Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202410514, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38966937

RESUMEN

Organic scintillators are praised for their abundant element reserves, facile preparation procedures, and rich structures. However, the weak X-ray attenuation ability and low exciton utilization efficiency result in unsatisfactory scintillation performance. Herein, a new family of highly efficient organic phosphonium halide salts with thermally activated delayed fluorescence (TADF) are designed by innovatively adopting quaternary phosphonium as the electron acceptor, while dimethylamine group and halide anions (I-) serve as the electron donor. The prepared butyl(2-[2-(dimethylamino)phenyl]phenyl)diphenylphosphonium iodide (C4-I) exhibits bright blue emission and an ultra-high photoluminescence quantum yield (PLQY) of 100 %. Efficient charge transfer is realized through the unique n-π and anion-π stacking in solid-state C4-I. Photophysical studies of C4-I suggest that the incorporation of I accounts for high intersystem crossing rate (kISC) and reverse intersystem crossing rate (kRISC), suppressing the intrinsic prompt fluorescence and enabling near-pure TADF emission at room temperature. Benefitting from the large Stokes shift, high PLQY, efficient exciton utilization, and remarkable X-ray attenuation ability endowed by I, C4-I delivers an outstanding light yield of 80721 photons/MeV and a low limit of detection (LoD) of 22.79 nGy ⋅ s-1. This work would provide a rational design concept and open up an appealing road for developing efficient organic scintillators with tunable emission, strong X-ray attenuation ability, and excellent scintillator performance.

2.
Molecules ; 29(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893325

RESUMEN

A novel metal-free synthesis of 3-substituted isocoumarins through a sequential O-acylation/Wittig reaction has been established. The readily accessible (2-carboxybenzyl)-triphenylphosphonium bromide and diverse chlorides produced various 1H-isochromen-1-one in the presence of triethylamine, employing sequential O-acylation and an intramolecular Wittig reaction of acid anhydride. Reactions using these facile conditions have exhibited high functional group tolerance and excellent yields (up to 90%). Moreover, the fluorescence properties of isocoumarin derivatives were evaluated at the theoretical and experimental levels to determine their potential application in fluorescent materials. These derivatives have good photoluminescence in THF with a large Stokes shift and an absolute fluorescence quantum yield of up to 14%.

3.
Chemistry ; 30(38): e202401325, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38698535

RESUMEN

Chiral secondary alcohols, serving as essential structural motifs, hold significant potential for diverse applications. The exploration of effective synthetic strategies toward these compounds is both attractive and challenging. Herein, we present an asymmetric oxa-Michael reaction involving aliphatic alcohols as nucleophiles and ß-fluoroalkyl vinylsulfones catalyzed by bifunctional phosphonium salt (BPS), achieving high yields and excellent enantioselectivities (up to 98 % yield and 98 % ee). Additionally, a sequential process including asymmetric oxa-Michael and debenzylation, facilitated by BPS/Lewis acid cooperation, was revealed for synthesizing diverse chiral secondary alcohol compounds in high yields (81-88 %) with consistent stereoselectivities. Furthermore, mechanistic explorations and subsequent results unveiled that the enantioselectivity originates from hydrogen-bonding and ion-pair interactions between the BPS catalyst and the substrates.

4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474008

RESUMEN

Organic ammonium and phosphonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Particularly, quaternary ammonium lipids have demonstrated efficiency both as gene vectors and antibacterial agents. Here, aiming at finding new antibacterial devices belonging to both classes, we prepared a water-soluble quaternary ammonium lipid (6) and a phosphonium salt (1) by designing a synthetic path where 1 would be an intermediate to achieve 6. All synthesized compounds were characterized by Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. Additionally, potentiometric titrations of NH3+ groups 1 and 6 were performed to further confirm their structure by determining their experimental molecular weight. The antibacterial activities of 1 and 6 were assessed first against a selection of multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species, observing remarkable antibacterial activity of both compounds against Gram-positive isolates of Enterococcus and Staphylococcus genus. Further investigations on a wider variety of strains of these species confirmed the remarkable antibacterial effects of 1 and 6 (MICs = 4-16 and 4-64 µg/mL, respectively), while 24 h-time-killing experiments carried out with 1 on different S. aureus isolates evidenced a bacteriostatic behavior. Moreover, both compounds 1 and 6, at the lower MIC concentration, did not show significant cytotoxic effects when exposed to HepG2 human hepatic cell lines, paving the way for their potential clinical application.


Asunto(s)
Compuestos de Amonio , Humanos , Compuestos de Amonio/farmacología , Staphylococcus aureus , Compuestos de Amonio Cuaternario/química , Antibacterianos/farmacología , Bacterias Grampositivas , Bacterias , Cloruro de Sodio/farmacología , Cloruro de Sodio Dietético/farmacología , Lípidos/farmacología , Pruebas de Sensibilidad Microbiana
5.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339017

RESUMEN

The reaction of (ortho-acetalaryl)arylmethanols with various phosphines PR1R2R3 (R1 = R2 = R3 = Ph; R1 = R2 = Ph, R3 = Me and R1 = R2 = Me, R3 = Ph) under acidic conditions (e.g., HCl, HBF4, TsOH) unexpectedly led to the formation of (10-hydroxy-9,10-dihydroanthr-9-yl)phosphonium salts instead of the corresponding anthryl phosphonium salts. The cyclization occurred according to the Friedel-Crafts mechanism but without the usually observed Bradsher dehydration, giving cyclic products in the form of cis/trans isomers and their conformers. In case of electron-rich and less-hindered dimethylphenylphosphine, all four stereoisomers were recorded in 31P{1H} NMR spectra, while for the other phosphines, only the two most stable cis/trans stereoisomers were detected. This study was supported by DFT and NCI calculations in combination with FT-IR analysis.


Asunto(s)
Fosfinas , Sales (Química) , Humanos , Estructura Molecular , Ciclización , Deshidratación , Espectroscopía Infrarroja por Transformada de Fourier , Fosfinas/química
6.
Chem Biodivers ; 21(3): e202302022, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38298091

RESUMEN

This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program ('PRIORITY-2030'). HRMS data were obtained in the CSF-SAC FRC KSC RAS by support of the State Assignment of the Federal Research Center "Kazan Scientific Center", Russian Academy of Sciences. A.D.V, conducted studies of anticancer activity with financial support form the government assignment for FRC Kazan Scientific Center of RAS.


Asunto(s)
Propionatos , Humanos , Fenómenos Químicos
7.
Future Med Chem ; 15(22): 2113-2141, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37929337

RESUMEN

Given that mitochondrial dysregulation is a biomarker of many cancers, cationic quaternary phosphonium salt (QPS) conjugation is a widely utilized strategy for anticancer drug design. QPS-conjugated compounds exhibit greater cell permeation and accumulation in negatively charged mitochondria, and thus, show enhanced activity. Phylogenetic similarities between mitochondria and bacteria have provided a rationale for exploring the antibacterial properties of mitochondria-targeted compounds. Additionally, due to the importance of mitochondria in the survival of pathogenic microbes, including fungi and parasites, this strategy can be extended to these organisms as well. This review examines recent literature on the antimicrobial activities of various QPS-conjugated compounds and provides future directions for exploring the medicinal chemistry of these compounds.


Asunto(s)
Antiinfecciosos , Filogenia , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/química , Mitocondrias , Compuestos de Amonio Cuaternario/química
8.
Angew Chem Int Ed Engl ; 62(49): e202309515, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37845782

RESUMEN

The catalytic asymmetric synthesis of phosphorus-containing helicenes remains a formidable challenge, presumably due to the lack of rational design of substrates, right choice of reactions together with highly effective catalysis systems. Herein, we disclosed an efficient and practical DKR-involving (dynamic kinetic resolution) cascade strategy toward synthesizing a novel family of phosphorus-installing helicenes by peptide-mimic phosphonium salt (PPS) catalysis. The sequential process of PPS-catalyzed phospha-Michael attack and copper salt-facilitated aromatization led to the formation of unprecedented phosphorus-containing oxa[5]helicene scaffolds. A wide variety of substrates bearing an assortment of functional groups were compatible with this protocol, furnishing the expected helical compounds in high yields and excellent stereoselectivities. Additionally, the helical products could be conveniently elaborated to promising phosphine ligands with perfectly retained helical chirality, which turned out to be highly efficient chiral ligands in transition metal-catalyzed reactions. These findings not only expand the current library of phosphorus-containing helicenes but also offer insights to explore other challenging scaffolds with molecular chirality.

9.
J Hazard Mater ; 460: 132388, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37639796

RESUMEN

Antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) in leafy vegetable is a matter of concern as they can be transferred from soil, atmosphere, and foliar sprays, and poses a potential risk to public health. While traditional disinfection technologies are effective in reducing the presence of ARGs and HPB in soil. A new technology, foliar spraying with magnetic biochar/quaternary ammonium salt (MBQ), was demonstrated and applied to the leaf surface. High-throughput quantitative PCR targeting 96 valid ARGs and 16 S rRNA sequencing were used to assess its efficacy in reducing ARGs and HPB. The results showed that spraying MBQ reduced 97.0 ± 0.81% of "high-risk ARGs", associated with seven classes of antibiotic resistance in pakchoi leaves within two weeks. Water washing could further reduce "high-risk ARGs" from pakchoi leaves by 19.8%- 24.6%. The relative abundance of HPB closely related to numerous ARGs was reduced by 15.2 ± 0.23% with MBQ application. Overall, this study identified the potential risk of ARGs from leafy vegetables and clarified the significant implications of MBQ application for human health as it offers a promising strategy for reducing ARGs and HPB in leafy vegetables.


Asunto(s)
Antibacterianos , Cloruro de Sodio , Humanos , Antibacterianos/farmacología , Hojas de la Planta , Suelo , Verduras , Fenómenos Magnéticos
10.
Int J Biol Macromol ; 246: 125665, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37406900

RESUMEN

Despite the worldwide vaccination effort against COVID-19, the demand for biocidal materials has increased. One promising solution is the chemical modification of polysaccharides, such as chitosan, which can provide antiviral activity through the insertion of cationic terminals. In this study, chitosan was modified with (4-carboxybutyl) triphenylphosphonium bromide to create N-phosphonium chitosan (NPCS), a quaternized derivative. The resulting NPCS samples with three degrees of substitution (15.6 %, 19.8 % and 24.2 %) were characterized and found to have improved solubility in water and alkaline solutions but reduced thermal stability. The particles zeta potential exhibits positive charges and is directly correlated with the degree of substitution of the derivative. In virucidal assays, all NPCS samples were able to inhibit 99.999 % of the MHV-3 coronavirus within 5 min at low concentrations of 0.1 mg/mL, while maintaining low cytotoxicity to L929 cells. In addition to its potential application against current coronavirus strains, NPCS could also be valuable in combating future pandemics caused by other viral pathogens. The antiviral properties of NPCS make it a promising material for use in coating surface and personal protective equipment to limit the spread of disease-causing viruses.


Asunto(s)
COVID-19 , Quitosano , Virus , Humanos , Quitosano/química , Antivirales/farmacología
11.
Angew Chem Int Ed Engl ; 62(47): e202307258, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37408171

RESUMEN

Chiral phosphonium salt catalysis, traditionally classified as a type of phase transfer catalysis, has proven to be a powerful strategy for the stereoselective preparation of diverse optically active molecules. However, there still remain numerous forbidding issues of reactivity and selectivity in such well-known organocatalysis system. Accordingly, the development of new and high-performance phosphonium salt catalysts with unique chiral backbones is highly desirable, yet challenging. This Minireview describes the prominent endeavours in the development of a new family of chiral peptide-mimic phosphonium salt catalysts with multiple hydrogen-bonding donors and their applications in a plethora of enantioselective synthesis during the past few years. Hopefully, this minireview will pave a way for further developing much more efficient and privileged chiral ligands/catalysts featuring exclusively catalytic ability in asymmetric synthesis.

12.
Angew Chem Int Ed Engl ; 62(36): e202305108, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37227225

RESUMEN

Crystalline diphosphonium iodides [MeR2 P-spacer-R2 Me]I with phenylene (1, 2), naphthalene (3, 4), biphenyl (5) and anthracene (6) as aromatic spacers, are photoemissive under ambient conditions. The emission colors (λem values from 550 to 880 nm) and intensities (Φem reaching 0.75) are defined by the composition and substitution geometry of the central conjugated chromophore motif, and the anion-π interactions. Time-resolved and variable-temperature luminescence studies suggest phosphorescence for all the titled compounds, which demonstrate observed lifetimes of 0.46-92.23 µs at 297 K. Radiative rate constants kr as high as 2.8×105  s-1 deduced for salts 1-3 were assigned to strong spin-orbit coupling enhanced by an external heavy atom effect arising from the anion-π charge-transfer character of the triplet excited state. These rates of anomalously fast metal-free phosphorescence are comparable to those of transition metal complexes and organic luminophores that utilize triplet excitons via a thermally activated delayed fluorescence mechanism, making such ionic luminophores a new paradigm for the design of photofunctional and responsive molecular materials.

13.
Chemistry ; 29(44): e202301073, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37212544

RESUMEN

Phosphonium-based compounds gain attention as promising photofunctional materials. As a contribution to the emerging field, we present a series of donor-acceptor ionic dyes, which were constructed by tailoring phosphonium (A) and extended π-NR2 (D) fragments to an anthracene framework. The alteration of the π-spacer of electron-donating substituents in species with terminal -+ PPh2 Me groups exhibits a long absorption wavelength up to λabs =527 nm in dichloromethane and shifted the emission to the near-infrared (NIR) region (λ=805 nm for thienyl aniline donor), although at low quantum yield (Φ<0.01). In turn, the introduction of a P-heterocyclic acceptor substantially narrowed the optical bandgap and improved the efficiency of fluorescence. In particular, the phospha-spiro moiety allowed to attain NIR emission (797 nm in dichloromethane) with fluorescence efficiency as high as Φ=0.12. The electron-accepting property of the phospha-spiro constituent outperformed that of the monocyclic and terminal phosphonium counterparts, illustrating a promising direction in the design of novel charge-transfer chromophores.

14.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235148

RESUMEN

This comprehensive review, covering the years 1968-2022, is not only a retrospective investigation of a certain group of linearly fused aromatics, called acenes, but also a presentation of the current state of the knowledge on the synthesis, reactions, and applications of these compounds. Their characteristic feature is substitution of the aromatic system by one, two, or three organophosphorus groups, which determine their properties and applications. The (PIII, PIV, PV) phosphorus atom in organophosphorus groups is linked to the acene directly by a P-Csp2 bond or indirectly through an oxygen atom by a P-O-Csp2 bond.


Asunto(s)
Benceno , Fósforo , Oxígeno/química , Fósforo/química , Estudios Retrospectivos
15.
Int J Biol Macromol ; 222(Pt B): 3100-3107, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36244532

RESUMEN

Chitosan (CS) is a natural marine polysaccharide with good biocompatibility and biodegradability. But its poor water solubility and antibacterial activity limit its application in fruits preservation. In this study, based on the advantage of quaternary phosphonium salt (QP) and salicylic acid (SA) with good antibacterial activities and different antibacterial mechanisms, a novel antibacterial coating material was synthesized by grafting QP and SA onto CS. With the grafting of SA and QP onto CS, not only the crystallinity of CS molecules decreased and the water solubility improved, but also the antibacterial activity of CS-QP-SA against Escherichia coli and Staphylococcus aureus, and Colletotrichum gloeosporioides (anthracnose) improved by the synergistic effect of QP and SA. After 20 days storage, the mango fruits treated by CS-QP-SA had a weight loss rate of 12.86 %, the fruit decay incidence was 52.00 ± 1.70 %. Hence, the CS-QP-SA films effectively extending the storage time of mango fruits to a certain extent. The results of this study indicated that CS-QP-SA might be a promising preservative for fruits and vegetables.


Asunto(s)
Quitosano , Mangifera , Quitosano/farmacología , Antibacterianos/farmacología , Frutas , Staphylococcus aureus , Escherichia coli , Mangifera/microbiología , Agua/farmacología
16.
Beilstein J Org Chem ; 18: 1338-1345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247980

RESUMEN

A novel representative of sodium 3,4,5-triaryl-1,2-diphosphacyclopentadienide containing a chloro substituent in the meta-position of the aryl groups was obtained with a high yield based on the reaction of tributyl(1,2,3-triarylcyclopropenyl)phosphonium bromide and sodium polyphosphides. Further reaction of sodium 3,4,5-tris(3-chlorophenyl)-1,2-diphosphacyclopentadienide with [FeCp(η6-C6H5CH3)][PF6] complex gives a new 3,4,5-tris(3-chlorophenyl)-1,2-diphosphaferrocene. The electrochemical properties of 3,4,5-tris(3-chlorophenyl)-1,2-diphosphaferrocene were studied and compared to 3,4,5-tris(4-chlorophenyl)-1,2-diphosphaferrocene. It was found that the position of the chlorine atom on the aryl fragment has an influence on the reduction potential of 1,2-diphosphaferrocenes, while the oxidation potentials do not change.

17.
Sci Total Environ ; 811: 151386, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34742956

RESUMEN

The overuse and misuse of antibiotics in animal breeding for disease treatment and growth enhancement have been major drivers of the occurrence, diffusion, and accumulation of antibiotic resistance genes (ARGs) in wastewater. Strategies to combat ARG dissemination are pressingly needed for human and ecological safety. To achieve this goal, a biochar-based polymer, magnetic biochar/quaternary phosphonium salt (MBQ), was applied in livestock wastewater and displayed a high performance in bacterial deactivation and ARG decrease. Efficient antibacterial effects were achieved by both MBQ and quaternary phosphonium salt; however, the abundance and fold change of ARGs in the MBQ treatment indicated a more powerful ARG dissemination control than quaternary phosphonium salt. The application of MBQ evidently reduced the microbial diversity and may primarily be responsible for altering the ARG profiles in wastewater. Network, redundancy, and variation partitioning analyses were further employed to reveal that the microbial community and the presence of mobile genetic elements were two critical factors shaping the pattern of the antibiotic resistome in livestock wastewater. Considered together, these findings extend the application field of biochar and have important implications for reducing ARG dissemination risks in livestock wastewater.


Asunto(s)
Ganado , Aguas Residuales , Animales , Antibacterianos , Carbón Orgánico , Genes Bacterianos , Humanos , Fenómenos Magnéticos
18.
Molecules ; 26(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34770759

RESUMEN

It has been shown for a wide range of epoxy compounds that their interaction with triphenylphosphonium triflate occurs with a high chemoselectivity and leads to the formation of (2-hydroxypropyl)triphenylphosphonium triflates 3 substituted in the 3-position with an alkoxy, alkylcarboxyl group, or halogen, which were isolated in a high yield. Using the methodology for the disclosure of epichlorohydrin with alcohols in the presence of boron trifluoride etherate, followed by the substitution of iodine for chlorine and treatment with triphenylphosphine, 2-hydroxypropyltriphenylphosphonium iodides 4 were also obtained. The molecular and supramolecular structure of the obtained phosphonium salts was established, and their high antitumor activity was revealed in relation to duodenal adenocarcinoma. The formation of liposomal systems based on phosphonium salt 3 and L-α-phosphatidylcholine (PC) was employed for improving the bioavailability and reducing the toxicity. They were produced by the thin film rehydration method and exhibited cytotoxic properties. This rational design of phosphonium salts 3 and 4 has promising potential of new vectors for targeted delivery into mitochondria of tumor cells.


Asunto(s)
Portadores de Fármacos/química , Diseño de Fármacos , Organofosfonatos/química , Sales (Química)/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Portadores de Fármacos/síntesis química , Humanos , Liposomas , Mitocondrias/efectos de los fármacos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Organofosfonatos/síntesis química , Compuestos Organofosforados , Sales (Química)/síntesis química , Análisis Espectral
19.
J Hazard Mater ; 411: 125048, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-33429312

RESUMEN

The proliferation and spread of antibiotic resistance genes (ARGs) is becoming a worldwide crisis. Extracellular DNA encoding ARGs (eARGs) in aquatic environment plays a critical role in the dispersion of antimicrobial resistance genes. Strategies to control the dissemination of eARGs are urgently required for ecological safety and human health. Towards this goal, magnetic biochar/quaternary phosphonium salt (MBQ), was used to investigate the efficiency and removal mechanism for eARGs. Magnetic biochar modified by quaternary phosphonium salt enhanced the adsorption capacity of extracellular DNA to approximately 9 folds, compared to that of the unmodified. DNA adsorption by MBQ was mainly dominated by chemisorption in heterogeneous systems and was promoted in acidic and low-salt environment. The generation of •OH and MBQ colloid jointly cleaved DNA into fragments, facilitating the adsorption of the phosphate backbone of DNA onto MBQ through electrostatic force as well as the conformational transition of DNA. Furthermore, quantification of extracellular DNA after MBQ was applied in water demonstrated that over 92.7% of resistance genes were removed, indicating a significantly reduced risk of propagation of antimicrobial resistance in aquatic environments. These findings have a practical significance in the application of MBQ in mitigating the spread of ARGs in aquatic environment.


Asunto(s)
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacología , Carbón Orgánico , Farmacorresistencia Microbiana/genética , Humanos , Fenómenos Magnéticos , Aguas Residuales
20.
Molecules ; 25(22)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207789

RESUMEN

We have described earlier that in aqueous solutions, the reaction of 1,3,5-triaza-7-phosphaadamantane (PTA) with maleic acid yielded a phosphonium-alkanoate zwitterion. The same reaction with 2-methylmaleic acid (citraconic acid) proceeded much slower. It is reported here, that in the case of glutaconic and itaconic acids (constitutional isomers of citraconic acid), formation of the corresponding phosphabetaines requires significantly shorter reaction times. The new phosphabetaines were isolated and characterized by elemental analysis, multinuclear NMR spectroscopy and ESI-MS spectrometry. Furthermore, their molecular structures in the solid state were determined by single crystal X-ray diffraction (SC-XRD). Synthesis of the phosphabetaines from PTA and unsaturated dicarboxylic acids was also carried out mechanochemically with the use of a planetary ball mill, and the characteristics of the syntheses in solvent and under solvent-free conditions were compared. In aqueous solutions, the reaction of the new phosphabetaines with Ag(CF3SO3) yielded Ag(I)-based coordination polymers. According to the SC-XRD results, in these polymers the Ag(I)-ion coordinates to the N and O donor atoms of the ligands; however, Ag(I)-Ag(I) interactions were also identified. The Ag(I)-based coordination polymer (CP1.2) formed with the glutaconyl derivative of PTA (1) showed considerable antimicrobial activity against both Gram-negative and Gram-positive bacteria and yeast strains.


Asunto(s)
Adamantano/análogos & derivados , Betaína/química , Compuestos Organofosforados/química , Polímeros/química , Plata/química , Adamantano/química , Antiinfecciosos/farmacología , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA