Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(11): e31570, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38828317

RESUMEN

Yield potential of maize having distinct genetic diversity in Eastern Himalayan Region (EHR) hill ecologies is often limited by Al toxicity caused due to soil acidity. Stress physiological analysis of local check exposed to 0-300 µM Al under sand culture revealed that 150 µM Al as critical and 200 µM Al as tolerable limit. Increase in Al from 0 to 300 µM reduced total chlorophyll, carotenoids by 74.8 % and 44.7 % respectively and enhanced anthocyanin by 35.3 % whereas LA, SLW and SL have reduced by 81.3%, 21.3 % and 47.8 % respectively. R/S ratio was 51.0 and 13.7 % higher at lower Al levels (50 µM and 100 µM) and photosynthetic, transpiration rate and TDM were 62.5 %, 42.9 % and 78.6 % lower at higher Al (300 µM) as compared to control. TRL, RSA, RDW and RV at higher Al (300 µM) were 92.6 %, 98.7 %, 78.7 and 97.5 % lower over control respectively. Root and shoot Al and PUpE at higher Al (300 µM) was 194.0, 69.2 and 830 % higher whereas PUE decreased to 88.5 % over control. Evaluation of 31 indigenous maize cultivars at 0, 150, and 250 µM Al in sand culture, alongside tolerance scoring and assessment, revealed that Megha-9, Megha-10, and MZM-19 exhibits high Al tolerance, Megha-1, MZM-22, and MZM-42 demonstrated moderate tolerance, whereas Uruapara, Sublgarh, and BRL Para were identified as Al-sensitive. Stress physiological parameters like SDW, TDM, TRL, SL and LA contributed 46.02 % of variability to PC1, whereas A, RV, RSA, anthocyanin and Chlorophyll_b, contributed 13.56 % of variability to PC2. Highest values of CMS, SL, LP, LA, TRL and anthocyanin were recorded in cluster I having sensitive cultivars while highest CMS, SL, LA, LP, TRL and RSA were found in cluster II having moderately tolerant cultivars and highest mean values for TRL, RSA, LP, LA, CMS and SL were recorded in cluster III having highly Al stress tolerant cultivars. The traits viz., A, RV, RSA, anthocyanin and Chlorophyll_b, total chlorophyll and TDM were emanated as physio-morphological for assessing Al toxicity stress tolerance in Maize with high divergence values. Tolerant cultivars showing 63.4 % and 22.4 % higher anthocyanin at 150 µM Al and 250 µM Al than moderately tolerant one in acid soil experiment with increased root Al, shoot Al, root P and shoot P by 42.6 %, 11 %, 95.1 % and 34 % respectively were emerged as promising for novel maize improvement under acid soils of EHR.

2.
Plant Cell Environ ; 45(3): 884-899, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35137976

RESUMEN

Upland rice (Oryza sativa) is adapted to strongly phosphorus (P) sorbing soils. The mechanisms underlying P acquisition, however, are not well understood, and models typically underestimate uptake. This complicates root ideotype development and trait-based selection for further improvement. We present a novel model, which correctly simulates the P uptake by a P-efficient rice genotype measured over 48 days of growth. The model represents root morphology at the local rhizosphere scale, including root hairs and fine S-type laterals. It simulates fast- and slowly reacting soil P and the P-solubilizing effect of root-induced pH changes in the soil. Simulations predict that the zone of pH changes and P solubilization around a root spreads further into the soil than the zone of P depletion. A root needs to place laterals outside its depletion- but inside its solubilization zone to maximize P uptake. S-type laterals, which are short but hairy, appear to be the key root structures to achieve that. Thus, thicker roots facilitate the P uptake by fine lateral roots. Uptake can be enhanced through longer root hairs and greater root length density but was less sensitive to total root length and root class proportions.


Asunto(s)
Oryza , Fósforo , Oryza/genética , Raíces de Plantas , Rizosfera , Suelo/química
3.
Ann Bot ; 129(1): 53-64, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34582551

RESUMEN

BACKGROUND AND AIMS: Soil phosphorus (P) deficiency and salinity are constraints to crop productivity in arid and semiarid regions. Salinity may weaken the effect of P fertilization on plant growth. We investigated the interactive effects of soil P availability and salinity on plant growth, P nutrition and salt tolerance of two alfalfa (Medicago sativa) cultivars. METHODS: A pot experiment was carried out to grow two cultivars of alfalfa in a loess soil under a combination of different rates of added P (0, 40, 80 and 160 mg P kg-1 soil as monopotassium phosphate) and sodium chloride (0, 0.4, 0.8 and 1.6 g NaCl kg-1 soil). Plant biomass, concentrations of P ([P]), sodium ([Na]) and potassium ([K]) were determined, and rhizosheath carboxylates were analysed. KEY RESULTS: There were significant interactions between soil P availability and salinity on some, but not all, of the parameters investigated, and interactions depended on cultivar. Plant growth and P uptake were enhanced by P fertilization, but inhibited by increased levels of salinity. Increasing the salinity resulted in decreased plant P-uptake efficiency and [K]/[Na]. Only soil P availability had a significant effect on the amount of tartrate in the rhizosheath of both cultivars. CONCLUSIONS: Increased salinity aggravated P deficiency. Appropriate application of P fertilizers improved the salt tolerance of alfalfa and increased its productivity in saline soils.


Asunto(s)
Medicago sativa , Salinidad , Fertilización , Fósforo , Raíces de Plantas , Sodio , Suelo , Tartratos/farmacología
4.
J Exp Bot ; 72(2): 199-223, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33211873

RESUMEN

Inorganic phosphate (Pi) is an essential macronutrient required for many fundamental processes in plants, including photosynthesis and respiration, as well as nucleic acid, protein, and membrane phospholipid synthesis. The huge use of Pi-containing fertilizers in agriculture demonstrates that the soluble Pi levels of most soils are suboptimal for crop growth. This review explores recent advances concerning the understanding of adaptive metabolic processes that plants have evolved to alleviate the negative impact of nutritional Pi deficiency. Plant Pi starvation responses arise from complex signaling pathways that integrate altered gene expression with post-transcriptional and post-translational mechanisms. The resultant remodeling of the transcriptome, proteome, and metabolome enhances the efficiency of root Pi acquisition from the soil, as well as the use of assimilated Pi throughout the plant. We emphasize how the up-regulation of high-affinity Pi transporters and intra- and extracellular Pi scavenging and recycling enzymes, organic acid anion efflux, membrane remodeling, and the remarkable flexibility of plant metabolism and bioenergetics contribute to the survival of Pi-deficient plants. This research field is enabling the development of a broad range of innovative and promising strategies for engineering phosphorus-efficient crops. Such cultivars are urgently needed to reduce inputs of unsustainable and non-renewable Pi fertilizers for maximum agronomic benefit and long-term global food security and ecosystem preservation.


Asunto(s)
Ecosistema , Fósforo , Adaptación Fisiológica , Fertilizantes , Fosfatos , Raíces de Plantas
5.
Front Plant Sci ; 8: 509, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28443109

RESUMEN

Limited phosphorus availability in the soil is one of the major constraints to the growth and productivity of rice across Asian, African and South American countries, where 50% of the rice is grown under rain-fed systems on poor and problematic soils. With an aim to determine novel alleles for enhanced phosphorus uptake efficiency in wild species germplasm of rice Oryza rufipogon, we investigated phosphorus uptake1 (Pup1) locus with 11 previously reported SSR markers and sequence characterized the phosphorus-starvation tolerance 1 (PSTOL1) gene. In the present study, we screened 182 accessions of O. rufipogon along with Vandana as a positive control with SSR markers. From the analysis, it was inferred that all of the O. rufipogon accessions undertaken in this study had an insertion of 90 kb region, including Pup1-K46, a diagnostic marker for PSTOL1, however, it was absent among O. sativa cv. PR114, PR121, and PR122. The complete PSTOL1 gene was also sequenced in 67 representative accessions of O. rufipogon and Vandana as a positive control. From comparative sequence analysis, 53 mutations (52 SNPs and 1 nonsense mutation) were found in the PSTOL1 coding region, of which 28 were missense mutations and 10 corresponded to changes in the amino acid polarity. These 53 mutations correspond to 17 haplotypes, of these 6 were shared and 11 were scored only once. A major shared haplotype was observed among 44 accessions of O. rufipogon along with Vandana and Kasalath. Out of 17 haplotypes, accessions representing 8 haplotypes were grown under the phosphorus-deficient conditions in hydroponics for 60 days. Significant differences were observed in the root length and weight among all the genotypes when grown under phosphorus deficiency conditions as compared to the phosphorus sufficient conditions. The O. rufipogon accession IRGC 106506 from Laos performed significantly better, with 2.5 times higher root weight and phosphorus content as compared to the positive control Vandana. In terms of phosphorus uptake efficiency, the O. rufipogon accessions IRGC 104639, 104712, and 105569 also showed nearly two times higher phosphorus content than Vandana. Thus, these O. rufipogon accessions could be used as the potential donor for improving phosphorus uptake efficiency of elite rice cultivars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA