Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phytochemistry ; 229: 114271, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260586

RESUMEN

Phenolamides are specialized metabolites widely distributed in the plant kingdom. Their structure is composed by the association of hydroxycinnamic acid derivatives to mono-/poly-amine through an amination catalyzed by N-hydroxycinnamoyltransferases enzymes. Tomato plants accumulate putrescine-derived phenolamides in their vegetative parts. Recently, two first genes coding for putrescine-hydroxycinnamoyltransferase (PHT, Solyc11g071470 and Solyc11g071480) were identified in tomato and demonstrated to control the leaf accumulation of caffeoylputrescine in response to leafminer infestation. In this study, two additional genes (Solyc06g074710 and Solyc11g066640) were functionally characterized as new tomato PHT. The substrate specificity and the expression pattern in planta were determined for the four tomato PHT. Taken together the results give a comprehensive view of the control of the putrescine-derived phenolamide accumulation in tomato plant through the biochemical specificity and the spatial expression of this small family of PHT.

2.
Foods ; 13(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38611422

RESUMEN

Clovamide (N-caffeoyl-L-3,4-dihydroxyphenylalanine, N-caffeoyldopamine, N-caffeoyl-L-DOPA) is a derivative of caffeic acid, belonging to phenolamides (hydroxycinnamic acid amides). Despite a growing interest in the biological activity of natural polyphenolic substances, studies on the properties of clovamide and related compounds, their significance as bioactive components of the diet, as well as their effects on human health are a relatively new research trend. On the other hand, in vitro and in vivo evidence indicates the considerable potential of these substances in the context of maintaining human health or using them as pharmacophores. The name "clovamide" directly derives from red clover (Trifolium pratense L.), being the first identified source of this compound. In the human diet, clovamides are mainly present in chocolate and other cocoa-containing products. Furthermore, their occurrence in some medicinal plants has also been confirmed. The literature reports deal with the antioxidant, anti-inflammatory, neuroprotective, antiplatelet/antithrombotic and anticancer properties of clovamide-type compounds. This narrative review summarizes the available data on the biological activity of clovamides and their potential health-supporting properties, including prospects for the use of these compounds for therapeutic purposes.

3.
Food Chem ; 446: 138898, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447386

RESUMEN

Dimers of hydroxycinnamoylagmatines are phenolic compounds found in barley and beer. Although they are bioactive and sensory-active compounds, systematic reports on their structure-property relationships are missing. This is partly due to lack of protocols to obtain a diverse set of hydroxycinnamoylagmatine homo- and heterodimers. To better understand dimer formation in complex systems, combinations of the monomers coumaroylagmatine (CouAgm), feruloylagmatine (FerAgm), and sinapoylagmatine (SinAgm) were incubated with horseradish peroxidase. For all combinations, the main oxidative coupling products were homodimers. Additionally, minor amounts of heterodimers were formed, except for the combination of FerAgm and CouAgm. Oxidative coupling was also performed with laccases from Agaricus bisporus and Trametes versicolor, resulting in formation of the same coupling products and no formation of CouAgm-FerAgm heterodimers. Our protocol for oxidative coupling combinations of hydroxycinnamoylagmatines yielded a structurally diverse set of coupling products, facilitating production of dimers for future research on their structure-property relationships.


Asunto(s)
Hordeum , Hordeum/metabolismo , Trametes/metabolismo , Oxidación-Reducción , Fenoles , Estrés Oxidativo , Lacasa/metabolismo
4.
Plant Cell Rep ; 43(3): 78, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393406

RESUMEN

KEY MESSAGE: This study provided important insights into the complex epigenetic regulatory of H3K9ac-modified genes involved in the jasmonic acid signaling and phenylpropanoid biosynthesis pathways of rice in response to Spodoptera frugiperda infestation. Physiological and molecular mechanisms underlying plant responses to insect herbivores have been well studied, while epigenetic modifications such as histone acetylation and their potential regulation at the genomic level of hidden genes remain largely unknown. Histone 3 lysine 9 acetylation (H3K9ac) is an epigenetic marker widely distributed in plants that can activate gene transcription. In this study, we provided the genome-wide profiles of H3K9ac in rice (Oryza sativa) infested by fall armyworm (Spodoptera frugiperda, FAW) using CUT&Tag-seq and RNA-seq. There were 3269 and 4609 up-regulated genes identified in plants infested by FAW larvae for 3 h and 12 h, respectively, which were mainly enriched in alpha-linolenic acid and phenylpropanoid pathways according to transcriptomic analysis. In addition, CUT&Tag-seq analysis revealed increased H3K9ac in FAW-infested plants, and there were 422 and 543 up-regulated genes enriched with H3K9ac observed at 3 h and 12 h after FAW feeding, respectively. Genes with increased H3K9ac were mainly enriched in the transcription start site (TSS), suggesting that H3K9ac is related to gene transcription. Integrative analysis of both RNA-seq and CUT&Tag-seq data showed that up-expressed genes with H3K9ac enrichment were mainly involved in the jasmonic acid (JA) and phenylpropanoid pathways. Particularly, two spermidine hydroxycinnamoyl transferase genes SHT1 and SHT2 involved in phenolamide biosynthesis were highly modified by H3K9ac in FAW-infested plants. Furthermore, the Ossht1 and Ossht2 transgenic lines exhibited decreased resistance against FAW larvae. Our findings suggest that rice responds to insect herbivory via H3K9ac epigenetic regulation in the JA signaling and phenolamide biosynthesis pathways.


Asunto(s)
Ciclopentanos , Oryza , Oxilipinas , Animales , Spodoptera/genética , Oryza/metabolismo , Histonas/metabolismo , Epigénesis Genética , Larva/genética
5.
Int J Biol Macromol ; 252: 126246, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567520

RESUMEN

Root bark (Lycii cortex) of Lycium contains high contents of characteristic bioactive compounds, including kukoamine A (KuA) and kukoamine B (KuB). RIPENING INHIBITOR (RIN) is well known as a master regulator of Solanaceaous fruit ripening. However, the role of RIN in the biosynthetic pathway of KuA in Lycium remains unclear. In this study, integrated transcriptomic, metabolomic analyses and hairy root system are used to characterize the role of RIN in KuA biosynthesis in Lycium. The ultra performance liquid chromatography electrospray ionization tandem mass spectrometry analysis revealed that KuA was significantly induced in LrRIN1 RNAi lines and not detected in overexpression lines. A total of 20,913 differentially expressed genes (DEGs) and 60 differentially accumulated metabolites (DAMs) were detected in LrRIN1 transgenic hairy roots, which were used for weighted gene co-expression network analysis. Our result reveals a high association between KuA and structural genes in the phenolamide pathway, which shows a negative correlation with LrRIN1. In addition, overexpression of the polyamine pathway gene thermospermine synthase LcTSPMS, a potential target gene of Lycium RIN, increased the contents of both KuA and KuB in L. chinense hairy root, indicating that TSPMS is responsible for KuA biosynthesis and is also the common upstream biosynthetic gene for both KuA and KuB. Our results lay a solid foundation for uncovering the biosynthetic pathway of KuA, which will facilitate the molecular breeding and genetic improvement of Lycium species.


Asunto(s)
Lycium , Lycium/química , Espermina/farmacología , Perfilación de la Expresión Génica , Frutas , Regulación de la Expresión Génica de las Plantas
6.
Food Chem ; 424: 136402, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216782

RESUMEN

Phenolamides (PAs) are important secondary metabolites present in plants with multiple bioactivities. This study aims to comprehensively identify and characterize PAs in tea (Camellia sinensis) flowers using ultra-high-performance liquid chromatography/Q-Exactive orbitrap mass spectrometry based on a lab-developed in-silico accurate-mass database. The PAs found in tea flowers were conjugates of Z/E-hydroxycinnamic acids (p-coumaric, caffeic and ferulic acids) with polyamines (putrescine, spermidine and agmatine). The positional and Z/E isomers were distinguished through characteristic MS2 fragmentation rules and chromatographic retention behavior summarized from some synthetic PAs. 21 types of PAs consisting of over 80 isomers were identified, and the majority of them were found in tea flowers for the first time. Among 12 tea flower varieties studied, they all possessed tris-(p-coumaroyl)-spermidine with the highest relative content, and C. sinensis 'Huangjinya' had the highest total relative contents of PAs. This study shows the richness and structural diversity of PAs in tea flowers.


Asunto(s)
Camellia sinensis , Camellia sinensis/química , Espermidina/análisis , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas , Flores/química , Té/química
7.
Molecules ; 28(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36838541

RESUMEN

Resistance to conventional treatments renders urgent the discovery of new therapeutic molecules. Plant specialized metabolites such as phenolamides, a subclass of phenolic compounds, whose accumulation in tomato plants is mediated by the biotic and abiotic environment, constitute a source of natural molecules endowed with potential antioxidant, antimicrobial as well as anti-inflammatory properties. The aim of our study was to investigate whether three major phenolamides found in Tuta absoluta-infested tomato leaves exhibit antimicrobial, cytotoxic and/or anti-inflammatory properties. One of them, N1,N5,N14-tris(dihydrocaffeoyl)spermine, was specifically synthesized for this study. The three phenolamides showed low to moderate antibacterial activities but were able to counteract the LPS pro-inflammatory effect on THP-1 cells differentiated into macrophages. Extracts made from healthy but not T. absoluta-infested tomato leaf extracts were also able to reduce inflammation using the same cellular approach. Taken together, these results show that phenolamides from tomato leaves could be interesting alternatives to conventional drugs.


Asunto(s)
Lepidópteros , Mariposas Nocturnas , Solanum lycopersicum , Animales
8.
Front Plant Sci ; 13: 970496, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36426156

RESUMEN

Cold and drought stress are the two most severe abiotic stresses in alpine regions. Poa crymophila is widely grown in the Qinghai-Tibet Plateau with strong tolerance. Here, by profiling gene expression patterns and metabolomics-associated transcriptomics co-expression network, the acclimation of Poa crymophila to the two stresses was characterized. (1) The genes and metabolites with stress tolerance were induced by cold and drought, while those related with growth were inhibited, and most of them were restored faster after stresses disappeared. In particular, the genes for the photosynthesis system had strong resilience. (2) Additionally, cold and drought activated hypoxia and UV-B adaptation genes, indicating long-term life on the plateau could produce special adaptations. (3) Phenolamines, polyamines, and amino acids, especially N',N″,N'″-p-coumaroyl-cinnamoyl-caffeoyl spermidine, putrescine, and arginine, play key roles in harsh environments. Flexible response and quick recovery are strategies for adaptation to drought and cold in P. crymophila, accounting for its robust tolerance and resilience. In this study, we presented a comprehensive stress response profile of P. crymophila and provided many candidate genes or metabolites for future forage improvement.

9.
Metabolites ; 12(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35736416

RESUMEN

Tomato plants are attacked by a variety of herbivore pests and among them, the leafminer Tuta absoluta, which is currently a major threat to global tomato production. Although the commercial tomato is susceptible to T. absoluta attacks, a better understanding of the defensive plant responses to this pest will help in defining plant resistance traits and broaden the range of agronomic levers that can be used for an effective integrated pest management strategy over the crop cycle. In this study, we developed an integrative approach combining untargeted metabolomic and transcriptomic analyses to characterize the local and systemic metabolic responses of young tomato plants to T. absoluta larvae herbivory. From metabolomic analyses, the tomato response appeared to be both local and systemic, with a local response in infested leaves being much more intense than in other parts of the plant. The main response was a massive accumulation of phenolamides with great structural diversity, including rare derivatives composed of spermine and dihydrocinnamic acids. The accumulation of this family of specialized metabolites was supported by transcriptomic data, which showed induction of both phenylpropanoid and polyamine precursor pathways. Moreover, our transcriptomic data identified two genes strongly induced by T. absoluta herbivory, that we functionally characterized as putrescine hydroxycinnamoyl transferases. They catalyze the biosynthesis of several phenolamides, among which is caffeoylputrescine. Overall, this study provided new mechanistic clues of the tomato/T. absoluta interaction.

10.
Plant Mol Biol ; 109(4-5): 595-609, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34822009

RESUMEN

KEY MESSAGE: We show that in rice, the amino acid-conjugates of JA precursor, OPDA, may function as a non-canonical signal for the production of phytoalexins in coordination with the innate chitin signaling. The core oxylipins, jasmonic acid (JA) and JA-Ile, are well-known as potent regulators of plant defense against necrotrophic pathogens and/or herbivores. However, recent studies also suggest that other oxylipins, including 12-oxo-phytodienoic acid (OPDA), may contribute to plant defense. Here, we used a previously characterized metabolic defense marker, p-coumaroylputrescine (CoP), and fungal elicitor, chitooligosaccharide, to specifically test defense role of various oxylipins in rice (Oryza sativa). While fungal elicitor triggered a rapid production of JA, JA-Ile, and their precursor OPDA, rice cells exogenously treated with the compounds revealed that OPDA, rather than JA-Ile, can stimulate the CoP production. Next, reverse genetic approach and oxylipin-deficient rice mutant (hebiba) were used to uncouple oxylipins from other elicitor-triggered signals. It appeared that, without oxylipins, residual elicitor signaling had only a minimal effect but, in synergy with OPDA, exerted a strong stimulatory activity towards CoP production. Furthermore, as CoP levels were compromised in the OPDA-treated Osjar1 mutant cells impaired in the oxylipin-amino acid conjugation, putative OPDA-amino acid conjugates emerged as hypothetical regulators of CoP biosynthesis. Accordingly, we found several OPDA-amino acid conjugates in rice cells treated with exogenous OPDA, and OPDA-Asp was detected, although in small amounts, in the chitooligosaccharide-treated rice. However, as synthetic OPDA-Asp and OPDA-Ile, so far, failed to induce CoP in cells, it suggests that yet another presumed OPDA-amino acid form(s) could be acting as novel regulator(s) of phytoalexins in rice.


Asunto(s)
Oryza , Oxilipinas , Aminoácidos/metabolismo , Quitina/metabolismo , Quitosano , Ciclopentanos/metabolismo , Oligosacáridos , Oryza/genética , Oxilipinas/metabolismo , Sesquiterpenos , Fitoalexinas
11.
Plant Mol Biol ; 109(4-5): 627-637, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34709485

RESUMEN

KEY MESSAGE: Jasmonate-induced accumulation of anti-herbivore compounds mediates rice resistance to the leaf folder Cnaphalocrocis medinalis. The rice leaf folder (LF), Cnaphalocrocis medinalis, is one of the most destructive insect pests in the paddy field. LF larvae induces leaf folding and scrapes the upper epidermis and mesophyll tissues reducing photosynthesis and yield in rice. Identifying plant defense pathways and genes involved in LF resistance is essential to understand better this plant-insect interaction and develop new control strategies for this pest. Jasmonate (JA) signaling controls a plethora of plant defenses against herbivores. Using RNA-seq time series analysis, we characterized changes in the transcriptome of wild-type (WT) leaves in response to LF damage and measured the dynamics of accumulation of JA phytohormone pools in time-course experiments. Genes related to JA signaling and responses, known to mediate resistance responses to herbivores, were induced by LF and were accompanied by an increment in the levels of JA pools in damaged leaves. The accumulation of defense compounds such as phenolamides and trypsin proteinase inhibitor (TPI) also increased after LF infestation in WT but not in JA mutant plants impaired in JA biosynthesis (aoc-2) and signaling (myc2-5). Consistent with all these responses, we found that LF larvae performed better in the JA mutant backgrounds than in the WT plants. Our results show that JA signaling regulates LF-induced accumulation of TPI and phenolamides and that these compounds are likely an essential part of the defense arsenal of rice plants against this insect pest.


Asunto(s)
Mariposas Nocturnas , Oryza , Animales , Ciclopentanos/metabolismo , Larva/metabolismo , Mariposas Nocturnas/fisiología , Oryza/metabolismo , Oxilipinas/metabolismo
12.
J Exp Bot ; 67(11): 3367-81, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27126795

RESUMEN

Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Ornitina Descarboxilasa/genética , Proteínas de Plantas/genética , Putrescina/metabolismo , Transcriptoma , Regulación hacia Abajo , Ornitina Descarboxilasa/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Nicotiana/enzimología , Nicotiana/crecimiento & desarrollo
13.
New Phytol ; 207(3): 645-58, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25919325

RESUMEN

Herbivore attack elicits changes in cytokinins (CKs), but how these changes influence defense signaling remains poorly described. We investigated the influence of the CK pathway on the well-described inducible defense pathways of Nicotiana attenuata in response to wounding with and without elicitors from the specialist herbivore Manduca sexta. CK pathway manipulation often suffers from substantial side effects on plant growth and development. We therefore used multiple manipulation tools including spray application of CKs, chemically-inducible expression of the CK biosynthesis enzyme isopentenyltransferase, and transient and constitutive RNAi-mediated gene silencing of CK receptors to resolve the function of CKs in plant defense. The results demonstrated that CK concentrations in leaves and perception through CHASE-DOMAIN CONTAINING HIS KINASE 2 (NaCHK2) and NaCHK3 were important for the accumulation of jasmonic acid (JA) and phenolamides and proteinase inhibitor activity. By contrast, the CK pathway did not promote the accumulation of the active JA-isoleucine conjugate and negatively regulated the release of specific green leaf volatile esters. Interestingly, CK signaling also promotes the systemic phenolamide accumulation. We conclude that the CK pathway is an important regulator of herbivory-inducible defense signaling and chemistry, which expands its reported participation in adjusting a plant's physiology to abiotic and biotic stress responses.


Asunto(s)
Citocininas/metabolismo , Herbivoria , Nicotiana/inmunología , Nicotiana/fisiología , Transducción de Señal , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA