related proteins was consistent with the pathological results. Both gain- and loss-of-function assays demonstrated that hepatic I/R injury was alleviated by PSAT1. PSAT1 may play crucial roles in hepatic I/R injury and thus serves as a hub biomarker for hepatic I/R injury prognosis and individual-based treatment.

4.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34544857

RESUMEN

Tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM) are caused by aberrant mechanistic Target of Rapamycin Complex 1 (mTORC1) activation due to loss of either TSC1 or TSC2 Cytokine profiling of TSC2-deficient LAM patient-derived cells revealed striking up-regulation of Interleukin-6 (IL-6). LAM patient plasma contained increased circulating IL-6 compared with healthy controls, and TSC2-deficient cells showed up-regulation of IL-6 transcription and secretion compared to wild-type cells. IL-6 blockade repressed the proliferation and migration of TSC2-deficient cells and reduced oxygen consumption and extracellular acidification. U-13C glucose tracing revealed that IL-6 knockout reduced 3-phosphoserine and serine production in TSC2-deficient cells, implicating IL-6 in de novo serine metabolism. IL-6 knockout reduced expression of phosphoserine aminotransferase 1 (PSAT1), an essential enzyme in serine biosynthesis. Importantly, recombinant IL-6 treatment rescued PSAT1 expression in the TSC2-deficient, IL-6 knockout clones selectively and had no effect on wild-type cells. Treatment with anti-IL-6 (αIL-6) antibody similarly reduced cell proliferation and migration and reduced renal tumors in Tsc2+/- mice while reducing PSAT1 expression. These data reveal a mechanism through which IL-6 regulates serine biosynthesis, with potential relevance to the therapy of tumors with mTORC1 hyperactivity.


Asunto(s)
Interleucina-6/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina/metabolismo , Transaminasas/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Interleucina-6/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transaminasas/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteína 2 del Complejo de la Esclerosis Tuberosa/fisiología
5.
Cancers (Basel) ; 13(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34439090

RESUMEN

An elevated expression of phosphoserine aminotransferase 1 (PSAT1) has been observed in multiple tumor types and is associated with poorer clinical outcomes. Although PSAT1 is postulated to promote tumor growth through its enzymatic function within the serine synthesis pathway (SSP), its role in cancer progression has not been fully characterized. Here, we explore a putative non-canonical function of PSAT1 that contributes to lung tumor progression. Biochemical studies found that PSAT1 selectively interacts with pyruvate kinase M2 (PKM2). Amino acid mutations within a PKM2-unique region significantly reduced this interaction. While PSAT1 loss had no effect on cellular pyruvate kinase activity and PKM2 expression in non-small-cell lung cancer (NSCLC) cells, fractionation studies demonstrated that the silencing of PSAT1 in epidermal growth factor receptor (EGFR)-mutant PC9 or EGF-stimulated A549 cells decreased PKM2 nuclear translocation. Further, PSAT1 suppression abrogated cell migration in these two cell types whereas PSAT1 restoration or overexpression induced cell migration along with an elevated nuclear PKM2 expression. Lastly, the nuclear re-expression of the acetyl-mimetic mutant of PKM2 (K433Q), but not the wild-type, partially restored cell migration in PSAT1-silenced cells. Therefore, we conclude that, in response to EGFR activation, PSAT1 contributes to lung cancer cell migration, in part, by promoting nuclear PKM2 translocation.

6.
Endocr Relat Cancer ; 28(1): 27-37, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33112838

RESUMEN

Estrogen receptor-positive breast cancer (ER+ BC) is the most common form of breast carcinoma accounting for approximately 70% of all diagnoses. Although ER-targeted therapies have improved survival outcomes for this BC subtype, a significant proportion of patients will ultimately develop resistance to these clinical interventions, resulting in disease recurrence. Phosphoserine aminotransferase 1 (PSAT1), an enzyme within the serine synthetic pathway (SSP), has been previously implicated in endocrine resistance. Therefore, we determined whether expression of SSP enzymes, PSAT1 or phosphoglycerate dehydrogenase (PHGDH), affects the response of ER+ BC to 4-hydroxytamoxifen (4-OHT) treatment. To investigate a clinical correlation between PSAT1, PHGDH, and endocrine resistance, we examined microarray data from ER+ patients who received tamoxifen as the sole endocrine therapy. We confirmed that higher PSAT1 and PHGDH expression correlates negatively with poorer outcomes in tamoxifen-treated ER+ BC patients. Next, we found that SSP enzyme expression and serine synthesis were elevated in tamoxifen-resistant compared to tamoxifen-sensitive ER+ BC cells in vitro. To determine relevance to endocrine sensitivity, we modified the expression of either PSAT1 or PHGDH in each cell type. Overexpression of PSAT1 in tamoxifen-sensitive MCF-7 cells diminished 4-OHT inhibition on cell proliferation. Conversely, silencing of either PSAT1 or PHGDH resulted in greater sensitivity to 4-OHT treatment in LCC9 tamoxifen-resistant cells. Likewise, the combination of a PHGDH inhibitor with 4-OHT decreased LCC9 cell proliferation. Collectively, these results suggest that overexpression of serine synthetic pathway enzymes contribute to tamoxifen resistance in ER+ BC, which can be targeted as a novel combinatorial treatment option.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Serina/metabolismo , Tamoxifeno/uso terapéutico , Femenino , Humanos , Tamoxifeno/farmacología , Transfección
7.
Oncol Rep ; 44(5): 2130-2142, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32901893

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is the main subtype of esophageal cancer in China, and the prognosis of patients remains poor mainly due to the occurrence of lymph node and distant metastasis. The long non­coding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been shown to have tumor­suppressive properties and to play an important role in epithelial­to­mesenchymal transition (EMT) in some solid tumors. However, whether MEG3 is involved in EMT in ESCC remains unclear. In the present study, the MEG3 expression level and its association with tumorigenesis were determined in 43 tumor tissues of patients with ESCC and in ESCC cells using reverse transcription­quantitative PCR analysis. Gene microarray analysis was performed to detect differentially expressed genes (DEGs). Based on the functional annotation results, the effects of ectopic expression of MEG3 on cell growth, migration, invasion and EMT were assessed. MEG3 expression level was found to be markedly lower in tumor tissues and cells. Statistical analysis revealed that MEG3 expression was significantly negatively associated with lymph node metastasis and TNM stage in ESCC. Fluorescence in situ hybridization assay demonstrated that MEG3 was expressed mainly in the nucleus. Ectopic expression of MEG3 inhibited cell proliferation, migration, invasion and cell cycle progression in EC109 cells. Gene microarray results demonstrated that 177 genes were differentially expressed ≥2.0 fold in MEG3­overexpressing cells, including 23 upregulated and 154 downregulated genes. Functional annotation revealed that the DEGs were mainly involved in amino acid biosynthetic process, mitogen­activated protein kinase signaling, and serine and glycine metabolism. Further experiments indicated that the ectopic expression of MEG3 significantly suppressed cell proliferation, migration, invasion and EMT by downregulating phosphoserine aminotransferase 1 (PSAT1). In pathological tissues, PSAT1 and MEG3 were significantly negatively correlated, and high expression of PSAT1 predicted poor survival. Taken together, these results suggest that MEG3 may be a useful prognostic biomarker and may suppress EMT by inhibiting the PSAT1­dependent glycogen synthase kinase­3ß/Snail signaling pathway in ESCC.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , Factores de Transcripción de la Familia Snail/antagonistas & inhibidores , Transaminasas/antagonistas & inhibidores , Adulto , Anciano , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/fisiología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Xenoinjertos , Humanos , Metástasis Linfática , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , ARN Largo no Codificante/genética , Transducción de Señal , Factores de Transcripción de la Familia Snail/metabolismo , Tasa de Supervivencia , Transaminasas/metabolismo
8.
Onco Targets Ther ; 13: 5443-5453, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32606761

RESUMEN

INTRODUCTION: A growing number of studies have found that the serine-glycine biosynthesis pathway is highly activated for biosynthesis in cancer progression and metastasis. Phosphoserine aminotransferase 1 (PSAT1) catalyzes the second step of the serine-glycine biosynthesis pathway; the effects and mechanism of PSAT1 in epithelial ovarian cancer (EOC) remains unclear. MATERIALS AND METHODS: The expression of PSAT1 in clinical EOC samples and normal ovarian tissues was conducted by RT-PCR, Western blot, and immunohistochemical staining. Survival analysis of PSAT1 in ovarian cancer was performed by using the public database. Following the downregulation of PSAT1, the cell growth, cell apoptosis, and cell cycle in ovarian cancer cells were respectively examined by the soft agar colony formation assay and flow cytometry analysis. Then the glutathione (GSH) levels, the GSH/GSSG ratio, the NADPH/NADP ratio, and the cellular reactive oxygen species (ROS) levels were tested to analyze the oxidation-reduction balance in PSAT1-depleted ovarian cancer cells. RESULTS: PSAT1 is markedly over-expressed in clinical EOC samples (n = 90) compared to that in normal ovarian tissues (n = 10), and the expression of PSAT1 is correlated with histological subtype, FIGO stage, histological grade, lymph node metastasis, distant metastasis and the presence of ascites. Public database analysis shows that higher PSAT1 indicates poor survival in EOC patients. Downregulation of PSAT1 in EOC cells inhibits growth, induces apoptosis and cell cycle arrest in vitro. EOC cells with high PSAT1 levels have increased a higher GSH (reduced glutathione)/GSSG (oxidized glutathione) ratio and lower reactive oxygen species (ROS) content. The cancer-killing effects of PSAT1 knockdown are reversed by exogenous glutathione. PSAT1 participates in cancer growth by regulating oxidation-reduction balance. CONCLUSION: Therefore, these results highlight the potential of PSAT1 inhibitors or metabolic substrate deprivation as therapeutic strategies for treating patients with EOC, especially those with advanced stages of cancer.

9.
Anticancer Res ; 39(12): 6723-6730, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31810937

RESUMEN

BACKGROUND/AIM: Phosphoserine aminotransferase 1 (PSAT1) is an enzyme implicated in serine biosynthesis, and its overexpression has been linked to cancer cell proliferation. Therefore, targeting PSAT1 is considered to be an anticancer strategy. MATERIALS AND METHODS: The viability of non-small cell lung cancer (NSCLC) cells was measured by MTT assay. Protein and mRNA expression were determined by western blot and reverse transcription polymerase chain reaction, respectively. RESULTS: Glutamine-limiting conditions were generated through glutamine deprivation or CB-839 treatment, which induced PSAT1 expression in NSCLC cells. PSAT1 expression induced by glutamine-limiting conditions was regulated by activating transcription factor 4. Knock-down of PSAT1 enhanced the sensitivity of NSCLC cells to glutamine-limiting conditions. Interestingly, ionizing radiation induced PSAT1 expression, and knocking down PSAT1 increased cell sensitivity to ionizing radiation. CONCLUSION: Inhibiting PSAT1 might aid in the treatment of lung cancer, and PSAT1 may be a therapeutic target for lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Glutamina/metabolismo , Neoplasias Pulmonares/metabolismo , Transaminasas/metabolismo , Factor de Transcripción Activador 4/metabolismo , Bencenoacetamidas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Línea Celular Tumoral , Supervivencia Celular , Técnicas de Sustitución del Gen , Glutaminasa/antagonistas & inhibidores , Glutamina/antagonistas & inhibidores , Humanos , Pulmón/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia , ARN Mensajero/metabolismo , Tolerancia a Radiación , Tiadiazoles/farmacología , Transaminasas/genética
10.
J Transl Med ; 17(1): 190, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31171023

RESUMEN

BACKGROUND: Ovarian cancer (OC) is one of the leading causes for cancer-related deaths among women. MicroRNAs (miRs) have been proved to be vital to the development and progression of OC. Hence, the study aims to evaluate the ability of miR-195-5p affecting cisplatin (DDP) resistance and angiogenesis in OC and the underlying mechanism. METHODS: MiRs that could target phosphoserine aminotransferase 1 (PSAT1), a differentially expressed gene in OC, were predicted by miRNA-mRNA prediction websites. The expression patterns of miR-195-5p in the OC tissues and cells were determined using RNA quantification assay. The role of miR-195-5p in OC was evaluated by determining DDP resistance, apoptosis and angiogenesis of OC cells after up-regulating or down-regulating miR-195-5p or PSAT1, or blocking the glycogen synthase kinase-3ß (GSK3ß)/ß-catenin signaling pathway. Animal experiment was conducted to explore the effect of miR-195-5p on resistance to DDP and angiogenesis. RESULT: MiR-195-5p directly targeted PSAT1 and down-regulated its expression. The expression of miR-195-5p was lower while that of PSAT1 was higher in OC tissues than in adjacent normal tissues. When miR-195-5p was over-expressed or PSAT1 was silenced, the expression of HIF-1α, VEGF, PSAT1, ß-catenin as well as the extent of GSK3ß phosphorylation was reduced, the angiogenesis and resistance to DDP was diminished and apoptosis was promoted both in vitro and in vivo. The inhibition of GSK3ß/ß-catenin signaling pathway was involved in the regulation process. CONCLUSION: Over-expression of miR-195-5p reduced angiogenesis and DDP resistance in OC, which provides a potential therapeutic target for the treatment of OC.


Asunto(s)
Carcinoma Epitelial de Ovario , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , MicroARNs/genética , Neovascularización Patológica/genética , Neoplasias Ováricas , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Transaminasas/fisiología , Células Tumorales Cultivadas , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/metabolismo
11.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-754343

RESUMEN

Objectives: To investigate the expression of phosphoserine aminotransferase 1 (PSAT1) in pancreatic cancer tissues, and its potential role in pancreatic cancer. Methods: The expression of PSAT1 in 98 human pancreatic cancer tissues, which were collected from the People's Hospital of Guizhou, between July 2013 to July 2017, and the corresponding adjacent normal tissues was analyzed by immunohistochemical staining. Additionally, the relationship between the expression of PSAT1 and the clinicopathological parame-ters, overall survival (OS), and disease-free survival (DFS) of patients with pancreatic cancer was evaluated. The human pancreatic can-cer cell lines, BxPC-3 and SW1990, were transfected with PSAT1-siRNA, to investigate the effect of PSAT1 knockdown on cell prolifera-tion, migration, and invasion. Additionally, we performed Western blot to assess the expression of PI3K/Akt/mTOR-related proteins in PSAT1-knockdown cells. Results: The percentages of PSAT1-positive cells in pancreatic cancer and adjacent non-tumor tissues were 69.4% (68/98) and 5.0% (5/98), respectively, indicating a significantly higher expression of PSAT1 in pancreatic cancer tissues com-pared to adjacent non-tumor tissues (P<0.05). The increased expression of PSAT1 in pancreatic cancer tissues correlated with lymph node metastasis and TNM stage. Kaplan-Meier analysis suggested that a high expression of PSAT1 correlated with a poor OS and DFS compared to a low expression of PSAT1 (P<0.05). Cox regression analysis showed that the expression of PSAT1 is an independent prog-nostic marker for OS and DFS in pancreatic cancer patients (P<0.05, all). Transient transfection of BxPC-3 and SW1990 cells with PSAT1-siRNA markedly reduced the cell proliferation, migration, and invasion abilities of these cells compared to transfection with NC-siRNA (P<0.05). Knockdown of PSAT1 in pancreatic cancer cells also inhibited the expression of p-Akt and p-mTOR (P<0.05). Conclusions: The expression of PSAT1 increases in human pancreatic cancer tissues and cell lines. Additionally, PSAT1 regulates cell proliferation and in-vasion through the PI3K/Akt/mTOR pathway.

12.
Oncol Lett ; 14(6): 8014-8020, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29344244

RESUMEN

The aim of the present study was to explore the existence of known or candidate drug-target genes that are upregulated in colorectal cancer (CRC) and may serve as novel prognostic factors or therapeutic targets for this type of malignancy. An in silico analysis was conducted using the Oncomine tool to compare the expression levels of a list of drug-target genes between cancerous and normal tissues in 6 independent CRC cohorts retrieved from the Oncomine database. Phosphoserine aminotransferase 1 (PSAT1) was identified as the top-ranked upregulated gene in CRC tumors, and was highly expressed in patients with chemoresistant disease. Subsequently, the expression of PSAT1 was further experimentally validated using immunohistochemistry in an independent cohort of CRC specimens. The immunohistochemistry results demonstrated that PSAT1 was overexpressed in the CRC tissues compared with the normal colorectal tissues, which was consistent with the previous in silico analysis. Furthermore, PSAT1 overexpression was associated with response to irinotecan, 5-fluorouracil and leucovorin chemotherapy, and with shorter survival time, and retained significance as an independent prognostic factor for CRC when subjected to the multivariate analysis with a Cox's proportional hazards model. Therefore, the present results implicate PSAT1 as a potential prognostic biomarker and a promising therapeutic target for CRC. Targeted PSAT1 inhibition in the treatment of CRC warrants further investigation.

13.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-422926

RESUMEN

ObjectiveTo detect the association between schizophrenia and polymorphism of phosphoserine aminotransferase 1 ( PSAT1 ) gene.MethodsThe study group included 158 patients with schizophrenia from Xi' an Mental Health Center and the control group included 316 parents.The polymorphism of rs69287125,rs137824326 of phosphoserine aminotransferase 1 gene was detected with PCR methods and SNP typing in all nucleus families by correlation analysis and haplotype relative risk analysis.ResultsThe rs69287125 allele was associated with schizophrenia (P=0.011 ),the G allele was protective factor (Z =-2.31 ) and the A allele was hazarding factor (Z =2.31 ).The rs137824326 allele was associated with schizophrenia (P=0.007 ),the G allele was protective factor ( Z =- 2.54) and the A allele was the hazarding factor( Z =2.54).The haplotypes of A/A and G/G in the rs69287125-rs137824326 were associated with schizophrenia (P =0.021,0.015,Z =2.16,- 1.85).ConclusionThe polymorphism of phosphoserine aminotransferase 1 gene is associated with schizophrenia in Chinese.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA