Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Appl Environ Microbiol ; 90(9): e0113824, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39158312

RESUMEN

Phosphoglucose isomerase (PGI) links glycolysis, the pentose phosphate pathway (PPP), and the synthesis of cell wall precursors in fungi by facilitating the reversible conversion between glucose-6-phosphate (Glc6p) and fructose-6-phosphate (Fru6P). In a previous study, we established the essential role of PGI in cell wall biosynthesis in the opportunistic human fungal pathogen Aspergillus fumigatus, highlighting its potential as a therapeutic target. In this study, we conducted transcriptomic analysis and discovered that the Δpgi mutant exhibited enhanced glycolysis, reduced PPP, and an upregulation of cell wall precursor biosynthesis pathways. Phenotypic analysis revealed defective protein N-glycosylation in the mutant, notably the absence of glycosylated virulence factors DPP V and catalase 1. Interestingly, the cell wall defects in the mutant were not accompanied by activation of the MpkA-dependent cell wall integrity (CWI) signaling pathway. Instead, nitrate assimilation was activated in the Δpgi mutant, stimulating glutamine synthesis and providing amino donors for chitin precursor biosynthesis. Blocking the nitrate assimilation pathway severely impaired the growth of the Δpgi mutant, highlighting the crucial role of nitrate assimilation in rescuing cell wall defects. This study unveils the connection between nitrogen assimilation and cell wall compensation in A. fumigatus.IMPORTANCEAspergillus fumigatus is a common and serious human fungal pathogen that causes a variety of diseases. Given the limited availability of antifungal drugs and increasing drug resistance, it is imperative to understand the fungus' survival mechanisms for effective control of fungal infections. Our previous study highlighted the essential role of A. fumigatus PGI in maintaining cell wall integrity, phosphate sugar homeostasis, and virulence. The present study further illuminates the involvement of PGI in protein N-glycosylation. Furthermore, this research reveals that the nitrogen assimilation pathway, rather than the canonical MpkA-dependent CWI pathway, compensates for cell wall deficiencies in the mutant. These findings offer valuable insights into a novel adaptation mechanism of A. fumigatus to address cell wall defects, which could hold promise for the treatment of infections.


Asunto(s)
Aspergillus fumigatus , Pared Celular , Proteínas Fúngicas , Glucosa-6-Fosfato Isomerasa , Nitratos , Aspergillus fumigatus/genética , Aspergillus fumigatus/enzimología , Aspergillus fumigatus/metabolismo , Pared Celular/metabolismo , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nitratos/metabolismo , Vía de Pentosa Fosfato , Glucólisis
2.
Int J Biol Macromol ; 279(Pt 1): 135127, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39208883

RESUMEN

We are investigating the glycolytic pathway in Pyrobaculum calidifontis whose genome sequence contains homologues of all the enzymes involved in this pathway. We have characterized most of them. An open reading frame, Pcal_0606, annotated as a putative phosphoglucose/phosphomannose isomerase has to be characterized yet. In silico analysis indicated the presence of more than one substrate binding pockets at the dimeric interface of Pcal_0606. The gene encoding Pcal_0606 was cloned and expressed in Escherichia coli. Recombinant Pcal_0606, produced in soluble form, exhibited highest enzyme activity at 90 °C and pH 8.5. Presence or absence of metal ions or EDTA did not significantly affect the enzyme activity. Under optimal conditions, Pcal_0606 displayed apparent Km values of 0.33, 0.34, and 0.29 mM against glucose 6-phosphate, mannose 6-phosphate and fructose 6-phosphate, respectively. In the same order, Vmax values against these substrates were 290, 235, and 240 µmol min-1 mg-1, indicating that Pcal_0606 catalyzed the reversible isomerization of these substrates with nearly same catalytic efficiency. These results characterize Pcal_0606 a bifunctional phosphoglucose/phosphomannose isomerase, which displayed high thermostability with a half-life of ∼50 min at 100 °C. To the best of our knowledge, Pcal_0606 is the most active and thermostable bifunctional phosphoglucose/phosphomannose isomerase characterized to date.

3.
Biotechnol Lett ; 46(1): 69-83, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064042

RESUMEN

D-Glucaric acid is a potential biobased platform chemical. Previously mainly Escherichia coli, but also the yeast Saccharomyces cerevisiae, and Pichia pastoris, have been engineered for conversion of D-glucose to D-glucaric acid via myo-inositol. One reason for low yields from the yeast strains is the strong flux towards glycolysis. Thus, to decrease the flux of D-glucose to biomass, and to increase D-glucaric acid yield, the four step D-glucaric acid pathway was introduced into a phosphoglucose isomerase deficient (Pgi1p-deficient) Saccharomyces cerevisiae strain. High D-glucose concentrations are toxic to the Pgi1p-deficient strains, so various feeding strategies and use of polymeric substrates were studied. Uniformly labelled 13C-glucose confirmed conversion of D-glucose to D-glucaric acid. In batch bioreactor cultures with pulsed D-fructose and ethanol provision 1.3 g D-glucaric acid L-1 was produced. The D-glucaric acid titer (0.71 g D-glucaric acid L-1) was lower in nitrogen limited conditions, but the yield, 0.23 g D-glucaric acid [g D-glucose consumed]-1, was among the highest that has so far been reported from yeast. Accumulation of myo-inositol indicated that myo-inositol oxygenase activity was limiting, and that there would be potential to even higher yield. The Pgi1p-deficiency in S. cerevisiae provides an approach that in combination with other reported modifications and bioprocess strategies would promote the development of high yield D-glucaric acid yeast strains.


Asunto(s)
Glucosa-6-Fosfato Isomerasa , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Ácido Glucárico/metabolismo , Escherichia coli/metabolismo , Inositol/metabolismo , Glucosa/metabolismo
4.
Int J Biol Macromol ; 257(Pt 1): 128541, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056730

RESUMEN

Glycation is a spontaneous chemical reaction, which affects the structure and function of proteins under normal physiological conditions. Therefore, organisms have evolved diverse mechanisms to combat glycation. In this study, we show that the Escherichia coli glycolytic enzyme phosphoglucose isomerase (Pgi) exhibits deglycation activity. We found that E. coli Pgi catalyzes the breakdown of glucose 6-phosphate (G6P)-derived Amadori products (APs) in chicken lysozyme. The affinity of Pgi to the glycated lysozyme (Km, 1.1 mM) was ten times lower than the affinity to its native substrate, fructose 6-phosphate (Km, 0.1 mM). However, the high kinetic constants of the enzyme with the glycated lysozyme (kcat, 396 s-1 and kcat/Km, 3.6 × 105 M-1 s-1) indicated that the Pgi amadoriase activity may have physiological implications. Indeed, when using total E. coli protein (20 mg/mL) as a substrate in the deglycation reaction, we observed a release of G6P from the bacterial protein at a Pgi specific activity of 33 µmol/min/mg. Further, we detected 11.4 % lower APs concentration in protein extracts from Pgi-proficient vs. deficient cells (p = 0.0006) under conditions where the G6P concentration in Pgi-proficient cells was four times higher than in Pgi-deficient cells (p = 0.0001). Altogether, these data point to physiological relevance of the Pgi deglycation activity.


Asunto(s)
Proteínas de Escherichia coli , Glucosa-6-Fosfato Isomerasa , Glucosa-6-Fosfato Isomerasa/química , Glucosa-6-Fosfato Isomerasa/metabolismo , Escherichia coli/metabolismo , Muramidasa , Fosfatos
5.
J Insect Physiol ; 149: 104533, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37380125

RESUMEN

Environmental plastic pollution has significantly increased in the recent decades, and severely impacts economies, human and biodiversity health. Plastics are made of several chemical additives, including bisphenol and phthalate plasticizers such as bisphenol A (BPA) and Di(2-ethylhexyl)phthalate (DEHP). In some animal species, both BPA and DEHP are known as endocrine disruptor compounds, and can alter physiological and metabolic homeostasis, reproduction, development and/or behavior. To date, the impacts of BPA and DEHP have mainly focused on vertebrates, and to a lesser extent, on aquatic invertebrates. Yet, the few studies which examined the effects of DEHP on terrestrial insects also revealed the impacts this pollutant can have on development, hormone titrations, and metabolic profiles. In particular, it has been hypothesized in the Egyptian cotton leafworm Spodoptera littoralis that the observed metabolic alterations could result from the energetic costs necessary for DEHP detoxification or to the dysregulation of hormonally-controlled enzymatic activities. To get additional insights into the physiological effects of bisphenol and phthalate plasticizers on the moth S. littoralis, larvae were fed with food contaminated by BPA, DEHP, or the mixture of both compounds. Then, activities of four glycolytic enzymes, hexokinase, phosphoglucose isomerase, phosphofructokinase, and pyruvate kinase were measured. BPA and/or DEHP had no effects on the activities of phosphofructokinase and pyruvate kinase. Conversely, BPA-contaminated larvae were characterized by a 1.9-fold increase in phosphoglucose isomerase activity, and BPA + DEHP-fed larvae had highly variable hexokinase activity. Overall, since no disruption of glycolytic enzyme was observed in DEHP-contaminated larvae, our work tended to demonstrate that exposure to bisphenol and DEHP increased the amount of oxidative stress experienced.


Asunto(s)
Dietilhexil Ftalato , Mariposas Nocturnas , Humanos , Animales , Plastificantes/toxicidad , Dietilhexil Ftalato/toxicidad , Spodoptera , Piruvato Quinasa , Glucosa-6-Fosfato Isomerasa , Hexoquinasa , Larva , Fosfofructoquinasas
6.
Insect Sci ; 30(3): 758-770, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36342954

RESUMEN

Temperature is one of the most important environmental factors that affect organisms, especially ectotherms, due to its effects on protein stability. Understanding the general rules that govern thermostability changes in proteins to adapt high-temperature environments is crucial. Here, we report the amino acid substitutions of phosphoglucose isomerase (PGI) related to thermostability in the Glanville fritillary butterfly (Melitaea cinxia, Lepidoptera: Nymphalidae). The PGI encoded by the most common allele in M. cinxia in the Chinese population (G3-PGI), which is more thermal tolerant, is more stable under heat stress than that in the Finnish population (D1-PGI). There are 5 amino acid substitutions between G3-PGI and D1-PGI. Site-directed mutagenesis revealed that the combination of amino acid substitutions of H35Q, M49T, and I64V may increase PGI thermostability. These substitutions alter the 3D structure to increase the interaction between 2 monomers of PGI. Through molecular dynamics simulations, it was found that the amino acid at site 421 is more stable in G3-PGI, confining the motion of the α-helix 420-441 and stabilizing the interaction between 2 PGI monomers. The strategy for high-temperature adaptation through these 3 amino acid substitutions is also adopted by other butterfly species (Boloria eunomia, Aglais urticae, Colias erate, and Polycaena lua) concurrent with M. cinxia in the Tianshan Mountains of China, i.e., convergent evolution in butterflies.


Asunto(s)
Mariposas Diurnas , Fritillaria , Animales , Mariposas Diurnas/genética , Mariposas Diurnas/metabolismo , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Sustitución de Aminoácidos , Temperatura
7.
mBio ; 13(4): e0142622, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35913157

RESUMEN

Aspergillus fumigatus is a devastating opportunistic fungal pathogen causing hundreds of thousands of deaths every year. Phosphoglucose isomerase (PGI) is a glycolytic enzyme that converts glucose-6-phosphate to fructose-6-phosphate, a key precursor of fungal cell wall biosynthesis. Here, we demonstrate that the growth of A. fumigatus is repressed by the deletion of pgi, which can be rescued by glucose and fructose supplementation in a 1:10 ratio. Even under these optimized growth conditions, the Δpgi mutant exhibits severe cell wall defects, retarded development, and attenuated virulence in Caenorhabditis elegans and Galleria mellonella infection models. To facilitate exploitation of A. fumigatus PGI as an antifungal target, we determined its crystal structure, revealing potential avenues for developing inhibitors, which could potentially be used as adjunctive therapy in combination with other systemic antifungals. IMPORTANCE Aspergillus fumigatus is an opportunistic fungal pathogen causing deadly infections in immunocompromised patients. Enzymes essential for fungal survival and cell wall biosynthesis are considered potential drug targets against A. fumigatus. PGI catalyzes the second step of the glycolysis pathway, linking glycolysis and the pentose phosphate pathway. As such, PGI has been widely considered as a target for metabolic regulation and therefore a therapeutic target against hypoxia-related diseases. Our study here reveals that PGI is important for A. fumigatus survival and exhibit pleiotropic functions, including development, cell wall glucan biosynthesis, and virulence. We also solved the crystal structure of PGI, thus providing the genetic and structural groundwork for the exploitation of PGI as a potential antifungal target.


Asunto(s)
Aspergillus fumigatus , Glucosa-6-Fosfato Isomerasa , Antifúngicos/farmacología , Aspergillus fumigatus/metabolismo , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Humanos , Virulencia
8.
J Basic Microbiol ; 62(6): 740-749, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35199357

RESUMEN

Phosphoglucose isomerase (PGI) is a key enzyme that participates in polysaccharide synthesis, which is responsible for the interconversion of glucose-6-phosphate (G-6-P) and fructose-6-phosphate (F-6-P), but there is little research focusing on its role in fungi, especially in higher basidiomycetes. The pgi gene was cloned from Lentinula edodes and named lepgi. Then, the lepgi-silenced strains were constructed by RNA interference. In this study, we found that lepgi-silenced strains had significantly less biomass than the wild-type (WT) strain. Furthermore, the extracellular polysaccharide (EPS) and intracellular polysaccharide (IPS) levels increased 1.5- to 3-fold and 1.5-fold, respectively, in lepgi-silenced strains. Moreover, the cell wall integrity in the silenced strains was also altered, which might be due to changes in the compounds and structure of the cell wall. The results showed that compared to WT, silencing lepgi led to a significant decrease of approximately 40% in the ß-1,3-glucan content, and there was a significant increase of 2-3-fold in the chitin content. These findings provide support for studying the biological functions of lepgi in L. edodes.


Asunto(s)
Hongos Shiitake , Pared Celular , Clonación Molecular , Glucosa-6-Fosfato Isomerasa/genética , Polisacáridos , Hongos Shiitake/genética
9.
Open Biol ; 11(8): 210098, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34375548

RESUMEN

Glycolysis and gluconeogenesis are central pathways of metabolism across all domains of life. A prominent enzyme in these pathways is phosphoglucose isomerase (PGI), which mediates the interconversion of glucose-6-phosphate and fructose-6-phosphate. The predatory bacterium Bdellovibrio bacteriovorus leads a complex life cycle, switching between intraperiplasmic replicative and extracellular 'hunter' attack-phase stages. Passage through this complex life cycle involves different metabolic states. Here we present the unliganded and substrate-bound structures of the B. bacteriovorus PGI, solved to 1.74 Å and 1.67 Å, respectively. These structures reveal that an induced-fit conformational change within the active site is not a prerequisite for the binding of substrates in some PGIs. Crucially, we suggest a phenylalanine residue, conserved across most PGI enzymes but substituted for glycine in B. bacteriovorus and other select organisms, is central to the induced-fit mode of substrate recognition for PGIs. This enzyme also represents the smallest conventional PGI characterized to date and probably represents the minimal requirements for a functional PGI.


Asunto(s)
Bdellovibrio bacteriovorus/enzimología , Fructosafosfatos/metabolismo , Glucosa-6-Fosfato Isomerasa/química , Glucosa-6-Fosfato Isomerasa/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica , Homología de Secuencia , Especificidad por Sustrato
10.
New Phytol ; 231(1): 315-325, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33774822

RESUMEN

Starch is the most abundant carbohydrate synthesized in plant chloroplast as the product of photosynthetic carbon assimilation, serving a crucial role in the carbon budget as storage energy. Phosphoglucose isomerase (PGI) catalyzes the interconversion between glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P), which are important metabolic molecules in starch synthesis within chloroplasts and sucrose synthesis in cytosol. Here, we found that the specific activity of recombinantly purified PGI localized in cytosolic PGI (PGIc) was much higher than its plastidic isoenzyme counterpart (PGIp) originated from wheat, rice and Arabidopsis, with wheat PGIc having by far the highest activity. Crystal structures of wheat TaPGIc and TaPGIp proteins were solved and the functional units were homodimers. The active sites of PGIc and PGIp, constituted by the same amino acids, formed different binding pockets. Moreover, PGIc showed slightly lower affinity to the substrate F6P but with much faster turnover rates. Engineering of TaPGIc into chloroplasts of a pgip mutant of Arabidopsis thaliana (atpgip) resulted in starch overaccumulation, increased CO2 assimilation, up to 19% more plant biomass and 27% seed yield productivity. These results show that manipulating starch metabolic pathways in chloroplasts can improve plant biomass and yield productivity.


Asunto(s)
Cloroplastos , Glucosa-6-Fosfato Isomerasa , Biomasa , Cloroplastos/metabolismo , Citosol/metabolismo , Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Almidón/metabolismo
11.
Biochim Biophys Acta Proteins Proteom ; 1869(4): 140602, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33422670

RESUMEN

Phosphoglucose isomerases (PGIs) belong to a class of enzymes that catalyze the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate. PGIs are crucial in glycolysis and gluconeogenesis pathways and proposed as serving additional extracellular functions in eukaryotic organisms. The phosphoglucose isomerase function of TM1385, a previously uncharacterized protein from Thermotoga maritima, was hypothesized based on structural similarity to established PGI crystal structures and computational docking. Kinetic and colorimetric assays combined with 1H nuclear magnetic resonance (NMR) spectroscopy experimentally confirm that TM1385 is a phosphoglucose isomerase (TmPGI). Evidence of solvent exchange in 1H NMR spectra supports that TmPGI isomerization proceeds through a cis-enediol-based mechanism. To determine which amino acid residues are critical for TmPGI catalysis, putative active site residues were mutated with alanine and screened for activity. Results support that E281 is most important for TmPGI formation of the cis-enediol intermediate, and the presence of either H310 or K422 may be required for catalysis, similar to previous observations from homologous PGIs. However, only TmPGI E281A/Q415A and H310A/K422A double mutations abolished activity, suggesting that there are redundant catalytic residues, and Q415 may participate in sugar phosphate isomerization upon E281 mutation. Combined, we propose that TmPGI E281 participates directly in the cis-enediol intermediate step, and either H310 or K422 may facilitate sugar ring opening and closure.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosa-6-Fosfato Isomerasa/metabolismo , Thermotoga maritima/metabolismo , Proteínas Bacterianas/química , Catálisis , Dominio Catalítico , Glucosa-6-Fosfato Isomerasa/química , Isomerismo , Cinética , Espectroscopía de Protones por Resonancia Magnética , Especificidad por Sustrato
12.
Front Cell Infect Microbiol ; 11: 777266, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34976860

RESUMEN

Aspergillus flavus is one of the important human and plant pathogens causing not only invasive aspergillosis in immunocompromised patients but also crop contamination resulting from carcinogenic aflatoxins (AFs). Investigation of the targeting factors that are involved in pathogenicity is of unmet need to dismiss the hazard. Phosphoglucose isomerase (PGI) catalyzes the reversible conversion between glucose-6-phosphate and fructose-6-phosphate, thus acting as a key node for glycolysis, pentose phosphate pathway, and cell wall biosynthesis in fungi. In this study, we constructed an A. flavus pgi deletion mutant, which exhibited specific carbon requirement for survival, reduced conidiation, and slowed germination even under optimal experimental conditions. The Δpgi mutant lost the ability to form sclerotium and displayed hypersusceptibility to osmotic, oxidative, and temperature stresses. Furthermore, significant attenuated virulence of the Δpgi mutant was documented in the Caenorhabditis elegans infection model, Galleria mellonella larval model, and crop seeds. Our results indicate that PGI in A. flavus is a key enzyme in maintaining sugar homeostasis, stress response, and pathogenicity of A. flavus. Therefore, PGI is a potential target for controlling infection and AF contamination caused by A. flavus.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Glucosa-6-Fosfato Isomerasa , Aspergillus flavus/enzimología , Aspergillus flavus/patogenicidad , Proteínas Fúngicas/genética , Glucosa-6-Fosfato Isomerasa/genética , Homeostasis , Azúcares , Virulencia
13.
Biochim Biophys Acta Gen Subj ; 1865(1): 129762, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33053413

RESUMEN

BACKGROUND: Previous studies have demonstrated the formation of stable complexes between inorganic pyrophosphatase (PPase) and three other Escherichia coli enzymes - cupin-type phosphoglucose isomerase (cPGI), class I fructose-1,6-bisphosphate aldolase (FbaB) and l-glutamate decarboxylase (GadA). METHODS: Here, we determined by activity measurements how complex formation between these enzymes affects their activities and oligomeric structure. RESULTS: cPGI activity was modulated by all partner proteins, but none was reciprocally affected by cPGI. PPase activity was down-regulated upon complex formation, whereas all other enzymes were up-regulated. For cPGI, the activation was partially counteracted by a shift in dimer ⇆ hexamer equilibrium to inactive hexamer. Complex stoichiometry appeared to be 1:1 in most cases, but FbaB formed both 1:1 and 1:2 complexes with both GadA and PPase, FbaB activation was only observed in the 1:2 complexes. FbaB and GadA induced functional asymmetry (negative kinetic cooperativity) in hexameric PPase, presumably by favoring partial dissociation to trimers. CONCLUSIONS: These four enzymes form all six possible binary complexes in vitro, resulting in modulated activity of at least one of the constituent enzymes. In five complexes, the effects on activity were unidirectional, and in one complex (FbaB⋅PPase), the effects were reciprocal. The effects of potential physiological significance include inhibition of PPase by FbaB and GadA and activation of FbaB and cPGI by PPase. Together, they provide a mechanism for feedback regulation of FbaB and GadA biosynthesis. GENERAL SIGNIFICANCE: These findings indicate the complexity of functionally significant interactions between cellular enzymes, which classical enzymology treats as individual entities, and demonstrate their moonlighting activities as regulators.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Glucosa-6-Fosfato Isomerasa/metabolismo , Glutamato Descarboxilasa/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Proteínas de la Membrana/metabolismo , Escherichia coli/química , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/química , Fructosa-Bifosfato Aldolasa/química , Glucosa-6-Fosfato Isomerasa/química , Glutamato Descarboxilasa/química , Humanos , Pirofosfatasa Inorgánica/química , Cinética , Proteínas de la Membrana/química , Multimerización de Proteína
14.
Biochem Biophys Res Commun ; 529(4): 1101-1105, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32819571

RESUMEN

The current gold standard for diagnosis of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is through a liver biopsy, and there is an urgent need to develop non-invasive methods for early detection. We previously demonstrated metabolic remodeling in the mouse fatty liver, which is marked by increased hepatic expression and activities of phosphoglucose isomerase (PGI) and several other glycolytic enzymes. Since PGI is actively transported out of the cell, acting as a multifunctional cytokine referred to as autocrine motility factor (AMF), we explored the possibility that PGI secreted from the fatty liver may be targeted for early detection of the silent disease. We report here that mice with NASH exhibited significantly elevated serum PGI enzyme activities compared to normal control (P < 0.005). We further confirmed the finding using serum/plasma samples (n = 73) collected from a cohort of NASH patients who were diagnosed according to Kleiner's criteria, showing a normal mean PGI of 19.5 ± 8.8 IU/L and patient mean PGI of 105.6 ± 79.9 IU/L (P < 0.005). In addition, elevated blood PGI in NASH patients coincided with increased blood L-lactate. Cell culture experiments were then conducted to delineate the PGI-lactate axis, which revealed that treatment of HepG2 cells with recombinant PGI protein stimulated glycolysis and lactate output, suggesting that the disease-induced PGI likely contributed to the increased lactate in NASH patients. Taken together, the preclinical and clinical data validate secreted PGI as a useful biomarker of the fatty liver that can be easily screened at the point of care.


Asunto(s)
Glucosa-6-Fosfato Isomerasa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/enzimología , Adolescente , Animales , Biomarcadores/metabolismo , Niño , Preescolar , Glucosa-6-Fosfato Isomerasa/sangre , Células Hep G2 , Humanos , Ácido Láctico/metabolismo , Modelos Lineales , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/sangre
15.
Bioorg Chem ; 102: 104048, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32682158

RESUMEN

Phosphoglucose isomerase (PGI) is a cytosolic enzyme that catalyzes the reversible interconversion of d-glucose 6-phosphate and d-fructose 6-phosphate in glycolysis. Outside the cell, PGI is also known as autocrine motility factor (AMF), a cytokine secreted by a large variety of tumor cells that stimulates motility of cancer cells in vitro and metastases development in vivo. Human PGI and AMF are strictly identical proteins both in terms of sequence and 3D structure, and AMF activity is known to involve, at least in part, the enzymatic active site. Hence, with the purpose of finding new strong AMF-PGI inhibitors that could be potentially used as anticancer agents and/or as bioreceptors for carbohydrate-based electrochemical biosensors, we report in this study the synthesis and kinetic evaluation of several new human PGI inhibitors derived from the synthon 5-phospho-d-arabinono-1,4-lactone. Although not designed as high-energy intermediate analogue inhibitors of the enzyme catalyzed isomerization reaction, several of these N-substituted 5-phosphate-d-arabinonamide derivatives appears as new strong PGI inhibitors. For one of them, we report its crystal structure in complex with human PGI at 2.38 Å. Detailed analysis of its interactions at the active site reveals a new binding mode and shows that human PGI is relatively tolerant for modified inhibitors at the "head" C-1 part, offering promising perspectives for the future design of carbohydrate-based biosensors.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Glucosa-6-Fosfato Isomerasa/antagonistas & inhibidores , Fosfatos/síntesis química , Fosfatos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Humanos , Fosfatos/farmacología , Relación Estructura-Actividad
16.
Biochim Biophys Acta Gen Subj ; 1864(7): 129601, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32179131

RESUMEN

BACKGROUND: Escherichia coli cells contain a homolog of presumed 5-keto-4-deoxyuronate isomerase (KduI) from pectin-degrading soil bacteria, but the catalytic activity of the E. coli protein (o-KduI) was never demonstrated. METHODS: The known three-dimensional structure of E. coli o-KduI was compared with the available structures of sugar-converting enzymes. Based on the results of this analysis, sugar isomerization activity of recombinant o-KduI was tested against a panel of D-sugars and their derivatives. RESULTS: The three-dimensional structure of o-KduI exhibits a close similarity with Pyrococcus furiosus cupin-type phosphoglucose isomerase. In accordance with this similarity, o-KduI was found to catalyze interconversion of glucose-6-phosphate and fructose-6-phosphate and, less efficiently, conversion of glucuronate to fructuronate. o-KduI was hexameric in crystals but represented a mixture of inactive hexamers and active dimers in solution and contained a tightly bound Zn2+ ion. Dilution, substrate binding and Zn2+ removal shifted the hexamer ⇆ dimer equilibrium to the dimers. CONCLUSIONS: Our findings identify o-KduI as a novel phosphosugar isomerase in E. coli, whose activity may be regulated by changes in oligomeric structure. GENERAL SIGNIFICANCE: More than 5700 protein sequences are annotated as KduI, but their enzymatic activity has not been directly demonstrated. E. coli o-KduI is the first characterized member of this group, and its enzymatic activity was found to be different from the predicted activity.


Asunto(s)
Isomerasas Aldosa-Cetosa/genética , Glucosa-6-Fosfato Isomerasa/genética , Conformación Proteica , Isomerasas Aldosa-Cetosa/ultraestructura , Secuencia de Aminoácidos/genética , Metabolismo de los Hidratos de Carbono/genética , Catálisis , Cristalografía por Rayos X , Escherichia coli/enzimología , Fructosafosfatos/genética , Glucosa-6-Fosfato/genética , Glucosa-6-Fosfato Isomerasa/ultraestructura , Pyrococcus furiosus/enzimología
17.
J Comput Chem ; 41(8): 839-854, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-31909840

RESUMEN

We calibrate and validate the parameters necessary to represent the dianionic phosphate group (DPG) in molecular mechanics. DPG is an essential fragment of signaling biological molecules and protein-binding ligands. It is a constitutive fragment of biosensors, which bind to the dimer interface of phosphoglucose isomerase (PGI), an intracellular enzyme involved in sugar metabolism, as well as an extracellular protein known as autocrine motility factor (AMF) closely related to metastasis formation. Our long-term objective is to design DPG-based biosensors with enhanced affinities for AMF/PGI cancer biomarker in blood. Molecular dynamics with polarizable potentials could be used toward this aim. This requires to first evaluate the accuracy of such potentials upon representing the interactions of DPG with its PGI ligands and tightly bound water molecules. Such evaluations are done by comparisons with high-level ab initio quantum chemistry (QC) calculations. We focus on the Sum of Interactions Between Fragments Ab initio computed (SIBFA) polarizable molecular mechanics procedure. We present first the results of the DPG calibration. This is followed by comparisons between ΔE(SIBFA) and ΔE(QC) regarding bi-molecular complexes of DPG with the main-chain and side-chain PGI residues, which bind to it in the recognition site. We then consider DPG complexes with an increasing number of PGI residues. The largest QC complexes encompass the entirety of the recognition site, with six structural water molecules totaling up to 211 atoms. A persistent and satisfactory agreement could be shown between ΔE(SIBFA) and ΔE(QC). These validations constitute an essential first step toward large-scale molecular dynamics simulations of DPG-based biosensors bound at the PGI dimer interface. © 2020 Wiley Periodicals, Inc.


Asunto(s)
Teoría Funcional de la Densidad , Glucosa-6-Fosfato Isomerasa/química , Fosfatos/química , Aniones/química , Calibración , Glucosa-6-Fosfato Isomerasa/metabolismo
18.
Chin J Cancer Res ; 31(5): 771-784, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31814681

RESUMEN

OBJECTIVE: Tumor heterogeneity renders identification of suitable biomarkers of gastric cancer (GC) challenging. Here, we aimed to identify prognostic genes of GC using computational analysis. METHODS: We first used microarray technology to profile gene expression of GC and paired nontumor tissues from 198 patients. Based on these profiles and patients' clinical information, we next identified prognostic genes using novel computational approaches. Phosphoglucose isomerase, also known as glucose-6-phosphate isomerase (GPI), which ranked first among 27 candidate genes, was further investigated by a new analytical tool namely enviro-geno-pheno-state (E-GPS) analysis. Suitability of GPI as a prognostic marker, and its relationship with physiological processes such as metabolism, epithelial-mesenchymal transition (EMT), as well as drug sensitivity were evaluated using both our own and independent public datasets. RESULTS: We found that higher expression of GPI in GC correlated with prolonged survival of patients. Particularly, a combination of CDH2 and GPI expression effectively stratified the outcomes of patients with TNM stage II/III. Down-regulation of GPI in tumor tissues correlated well with depressed glucose metabolism and fatty acid synthesis, as well as enhanced fatty acid oxidation and creatine metabolism, indicating that GPI represents a suitable marker for increased probability of EMT in GC cells. CONCLUSIONS: Our findings strongly suggest that GPI acts as a novel biomarker candidate for GC prognosis, allowing greatly enhanced clinical management of GC patients. The potential metabolic rewiring correlated with GPI also provides new insights into studying the relationship between cancer metabolism and patient survival.

19.
Biotechnol Rep (Amst) ; 24: e00378, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31641622

RESUMEN

Succinic acid is an important acid which is used in medicine and pharmaceutical companies. Metabolically engineered Escherichia coli strain was used for the effective production of succinic acid using Cocos nucifera water, which contained 5.00 ± 0.02 g/L glucose, 6.10 ± 0.01 g /L fructose and 6.70 ± 0.02 g /L sucrose. Fermentation of C. nucifera water with E. coli M6PM produced a final concentration of 11.78 ± 0.02 g/L succinic acid and yield of 1.23 ± 0.01 mol/mol, 0.66 ± 0.01 g/g total sugars after 72 h dual-phase fermentation in M9 medium while modeled sugar was 0.38 ± 0.02 mol/mol total sugars. It resulted in 72% of the maximum theoretical yield of succinic acid. Here we show that novel substrate of C. nucifera water resulted in effective production of succinic acid. These investigations unveil the importance of C. nucifera water as a substrate for the production of biochemicals.

20.
Biomolecules ; 9(6)2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31159273

RESUMEN

The cupin-type phosphoglucose isomerase (PfPGI) from the hyperthermophilic archaeon Pyrococcus furiosus catalyzes the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate. We investigated PfPGI using protein-engineering bioinformatics tools to select functionally-important residues based on correlated mutation analyses. A pair of amino acids in the periphery of PfPGI was found to be the dominant co-evolving mutation. The position of these selected residues was found to be non-obvious to conventional protein engineering methods. We designed a small smart library of variants by substituting the co-evolved pair and screened their biochemical activity, which revealed their functional relevance. Four mutants were further selected from the library for purification, measurement of their specific activity, crystal structure determination, and metal cofactor coordination analysis. Though the mutant structures and metal cofactor coordination were strikingly similar, variations in their activity correlated with their fine-tuned dynamics and solvent access regulation. Alternative, small smart libraries for enzyme optimization are suggested by our approach, which is able to identify non-obvious yet beneficial mutations.


Asunto(s)
Glucosa-6-Fosfato Isomerasa/genética , Glucosa-6-Fosfato Isomerasa/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Pyrococcus furiosus/enzimología , Temperatura , Inhibidores Enzimáticos/farmacología , Glucosa-6-Fosfato Isomerasa/antagonistas & inhibidores , Glucosa-6-Fosfato Isomerasa/química , Manganeso/metabolismo , Simulación de Dinámica Molecular , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Conformación Proteica , Ingeniería de Proteínas , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA